Part I

1. Let b and c be real numbers, $c > 0$. Use contour integration to evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{\cos(x-b)}{x^2 + c^2} \, dx.
$$

2. Let A be an $n \times n$ real symmetric matrix with smallest eigenvalue λ_1 and largest eigenvalue λ_n. Show that for any vector $v \neq 0$ in \mathbb{R}^n,

$$
\lambda_1 \leq \frac{\langle v, Av \rangle}{\langle v, v \rangle} \leq \lambda_n
$$

(here $\langle v, w \rangle = v^T w$ is the standard inner-product on \mathbb{R}^n).

3. (a) Find the eigenvalues λ and the eigenfunctions for the eigenvalue problem

$$
u_{xx} + u_{yy} = \lambda u, \quad (x, y) \in (0, 1) \times (0, 1)
$$

$$u(x, 0) = u_x(0, y) = u_y(x, 1) = u(1, y) = 0. \quad (*)$$

(b) Now suppose $w(x, y, t)$ solves the heat equation

$$w_t = w_{xx} + w_{yy}, \quad (x, y) \in (0, 1) \times (0, 1), \quad t > 0$$

with the same boundary conditions as $(*)$, and with initial condition $w(x, y, 0) \equiv 1$. Find the leading-order behaviour of w as $t \to \infty$.

4. Consider the vector field

$$
\mathbf{F}(x, y, z) = \frac{x \hat{i} + y \hat{j} + z \hat{k}}{(x^2 + y^2 + z^2)^{3/2}}.
$$

(a) Verify that $\nabla \cdot \mathbf{F} = 0$ on $\mathbb{R}^3 \setminus \{0\}$.

(b) Let S be a sphere centred at the origin, with “outward” orientation. Show that

$$
\iint_S \mathbf{F} \cdot d\mathbf{S} = 4\pi. \quad (*)
$$

(c) Now let $E \subset \mathbb{R}^3$ be an open region with smooth boundary S (given “outward” orientation), and suppose $0 \in E$. Show that $(*)$ still holds.
5. In the complex plane, let C_1 be the circle passing through $-2, -i,$ and 2, and let C_2 be the circle passing through $-2, (2/3)i,$ and 2. Let Ω be the intersection of the open disks whose boundaries are C_1 and C_2 (so Ω is the region bounded by C_1 and C_2).

(a) Find a transformation of the form

$$z \mapsto \frac{az + b}{cz + d}, \quad a, b, c, d \in \mathbb{C}$$

(i.e. a fractional linear transformation) which maps -2 to 0, $-i$ to 1, and 2 to ∞.

(b) Find the image of Ω under this mapping.

(c) Find the angle between the circles C_1 and C_2 at the point -2.

6. Let V be the vector space of all polynomials $p(x)$ with real coefficients. Let A and B denote the linear transformations on V of (respectively) multiplication by x, and differentiation. That is, $A : p(x) \mapsto xp(x)$, and $B : p(x) \mapsto p'(x)$.

(a) Show that A has no eigenvalues, and that 0 is the only eigenvalue of B.

(b) Compute the transformation $BA - AB$.

(c) Show that no two linear transformations A, B on a finite dimensional real vector space can satisfy $BA - AB = I$ (here I denotes the identity transformation).

Applied Math Qualifying Exam: Jan. 8, 2005

Part II

1. (a) Show that a continuous function on \mathbb{R} cannot take every real value exactly twice.

(b) Find a continuous function on \mathbb{R} that takes each real value exactly 3 times.

2. A nonlinear oscillator is described by the following ODE for $y(t)$:

$$y'' + \gamma(y)y' + g(y) = 0 \quad (*)$$

where $\gamma(y)$ and $g(y)$ are smooth functions, with $g(0) = 0$.

(a) Verify that the constant function $y_0(t) \equiv 0$ is a solution of $(*)$.

(b) Re-write $(*)$ as a first-order system.

(c) What conditions on γ and g ensure that the constant solution y_0 is stable? Unstable?

3. Show that an entire function $f(z)$ satisfying $\lim_{|z| \to \infty} |f(z)| = c$ (for some $c \in (0, \infty)$) is constant.
4. For a vector \(v = (v_1, \ldots, v_n)^T \in \mathbb{R}^n \), define \(\|v\|_1 := \sum_{j=1}^{n} |v_j| \), and for an \(n \times n \) matrix \(A \), define
\[
\|A\|_1 := \sup_{v \in \mathbb{R}^n ; v \neq 0} \frac{\|Av\|_1}{\|v\|_1}.
\]
Show that if \(A = (a_{ij}) \), then
\[
\|A\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^{n} |a_{ij}|.
\]

5. Let \(f(x) \) be a periodic function with period 1 whose Fourier series is \(\sum_{n=-\infty}^{\infty} a_n e^{2\pi i n x} \).
(a) Find an integral formula for the coefficients \(a_n \) (in terms of \(f \)).
(b) Show that if \(f \) has \(m \) continuous derivatives, then \(|a_n| \leq C/|n|^m \) (where \(C \) is a constant depending on \(f \)).

6. Consider the following PDE for \(u(x,t) \):
\[
u_t + auu_x + bu_{xxx} = 0, \quad -\infty < x < \infty, \quad t > 0
\]
(\(a, b > 0 \) are constants).
(a) Use scaling to reduce the problem to the form
\[
w_t + ww_x + w_{xxx} = 0, \quad -\infty < x < \infty, \quad t > 0. \quad (*)
\]
(b) Suppose \(w(x,t) \) is a smooth solution of \((*) \) for which \(w \) and its derivatives decay rapidly to 0 as \(x \to \pm \infty \). Show that the quantity
\[
\int_{-\infty}^{\infty} w^2(x,t)dx.
\]
is constant in time.
(c) Equation \((*) \) has solutions of the form \(w(x,t) = \phi(x-ct) \) (\(c \) a constant) with \(\phi > 0 \), and \(\phi(y) \) (and its derivatives) tending to 0 as \(y \to \pm \infty \). Find the equation satisfied by the function \(\phi \), and solve it. (This last part is somewhat involved!).