COLLOQUIUM
3:00 p.m., Friday (April 18, 2008)
WMAX 110 (PIMS)
JeanPierre Bourguignon
CNRSIHES
Geometry of Spaces of Measures
Abstract: Motivated by geometric (and also physical) problems,
Misha Gromov advocated the loosening of the relation between a metric and
a measure that is familiar in Riemannian geometry where the metric is
obtained by integrating the length of shortest paths and the volume element
is induced by the metric. This lead to the study of Metric Measured Spaces.
Motivated by optimal transport, Felix Otto and Cedric Villani made evident
the importance of the geometry of spaces of measures. Their efforts met earlier
ones made by probabilists such as Dominique Bakry and Michel Emery who looked
for conditions ensuring the validity of logSobolev inequalities. Maxim Kontsevitch
and John Lott rediscovered some of these facts in their attempts to generalize the
notion of Ricci curvature to non smooth metrics.
This very rich circle of ideas has become a very active area of research allowing
to revisit some classical domains of Analysis, such as solving Monge Ampere equations.
The intricate mixing of ideas coming from diverse fields makes it quite remarkable.
Refreshments will be served beforehand over at PIMS.
