The Ivan and Betty Niven Distinguished Lectures/Mathematics Colloquium

4:00 p.m., Monday (March 5)

Math Annex 1100

Fernando Rodriguez-Villegas
University of Texas at Austin

Lecture #1 Combinatorics as geometry

Ever since Weil we know that counting points of varieties over finite fields yields topological information about them. In this talk I will describe such a calculation for certain character varieties, parameterizing representations of the fundamental group of a Riemann surface into GLn.

I will discuss the main ingredients of the calculation, which involves an array of techniques from combinatorics and representation theory of finite groups of Lie type. The outcome of the calculation has several geometric consequences about the varieties; for example, it allows us to compute their topological Euler characteristic. But more importantly they naturally suggest interesting conjectures about their mixed Hodge polynomials.

Besides their intrinsic interest the varieties in question are closely related to the moduli spaces of Higgs bundles on the surface. Somewhat surprisingly we discover a tight connection between the geometry of these character varieties and the Macdonald polynomials of combinatorics.

This is joint work with T. Hausel and E. Letellier.

Refreshments will be served at 3:45 p.m. in the Math Lounge, Math Annex (Room 1115).

Copyright © 2007 UBC Mathematics Department