Part I: Real and Complex Analysis (Pure and Applied Exam)

1. (a) Find all polynomials that are uniformly continuous on \mathbb{R}.

(b) Let A be a nonempty subset of \mathbb{R} and let f be a real-valued function defined on A. Further let $\{f_n\}$ be a sequence of bounded functions on A which converge uniformly to f. Prove that

$$\frac{f_1(x) + \cdots + f_n(x)}{n} \to f(x)$$

uniformly on A as $n \to \infty$.

2. (a) Prove the Logarithmic Test

Theorem 1. Suppose that $a_k \neq 0$ for large k and that

$$p = \lim_{k \to \infty} \frac{\log(1/|a_k|)}{\log k}$$

exists.

- If $p > 1$ then $\sum_{k=1}^{\infty} a_k$ converges absolutely, and
- If $p < 1$ then $\sum_{k=1}^{\infty} |a_k|$ diverges.

(b) Let $\{a_k\}$ be a sequence of non-zero real numbers and suppose that

$$p = \lim_{k \to \infty} k \left(1 - \frac{|a_{k+1}|}{|a_k|}\right)$$

exists

Prove that $\sum_{k=1}^{\infty} a_k$ converges absolutely when $p > 1$.

3. Evaluate the integral

$$\int \int_S \mathbf{F} \cdot \mathbf{n} \, d\sigma,$$

where S is the region of the plane $y = z$ lying inside the unit ball centred at the origin, and $\mathbf{F} = (xy, xz, -yz)$, and \mathbf{n} is the upward-pointing normal.

Note that it might be helpful to remember that

$$\int 2\sin^2 t \, dt = t - \sin t \cos t.$$
4. In the following, justify your answer.
 (a) (6 points) Prove or disprove:
 There exists a holomorphic function f on \mathbb{C} (thus an entire function) such that $f(D) = Q$ where D is the unit disk $D = \{ z \in \mathbb{C} \mid |z| < 1 \}$ and Q is the square $Q = \{ z \in \mathbb{C} \mid -1 < \text{Re} z, \text{Im} z < 1 \}$.
 (b) (7 points) Find all holomorphic functions $f(z)$ on $\mathbb{C}\setminus\{0\}$ such that
 $$f(1) = 1, \quad |f(z)| \leq \frac{1}{|z|^3}.$$
 (c) (7 points) Find a holomorphic function $f(z)$ on $D = \{ z \in \mathbb{C} \mid |z| < 1 \}$, which maps D onto the infinite sector
 $$S = \{ z = re^{i\theta} \in \mathbb{C} \mid 0 < \theta < \pi/4 \}.$$

5. (a) (6 points) Prove or disprove:
 There exists a **nonconstant** holomorphic function $f(z)$ from $D = \{ z \in \mathbb{C} \mid |z| < 1 \}$ into \mathbb{C} such that the area of its image, $\text{area}(f(D)) = 0$.
 (b) (7 points) Show that there is **no** holomorphic function $f(z)$ on $D = \{ z \in \mathbb{C} \mid |z| < 1 \}$ such that $|f(z)| = |z|^{1/2}$ for all $z \in D$.
 (c) (7 points) Find all harmonic functions $u(x,y)$ on \mathbb{R}^2 such that $e^{u(x,y)} \leq 10 + (x^2 + y^2)$ and $u(1,1) = 0$.

6. (20 points) Evaluate the following integral, using contour integration, carefully justifying each step:

$$\int_0^\infty \frac{\log x}{(1 + x^2)^2} dx$$
Part II: Linear Algebra and Algebra (pure exam)

1. Determine the eigenvalues and a basis of the corresponding eigenspaces for the linear map $f: \mathbb{R}^3 \to \mathbb{R}^3$ given by the matrix A with respect to the standard basis, where:

$$A = \begin{pmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix}.$$

Note: all eigenvalues are rational numbers.

2. Let $\mathcal{N}_n \subset M_n(\mathbb{R})$ be the set of *nilpotent* matrices, that is the set of $n \times n$ matrices A such that $A^k = 0$ for some k. Show that \mathcal{N}_n is a closed subset of $M_n(\mathbb{R})$ (identify the latter with \mathbb{R}^{n^2}).

3. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map.

 (a) Show that there is a unique integer $0 \leq k \leq \min\{n, m\}$ for which there are bases $\{u_i\}_{i=1}^n \subset \mathbb{R}^n$ and $\{v_i\}_{i=1}^m \subset \mathbb{R}^m$ such that the matrix of T with respect to these bases is $D^{(k)}$, where

$$D^{(k)} = \begin{cases} 1 & 1 \leq i = j \leq k \\ 0 & \text{otherwise} \end{cases},$$

that is $D^{(k)}$ has zeroes everywhere except that the first k entries on the main diagonal are 1.

 (b) Show that the row rank and column rank of any matrix $A \in M_{m,n}(\mathbb{R})$ are equal.

4. (a) Suppose that the order of a finite group G is divisible by 3 but not 9. Show that there are either one or two conjugacy classes of elements of order 3 in G.

 (b) Give examples of finite groups A, B, C of order divisible by 3 so that the orders of A, B are not divisible by 9 and they have one and two conjugacy classes of elements of order 3, respectively, and so that the order of C is divisible by 9 and it has more than two such conjugacy classes.
5. (a) Let R be an integral domain, and let $f \in R[x]$ be a polynomial. Let $\{a_i\}_{i=1}^r \subset R$ be distinct, and suppose that $f(a_i) = 0$ for all i. Show that $\prod_{i=1}^r (x - a_i)$ divides f in $R[x]$.

(b) Let $\{a_i\}_{i=1}^n, \{b_j\}_{j=1}^n$ be algebraically independent, and let $F = \mathbb{Q}(a,b)$ be the field of rational functions in $2n$ variables over \mathbb{Q}. Let $A \in M_n(F)$ be the matrix where $A_{ij} = \frac{1}{a_i - b_j}$. Show that

$$\det A = c_n \frac{\prod_{1 \leq i < j \leq n} ((a_i - a_j)(b_i - b_j))}{\prod_{i=1}^n \prod_{j=1}^n (a_i - b_j)}$$

for some universal $c_n \in \mathbb{Q}$.

For $n = 2$ this identity is:

$$\det \begin{pmatrix} \frac{1}{a_1 - b_1} & \frac{1}{a_1 - b_2} \\ \frac{1}{a_2 - b_1} & \frac{1}{a_2 - b_2} \end{pmatrix} = -\frac{(a_1 - a_2)(b_1 - b_2)}{(a_1 - b_1)(a_1 - b_2)(a_2 - b_1)(a_2 - b_2)}.$$

6. Let $f(x) = x^6 + 5x^3 + 1 \in \mathbb{Q}[x]$.

(a) Construct a splitting field Σ for f by adjoining at most two elements to \mathbb{Q}. You may wish to use the primitive cube root of unity $\omega = \frac{-1 + \sqrt{-3}}{2}$.

(b) Given that f has no root in $\mathbb{Q}(\sqrt{-3}, \sqrt{2})$ find $[\Sigma : \mathbb{Q}]$ and show that f is irreducible in $\mathbb{Q}[x]$.

(c) Let $\beta \in \Sigma$ be a root of F. Show that there exist unique $\rho, \sigma \in \text{Gal}(\Sigma : \mathbb{Q})$ so that:

$$\rho(\beta) = \frac{1}{\beta}, \rho(\omega) = \omega, \sigma(\beta) = \beta, \sigma(\omega) = \omega^2.$$ Also, show that ρ and σ commute.