THE PHASE TRANSITION IN PERCOLATION ON THE HAMMING CUBE

ASAF NACHMIAS

Consider percolation on the Hamming cube $\{0,1\}^{n}$ at the critical probability p_{c} (at which the expected cluster size is $2^{n / 3}$). It is known that if $p=$ $p_{c}\left(1+O\left(2^{-n / 3}\right)\right.$, then the largest component is of size roughly $2^{2 n / 3}$ with high probability and that this random variable is not-concentrated. We show that for any sequence $\varepsilon(n)$ such that $\varepsilon(n) \gg 2^{-n / 3}$ and $\varepsilon(n)=o(1)$ percolation at $p_{c}(1+\varepsilon(n))$ yields a largest cluster of size $(2+o(1)) \varepsilon(n) 2^{n}$. This completes the description of the phase transition on the Hamming cube and settles a conjecture of Borgs, Chayes, van der Hofstad, Slade and Spencer.

Our approach is to show that large percolation clusters have inherent randomness causing them to clump together and form a giant cluster. The behavior of the random walker on the Hamming cube plays a key role in the proofs of such statements.

Joint work with Remco van der Hofstad.

