Part I: Real and Complex Analysis (Pure and Applied Exam)

1. (a) Find all polynomials that are uniformly continuous on \mathbb{R}.
 (b) Let A be a nonempty subset of \mathbb{R} and let f be a real-valued function defined on A. Further let $\{f_n\}$ be a sequence of bounded functions on A which converge uniformly to f. Prove that
 $$\frac{f_1(x) + \cdots + f_n(x)}{n} \to f(x)$$
 uniformly on A as $n \to \infty$.

2. (a) Prove the Logarithmic Test
 \[\textbf{Theorem 1.} \quad \text{Suppose that } a_k \neq 0 \text{ for large } k \text{ and that} \]
 $$p = \lim_{k \to \infty} \frac{\log(1/|a_k|)}{\log k} \text{ exists.}$$
 \begin{itemize}
 \item If $p > 1$ then $\sum_{k=1}^{\infty} a_k$ converges absolutely, and
 \item If $p < 1$ then $\sum_{k=1}^{\infty} |a_k|$ diverges.
 \end{itemize}
 (b) Let $\{a_k\}$ be a sequence of non-zero real numbers and suppose that
 $$p = \lim_{k \to \infty} k \left(1 - \left|\frac{a_{k+1}}{a_k}\right|\right) \text{ exists}$$
 Prove that $\sum_{k=1}^{\infty} a_k$ converges absolutely when $p > 1$.

3. Evaluate the integral
 $$\iiint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma,$$
 where S is the region of the plane $y = z$ lying inside the unit ball centred at the origin, and $\mathbf{F} = (xy, xz, -yz)$, and \mathbf{n} is the upward-pointing normal.
 Note that it might be helpful to remember that
 $$\int 2 \sin^2 t \, dt = t - \sin t \cos t.$$
4. In the following, justify your answer.
 (a) (6 points) Prove or disprove:
 There exists a holomorphic function \(f \) on \(\mathbb{C} \) (thus an entire function) such that
 \(f(D) = Q \) where \(D \) is the unit disk \(D = \{ z \in \mathbb{C} \mid |z| < 1 \} \) and \(Q \) is the square
 \(Q = \{ z \in \mathbb{C} \mid -1 < \text{Re} \, z, \text{Im} \, z < 1 \} \).
 (b) (7 points) Find all holomorphic functions \(f(z) \) on \(\mathbb{C} \setminus \{0\} \) such that
 \[f(1) = 1, \quad |f(z)| \leq \frac{1}{|z|^3} \]
 (c) (7 points) Find a holomorphic function \(f(z) \) on \(D = \{ z \in \mathbb{C} \mid |z| < 1 \} \), which maps
 \(D \) onto the infinite sector
 \[S = \{ z = re^{i\theta} \in \mathbb{C} \mid 0 < \theta < \pi/4 \} \].

5. (a) (6 points) Prove or disprove:
 There exists a nonconstant holomorphic function \(f(z) \) from \(D = \{ z \in \mathbb{C} \mid |z| < 1 \} \)
 into \(\mathbb{C} \) such that the area of its image, \(\text{area} \, f(D) = 0 \).
 (b) (7 points) Show that there is no holomorphic function \(f(z) \) on \(D = \{ z \in \mathbb{C} \mid |z| < 1 \} \)
 such that \(|f(z)| = |z|^{1/2} \) for all \(z \in D \).
 (c) (7 points) Find all harmonic functions \(u(x, y) \) on \(\mathbb{R}^2 \) such that \(e^{u(x,y)} \leq 10 + (x^2 + y^2) \)
 and \(u(1, 1) = 0 \).

6. (20 points) Evaluate the following integral, using contour integration, carefully justifying each step:

 \[
 \int_0^\infty \frac{\log x}{(1 + x^2)^2} \, dx
 \]
Linear Algebra

1. Determine the eigenvalues and a basis of the corresponding eigenspaces for the linear map $f: \mathbb{R}^3 \to \mathbb{R}^3$ given by the matrix A with respect to the standard basis, where:

$$A = \begin{pmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix}.$$

Note: all eigenvalues are rational numbers.

2. Let $\mathcal{N}_n \subset M_n(\mathbb{R})$ be the set of nilpotent matrices, that is the set of $n \times n$ matrices A such that $A^k = 0$ for some k. Show that \mathcal{N}_n is a closed subset of $M_n(\mathbb{R})$ (identify the latter with \mathbb{R}^{n^2}).

3. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map.

 (a) Show that there is a unique integer $0 \leq k \leq \min \{n, m\}$ for which there are bases $\{\mathbf{u}_i\}_{i=1}^n \subset \mathbb{R}^n$ $\{\mathbf{v}_i\}_{i=1}^m \subset \mathbb{R}^m$ such that the matrix of T with respect to these bases is $D^{(k)}$, where

$$D^{(k)} = \begin{cases} 1 & 1 \leq i = j \leq k \\ 0 & \text{otherwise} \end{cases},$$

 that is $D^{(k)}$ has zeroes everywhere except that the first k entries on the main diagonal are 1.

 (b) Show that the row rank and column rank of any matrix $A \in M_{m,n}(\mathbb{R})$ are equal.
Differential Equations

1. Consider the differential equation
 \[4x^2 \frac{d^2 y}{dx^2} + y = 0. \]
 (a) For \(x > 0 \) find all solutions \(y(x) \).
 (Hint: look for solutions of the form \(y(x) = \sqrt{x} f(x) \).)
 (b) Determine \(y(x) \) in the limit \(x \to +0 \).

2. The following system of differential equations:
 \[
 \begin{align*}
 \frac{dx_1}{dt} &= 2x_1 - x_2 + t \\
 \frac{dx_2}{dt} &= 3x_1 - 2x_2
 \end{align*}
 \]
 has a linear solution. Determine the set of all solutions \((x_1(t), x_2(t))\).

3. Consider the initial value problem
 \[
 \begin{align*}
 u_{tt} - u_{xx} &= f(x) \cos t \\
 u(x, 0) &= 0, & u_t(x, 0) &= 0, & -\infty < x < \infty, 0 \leq t < \infty
 \end{align*}
 \]
 for a continuous function \(f(x) \) on \(\mathbb{R} \), which vanishes for \(|x| > R\).
 (a) Solve the initial value problem.
 \textit{Note:} The solution is of the form \(u(x, t) = u_p(x, t) + u_h(x, t) \). Use separation of variables to find a particular solution \(u_p(x, t) \) of \(u_{tt} - u_{xx} = f(x) \cos t \) (ignoring the initial values). Then, \(u_h(x, t) \) is a solution to the homogenous PDE with appropriately adjusted initial conditions.
 (b) The particular solution \(u_p(x, t) \) is not unique. Because of that it is not obvious whether the solution \(u(x, t) \) is unique. Prove that it is.