Branching random walks

2 ingredients:
- offspring law $p(\cdot)$: $\sum_{k=1}^{\infty} p(k) = 1$
- assume $\sum_{k=1}^{\infty} kp(k) > 1$, $\sum_{k=1}^{\infty} k^2 p(k) < \infty$ (often $p(0) = 0$)
- displacement law: $RV \times \text{Var}(X) > 0$

Start with one particle at 0,
- particles produce offspring according to $p(\cdot)$ (and die)
- offspring takes displacements according to X
(all particles behave independently).

Continuous analogue: BRM

\[
\begin{array}{c}
\text{space} \\
\text{time}
\end{array}
\]
Tree-indexed RW

- GW-process according to \(p(\cdot) \):
 \[T \]
- Label edges with iid RV distributed as \(X \)

\[D_u = \text{vertices in generation } u \}
\[\Gamma_{D_u} = \text{Galton-Watson process} \]

\[S_v = \sum_{x \in [0,v]} X_e \quad \text{position of particle} \]

Recall \(\lim_{m \to 0} m : = \sum_{k=0}^{\infty} kp(k) > 1 \)
\[\Rightarrow P\left[T \text{ infinite} \right] > 0 \]

\(m \) "reproduction number"

If \(p(0) > 0 \), can look \[P^* \left[\cdot \right] = \left[P \cdot \Gamma_{D_u} > 0, \forall u \right] \]

Now:

\((S_v)_{v \in D_u} \) are RV which have not
Move general model: independent particles produce "offspring + displacements" at once according to some point process.

Example:

\[
\begin{array}{c}
\text{each with prob. } \frac{1}{2} \\
\text{(dependence between siblings!)}
\end{array}
\]

Q: \[
\sup_{v \in \Delta_n} S_v
\]

Assume \[
\mathbb{E}[e^{\lambda X}] < \infty \text{ for some } \lambda > 0
\]

Define \(I(\gamma) = \sup_{\lambda} \left\{ \lambda \gamma - \log \mathbb{E}[e^{\lambda X}] \right\} \)

e.g. rate func. for \(\gamma > \mathbb{E}[X] \),

\[
\frac{1}{n} \log \mathbb{P}[S_n \geq n \gamma] \to -I(\gamma)
\]

Indeed,

\[
\mathbb{P}[S_n \geq n \gamma] \leq \mathbb{E}[e^{\lambda S_n}] e^{-\lambda n \gamma}
\]

\[
= e^{-n I(\gamma)}
\]

\(\lambda = \gamma \) optimal.

Define
\[x^* = \sup \{ s \geq [E[X] : I(s) \leq \log m] \} \]

Theorem 1 - Beggins, Hammersley, Kingman

\[
\frac{M_n}{n} \rightarrow x^* \quad P^* - a.s.
\]

Exercises:

(i) \(X \sim N(0,1) \) Compute \(x^* \)

(ii) \(p(3) = 1, \ P[X=0] = \frac{1}{2} = P[X=1] \) Compute \(x^* \)

Do we have \(P[M_n = n, \forall n] > 0 ? \)

(iii) Same as (ii) if \(p(2) = 1 \).

Intuition:
At time \(u \), have \(\approx m^n \) particles.
For each \(u \in \Delta_n \), \(P[S_u \geq n\gamma] \approx e^{-uI(y)} \)

\[
e^{-uI(y)} e^{u \log m n} = 1 \Rightarrow y = x^*.
\]

Proof

(i) First moment method.
\[P[M_u \geq n_y] \leq E[\sum_{v \in D_u} I_{S_v \geq n_y}] \]
\[= E[1_{D_u} \prod_{v \in D_u} \mathbb{1}_{S_v \geq n_y}] \leq e^{-n I(y)} \]

Hence if
\[I(y) > \log m, \]
\[\sum_u P[M_u \geq n_u] < \infty \]
\[\Rightarrow \operatorname{esssup} \frac{M_u}{n} \leq y. \]

(ii) "Embedded treee"

Assume \(y < x^* \)
Choose \(\varepsilon > 0 \) s.t. \(I(y) - 2\varepsilon < \log m \)
\[P[S_k \geq k\gamma] \geq e^{-k(I(y) - \varepsilon)} \]

for \(k = k_0(\varepsilon) \)

"embedded treee":
- keep \(v \in D_k \) if \(\frac{S_v}{k} \geq \gamma \)
- delete \(v \) otherwise
- go to level \(2k \)

\[\rightarrow \text{embedded GW-treee} \sim cT \]
What is \hat{m}?

$$\hat{m} = m^k \Pr[S_k \geq k\gamma]$$

$$> e^{k \log \hat{m} \cdot e^{-k(1/\gamma) - \varepsilon}} \geq e^k$$

$$> 1 \text{ for } k \text{ large enough.}$$

$$\Pr[\liminf_{n \to \infty} \frac{M_n}{n} \geq \gamma] > 0.$$

0-1 Law for inherited properties

Call a property A of trees inherited if each finite tree has A, and if T has A, then all descendant trees of the children of the root have it.

Then $\Pr^* [T \text{ has } A] \in (0, 1].$

Proof

$$\Pr[T \text{ has } A] = \mathbb{E} \left[\Pr[T \text{ has } A \mid D_{n}] \right]$$

$$\leq \mathbb{E} \left[\Pr[T^{(n)} \text{ has } A, ..., T^{(D_{n})} \text{ has } A \mid D_{n}] \right]$$

inherited

$$= \mathbb{E} \left[\Pr[T \text{ has } A] \mid D_{n} \right]$$
Hence
\[\Pr[T \text{ has } A] \leq f(\Pr[T \text{ has } A]) \]
where
\[f(s) = \sum_{k=0}^{\infty} s^k p(k) = \mathbb{E}[s^{1/\lambda}] \]

On the other hand,
\[\Pr[T \text{ has } A] \geq q \]
\[q = \Pr[\lim_{u \to \infty} |D_u| = 0] \]
\[\implies \Pr[T \text{ has } A] \in [q, 1] \]
\[\implies \Pr^*[T \text{ has } A] \in [0, 1] \]

Look at the foll. prop. A:
\[A = \exists T \text{ finite} \cup \exists \liminf \frac{M_n}{n} \leq \frac{1}{2} \]