Every problem is worth 10 points.

Problem 1: Let D be the open unit disc, ∂D its boundary and \bar{D} its closure. Let f_n be a sequence of functions holomorphic in D, continuous on \bar{D}, and converging uniformly on ∂D. Show that f_n converges uniformly on \bar{D} (you may use that a sequence a_n converges uniformly iff $\{a_n\}$ is uniformly Cauchy).
Problem 2: Use residues to calculate $\int_{-\infty}^{\infty} \frac{1}{1+x^3} \, dx$
Problem 3: Consider the upper half plane $U = \{ z : \text{Im} z \geq 0 \}$. Let f be continuous on the closure \bar{U} such that $f(x)$ is real for x real, and f is holomorphic on U. Let $F(z)$ be the extension of f to lower half plane defined by $F(z) = \overline{f(\overline{z})}$ where $\text{Im} z < 0$. Show that $F(z)$ is entire. (you may assume $F(z)$ is continuous. You may also assume that in the statement of Moreras theorem, the closed loops are all rectangles).
Problem 4:
For each of the following vector fields \(\mathbf{F} \), determine if \(\mathbf{F} \) is conservative on \(\mathbb{R}^3 \). For each that is conservative (i.e., a gradient vector field), find all potentials \(f \) for \(\mathbf{F} \), i.e., all \(C^1 \) functions \(f \) such that \(\nabla(f) = \mathbf{F} \).

1. \(\mathbf{F} = (xz, xy, yz) \)
2. \(\mathbf{F} = (2y \sin(yz), 2x \sin(yz) + 3z + 2xyz \cos(yz), 2xy^2 \cos(yz) + 3y) \)
Problem 5: Let \(a_{m,n} \geq 0 \), and assume that each \(a_{m+1,n} \leq a_{m,n} \) and \(a_{m,n+1} \leq a_{m,n} \). Show that \(\lim_{m} \lim_{n} a_{m,n} = \lim_{n} \lim_{m} a_{m,n} = a \), for some \(a \geq 0 \).
Problem 6: Let M be a compact metric space and $f : M \to M$ be continuous.

1. Let $M \times M$ be given metric $
ho((x, y), (x', y')) = d(x, x') + d(y, y')$. Show that the function $d(x, y)$ from $M \times M$ to \mathbb{R} is continuous.

2. Let $r := \inf_{x \in M} d(x, f(x))$. Show that $r = d(x, f(x))$ for some $x \in M$.

3. Suppose that

$$\text{for all } x, y \in M \text{ s.t. } x \neq y, \ d(f(x), f(y)) < d(x, y).$$

Show that f has a unique fixed point.