LOGARITHMIC FLUCTUATIONS FROM CIRCULARITY

LIONEL LEVINE

Start with n particles at the origin in the square grid \mathbb{Z}^{2}, and let each particle in turn perform simple random walk until reaching an unoccupied site. Lawler, Bramson and Griffeath proved that with high probability the resulting random set of n occupied sites is close to a disk. We show that its fluctuations from circularity are, with high probability, at most logarithmic in the radius of the disk, answering a question posed by Lawler in 1995. These logarithmic fluctuations were predicted numerically by chemical physicists in the 1980's.

Joint work with David Jerison and Scott Sheffield.

