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Abstract

Metastable dynamics, which qualitatively refers to physical processes that involve an
extremely slow approach to their final equilibrium states, is often associated with singu-
larly perturbed convection-diffusion-reaction equations. A problem exhibits metastable
behavior when the approach to equilibrium occurs on a time-scale of order O(e%), where
C' > 0 and ¢ is the singular perturbation parameter. The studies of these mathematical
models are not only significant in their own right, but also useful in simulating and ex-
plaining observed physical phenomena and exploring possibly certain unknown ones. A
typical common characteristic associated with these convection-diffusion-reaction equa-
tions 1s that the linearized operator is exponentially ill-conditioned. By exponential
ill-conditioning we mean that the linearized operator has an exponentially small eigen-
value. As a result, conventional analytical methods and numerical schemes may fail to
provide accurate information about the metastable behavior.

This thesis is concerned with developing a systematic and robust approach based on
asymptotic and numerical methods to quantify the dynamic metastability associated with
various problems. Using the asymptotic method called the projection method which was
originated by Ward in [108], we have succeeded in deriving ordinary differential equations
(ODEs) or differential algebraic equations (DAEs) which characterize the metastable
patterns for several problems, including, the phase separation of a binary alloy modeled
by the viscous Cahn-Hilliard equation, the upward propagation of a flame front in a
vertical channel modeled by the Mikishev-Rakib-Sivashinsky equation, and two problems
in slowly varying geometries. The main role of our numerical method called the transverse

method of lines is to give a numerical justification of these ODEs/DAEs and to provide
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useful information about the metastable solutions in their transient phases and collapse
phases during which our asymptotic method fails.

From the numerical point of view, little is known of the nature concerning the con-
vergence and stability of any numerical scheme that computes metastable behavior, as a
result of the exponential ill-conditioning of the linearized operator. In this thesis, several
finite difference schemes and their convergence are analyzed rigorously for a boundary
layer resonance problem. Our results from this problem are shown numerically to be also
valid for other nonlinear metastable problems and some guidelines in designing effective
numerical schemes are provided.

The analytical and numerical results show that our approach is a powerful and general
tool to quantitatively study the metastable patterns in various physical problems. In
addition, the metastable behavior revealed by our analysis appears to be also rather

interesting from the viewpoint of physical applications.
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Chapter 1

Introduction

The subject of dynamic metastability has recently generated tremendous interest in the
mathematical science community and in several areas of application such as in the phase
separation of binary alloys, the propagation of flames, the exit problem of a Brownian
particle confined by a finite potential well, etc. Metastable dynamics, which refers to
physical processes that involve an extremely slow approach to their equilibrium states, is
usually associated with particular types of singularly perturbed parabolic partial differen-
tial equations. A problem exhibits metastable behavior when the approach to equilibrium
occurs on a time-scale of order O(e%), where C' > 0 and ¢ is the singular perturbation
parameter. Examples of such equations include: the Cahn-Hilliard equation and the con-
strained Allen-Cahn equation (cf. [24], [22], [91]) modeling the slow phase separation of a
binary alloy; a Burger-type equation derived in [85] and [77] for flame-front propagation
in a vertical channel; the Kolmogorov’s backward equation in the exit problem (cf. [72],
[75], [92], [93]); the Gierner Mienhardt equation as an activator-inhibitor model in the
mathematical biology (cf. [40], [56]).

There are a few common characteristics associated with these singularly perturbed
problems exhibiting dynamical metastability. A typical feature is exponential ill-con-
ditioning, by which we mean that the spectrum of the eigenvalue problem associated
with the linearized equation about the steady state solution contains asymptotically
exponentially small eigenvalues. As a result of this exponential ill-conditioning, the

time-dependent solution approaches its steady state only over an exponentially long time
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interval. Moreover, the steady state itself is often extremely sensitive to perturbations
of the boundary values and the coefficients in the differential operator. The significance
of such eigenvalues was first recognized for certain linear two-point problems involving
boundary layer resonance in [1], [31], [60], [67], and later in [3], [14], [61], [87], [111], [112]
for the Cahn-Hilliard equation, the Allen-Cahn equation and the viscous shock problem.
Another consequence of this exponential ill-conditioning is that a straightforward ap-
plication of the method of matched asymptotic expansions (MMAE ) fails to determine
the solution uniquely. Specifically, since a conventional MMAE approach is incapable of
resolving the exponentially small terms that are significant for ill-conditioned problems,
it typically yields an asymptotic approximation with undetermined constants.

To overcome this deficiency, various modifications of the MMAE approximations have
been proposed to treat asymptotically exponentially ill-conditioned problems. A varia-
tional principle [44] and its extensions [114] were postulated and used to calculate the
leading order asymptotic solutions for certain linear turning point problems exhibiting
the phenomena of boundary layer resonance. Explicit matching of crucial exponentially
small terms was implemented to find the shock-layer locations for the steady state Burg-
ers equation in [63] and to construct asymptotic expansions of the solutions to several
nonlinear boundary value problems in [66]. Another method is applying the nonlinear
WEKB-type transformation introduced in [86], [87] for the Ginzberg-Landau equation and
the viscous shock problem, by which the problems are transformed to well-conditioned
steady state problems. In this way, a conventional boundary layer theory or a traditional
numerical method can be applied to find the equilibrium solutions. A more powerful tech-
nique to resolve this indeterminacy is the projection method that combines the MMAE
approach with some information concerning the spectral properties associated with the
linearized problem. This method, motivated by the work of deGroen [31], was originally

developed by Ward [108] for some reaction-diffusion models and has been successfully
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applied to various problems including the one dimensional exit problem in [67], the vis-
cous shock problem in [87] and several phase separation models in [86], [88], [109] and
[110]. The projection method has an advantage over other approaches in its adaptability
to treat various problems involving indeterminate constants where others may fail to.
In addition, using this spectral approach it is possible to derive equations of motion for
the internal layers or other structure patterns pertaining to some time-dependent partial
differential equations exhibiting metastability.

The characterization of these metastable patterns in various physical models in one
spatial dimension has become the subject of much recent research. Metastable behav-
ior for the time-dependent viscous shock problem was first observed numerically in [61],
and a quantitative characterization of this exponentially slow dynamics was derived in
[64], [65] and [87] by different approaches. The work in [26], [38] and [39] dealt with
the unconstrained Allen-Cahn equation in the one-dimensional case and established the
exponentially slow motion of the internal layers. The Cahn-Hilliard equation, model-
ing phase separation, has been studied numerically in [76], [32], [9] and the existence
of metastable phase field boundaries has been proved in [3], [17], [15], [43] and [35].
An explicit characterization of metastability for the (constrained) Allen-Cahn equation
and the (viscous) Cahn-Hilliard equation can be found in [86], [88] and [109], where the
asymptotic projection method is used to obtain the equation of motion for the locations
of the internal layers. In a multi-dimensional setting, dynamic metastability for phase
separation models that conserve mass can also occur and were discussed in [3], [91] and
[110]. In spite of numerous efforts devoted to study metastable dynamics in various
physical problems in the past decade, there still remain many interesting problems un-
explored, especially in multi-dimensional domains and for systems of reaction-diffusion
equations. In addition, even for phase separation models in one spatial dimension, quite

a few questions and phenomena require further explanation.
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In the rest of this section, we first in §1.1, through studying the Burgers equation
for viscous shocks, illustrate some basic characteristics associated with the singularly
perturbed problems exhibiting dynamic metastability. Then in §1.2 we outline how the
projection method can be used to calculate the undetermined constants occurring in
MMAE approximations and to analyze metastable dynamics for time-dependent prob-
lems. In §1.3, we propose an algorithm based on the idea of the transverse method of lines
(cf. [7]), which will be used to calculate full numerical solutions to the time-dependent
singularly perturbed problems studied in this thesis and to compare them with the cor-

responding asymptotic approximations. Finally, the contribution of this thesis is given

in §1.4.

1.1 Burgers Equation for Viscous Shocks

We investigate the following initial-boundary value problem for Burgers equation in the

limit e — 0:

Uy + UU, = EUpp, O0<ax<1l, t>0, (1.1a)

u(z,0) = we(x), u(0,f)=a, u(l,t)=—-a. (1.1b)

Here « is a positive constant. In this equation, the term wu, represents a nonlinear
convection or transport term, and cu,, 1s a Fickian diffusion term. The nonlinear con-
vection term steepens the initial waveform, while the diffusion term attempts to smear
out the solution. Thus (1.1) is a balance equation between these two effects. Equation
(1.1) was first suggested by Bateman [13] to describe the discontinuous motion of a fluid
whose nondimensionalized viscosity ¢ tends to zero. This equation and its generalizations
have subsequently been successtully applied in a number of fields, including turbulence,

laminar transonic flow, traffic flow, supersonic flow about an airfoil, biochemistry, etc.

(cf. [18], [69], [68], [19] [37] and [52]). The +a boundary values were selected so that a
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traveling wave solution for (1.1a), connecting v = « and u = —a, has zero speed. Con-
sequently, the shock layer solution u(x,t) of the initial-boundary value problem (1.1)
converges, in time, to its steady state u(x,00) only over exponentially long time. This
sluggishness was attributed by [61] to the occurrence of the asymptotically exponentially
small principal eigenvalue for the linearized equation about the steady state solution.

We first consider the equilibrium problem of (1.1):

ElUpy — U, = 0, 0<a<l, (1.2a)
u(0) = o, u(l)=-—a. (1.2b)
This equation has an exact solution v = u® with an interior shock given by u® =

—Atanh[fe™(x — £)/2], where 3 satisfies

p

= ftanh — . 1.3
a = (tan ” (1.3)

Using successive approximation (as in [62]), we can solve (1.3) to obtain
ﬂ:oz—l—Zoze_%—l—O(e_%), as € —0. (1.4)

The eigenvalue problem associated with the linearized equation about u® can be writ-

ten as

€O — (UP)y = Xop, O<a<1, (1.5a)
)= 6(1) = 0. (1.5b)
Let A\§ denote the first eigenvalue of (1.5). The estimate in [61], based on the Rayleigh

quotient, showed that A\j = O(e_%) for some constant ' > 0. More precisely, this

eigenvalue has been explicitly calculated in [87] to be

Ao~ —2a%e e T4 as £ — 0, (1.6)
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which is exponentially small.

The exponentially ill-conditioning of the linearized problem suggests that the equilib-
rium solution to (1.2) is rather sensitive to the small changes in the boundary conditions
and in the coefficients of the equation. In fact, for problem (1.2a) with the following

boundary conditions:
w(0)=a— A2 u(l)=a+4 A2 (1.7)

where A; and A, are positive constants, Reyna and Ward [87] showed that the shock

, where x* is defined by

layer solution is given asymptotically by u ~ —atanh 7a(x2_f*)

v =+ —logly+ (P +1)7], 7= (A — A)/da. (1.8)

[N
o

This example shows that the exponentially small changes in the boundary conditions
result in an O(e) change in the location of the shock layer. This property is called
“supersensitivity” in [62], [64], [64] and [65]. There are other examples in these papers
showing the substantial perturbation of the shock layer location z* resulting from expo-
nentially small changes in the coefficients of the differential equation as well as in the
boundary values.

As shown in [61], the speed of approach of the solution u(x,t) of (1.1) to its steady
state is determined by the principal eigenvalue A§ of (1.5). Since A is exponentially
small, the solution of (1.1) becomes quasi-stationary and the shock creeps extremely
slowly to the equilibrium position once the shock profile has been formed from initial
data. Specifically, the dynamical behavior of the solution to the Burgers equation (1.1)
can be divided into two different time phases: a transient O(1) phase where a shock layer
of width O(¢), connecting v = o and u = —a«, is formed from monotone decreasing
initial data; and an exponentially slow phase where the shock layer drifts towards its

equilibrium location at an exceeding slow rate. This shock layer is closely approximated
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by the traveling wave solution of (1.1a):

u®(x;x0(t)) = —atanh (oz(:z;;—;o(t))) , O<a<l1, (1.9)

and its initial location 4(0) depends on the initial data ug(z). In Figure 1.1, we plot the

solution to the Burgers equation at various times to show these two different phases.

Vo : — =0
- — t=0.3337

| \ ' i
06 - — - t=1.7030

. t=1.1266€7
0.4t N ]

Figure 1.1: The solution to the Burgers equation (1.1) at various times with ¢ = 0.02
and initial data u(z,0) = 22* — 42 + 1. Notice the slow motion of the shock layer towards
the equilibrium solution.

Using the Cole—Hopf transformation (cf. [30] and [49]), by which Burgers equation
can be reduced to the initial-boundary value problem for the linear diffusion equation
and thus can be solved analytically in closed form, Reyna and Ward [87] wrote the exact
solution to (1.1) in terms of the eigenfunctions of the linear diffusion operator and derived

the explicit dynamical behavior for (1.1). Specifically, if the initial data ug(x) satisfies
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up(0) = —up(l) = —a and uy(x) < 0 for 0 < @ < 1, then, for ¢ — 0, the slow motion of

)
the shock layer is described by (1.9) where x¢(t) satisfies
(

tanh (%%)) — tanh (M) e (1.10)

2e

with t* = ¢(2a%)™! e3 and
1 €
/0 wofa)de + o —[up(1) = up(0)] + ... as e =0, (1.11)

It is clear from (1.10) that it will take O(#*) time scale for the shock layer to reach its
equilibrium position at x¢ = %

Finally, we note that, for ¢ — 0, the leading order MMAE solution to (1.2) is given
by u ~ u°(x; o), where the shock profile a°(x; x¢) satisfies (1.9) and the shock location
zo is an undetermined parameter. It is obvious that for any xo € (0,1), with x¢/e > 1
and (1 — x9)/e > 1, this leading order MMAE solution satisfies (1.2a) exactly and
(1.2b) to within exponentially small terms. Therefore, we conclude that the correct value
= % can not be determined analytically even after calculating higher order boundary
layer corrections near each endpoint. This indeterminacy in xg can be eliminated by
symmetry considerations, by constructing a higher order MMAE solution accounting for

exponentially small terms (cf. [62]) or by the projection method, which we will introduce

below.

1.2 The Projection Method

The idea of the projection method was originally introduced by Ward [108] to determine
the locations of the internal layer positions for certain nonlinear singularly perturbed
boundary value problems. It was later generalized by Ward and his co-workers in [67],
[79], [86], [87], [88], [89], [110], [111], [112] to study the metastable dynamics for various

classes of time—dependent singularly perturbed problems. The basic idea behind this
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method is to supplement the method of matched asymptotic expansions with certain
spectral information associated with the linearized equation.
At the outset we illustrate the key elements of the projection method by studying the

following system of linear equations
Acx =0, (1.12)

where x and b are N-dimensional vectors and A, depending on a small parameter ¢ > 0,
is an N x N Hermitian matrix with eigenvalues Ay < Ay < ... < Ay and corresponding
orthonormal eigenvectors ¢y, @9, ..., on. In addition, we assume that the right-hand side
b depends on a vector of unknowns, say e € R™ with m < N. Now, let’s determine this
unknown vector a by assuming some properties of A specified below.

Suppose that A. does not have a zero eigenvalue. Then we can expand the solution

x in terms of eigenvectors of A.:

r=3 (b, @)qu, (1.13)

71=1 )\]

where (b,¢;) = bT¢;. We further assume that the first m eigenvalues \,...,\,, are

exponentially small as ¢ — 0 so that
A~ O(EPe™S), j=1,....,m, (1.14)

where C' > 0 and p are constants independent of ¢, and A, 41,..., Ay are bounded away
from zero as ¢ — 0. Then, for a solution of (1.12) to exist in the limit ¢ — 0, we require
that as ¢ — 0,

(b,¢;) =0, forj=1,...,m. (1.15)

Setting (b,¢;) = 0, for j = 1,...,m, we obtain a system of algebraic equations for

determining the unknown vector a« € R™.
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We now apply this technique to resolve the indeterminacy occurring in the conven-
tional MMAE approximations and to derive equations of motion for the shock-like layers
or other localized structures pertaining to some evolution equations exhibiting dynamic

metastability. Consider the following steady state nonlinear differential equation of the

form
N.(u) = eupe+ Flu,u) =0, 0<z<l, (1.16a)
Bu = cuy—ri(u—ug)=0 atax=0, (1.16b)
Bu = ecuz+r(u—u)=0 atax=1. (1.16¢)

Here ¢ — 0 is a small parameter, ug, uy, £; > 0 and &, > 0 are constants, and F(-,-)
is a nonlinear function. Assume that we can find a MMAE solution «*[z; aq, ..., ay] to

(1.16), which represents an m-parameter family of “approximate” solutions with integer

m > 1 and parameter «; belonging to some set .5, so that for each o; € S;, 7 =1,...,m,
we have

N.(@F) = O(ePe?), (1.17a)

Bt = O(e™e™ ), B =0(Pe™ ), (1.17b)

where p, po, p1, ¢ > 0, go > 0 and ¢; > 0 are constants. Then the conventional MMAE
does not give a uniquely determined approximation, unless exponentially small terms are
taken into account.

To select the correct vector a= (ay,...,a,,)! corresponding to a true steady state

solution, we linearize (1.16) around a° by writing v = 4 + v to get
Lov = evgy + Fo(0,0l)v, + Fr(f,0l)v = =N(0F) ,0 << 1, (1.18a)
By = —Bu at x=0, Bov=-Bau at x=1, (1.18b)

where Fi(u,v) = aFQZ’U and Fy(u,v) = MFQ%Z. Noting that the differential operator

L. with homogeneous boundary conditions can always be transformed into a selfadjoint
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form using a Liouville transformation in some weighted space w, we let A; and ¢; for

J > 1 be the normalized eigenpairs in this space of the associated eigenvalue problem
Lp=Xp, O<a<l, Bu(0)=0, Bu(l)=0. (1.19)

Then we write the solution v to (1.18) in terms of the eigenfunctions ¢; as v = 3222, X L.

Here the coefficient ¢; can be obtained from (1.18) and the Lagrange’s identity as
¢; = —(N(0%), ¢;) + B.T. (boundary terms), (1.20)

where the inner product is defined by (u,v), = [y uvwdzr and B.T. denotes some items

depending on the values and/or derivatives of @, ¢; and w at the endpoints.

Let qb] = 8 u *le;aq, ..., ap]. Then, by differentiating (1.17) with respect to «a;, we
get

qu@ = e.s.t. (exponentially small terms), 0<a <1, (1.21a)

qu@ = est. atz=0, Bquj = es.t. ataz=1. (1.21b)

Thus, if these functions q;j, J = 1,...,m, are independent, then (1.21) suggests that
(1.19) has m eigenvalues that are exponentially small. Since qu;j is uniformly exponen-
tially small, we have that ¢; is proportional to q;j, except near the endpoints at x = 0,1

where boundary layer corrections must be inserted in order to satisfy the boundary con-

ditions. When the asymptotic approximations of the eigenfunctions ¢;, j = 1,...,m,
are obtained, we can estimate the eigenvalues \;, 7 =1,...,m. If these eigenvalues are
shown to be exponentially small and other eigenvalues A, y1,..., Ay are negative and

bounded away from zero as ¢ — 0, then a necessary condition for the solvability of (1.16)
is that ¢; — 0 as e — 0, j = 1,...,m. Setting ¢; = 0 in (1.20), we obtain a system of

nonlinear algebraic equations for determining the unknown parameter vector a

(N.(#),6,)o = BT., j=1,....m. (1.22)
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We now outline how the projection method can be used to analyze metastability for
the time—dependent problem corresponding to (1.16):

U = Uy + Fu,uy), 0<z<l1, (1.23a)

Bu(0) = 0, Bu(l)=0; u(x,0) = ug(x). (1.23b)
We seek a solution to (1.23) for ¢ > 1 in the form
(e, 1) = @ en().. .. (D) + o). (1.2

where v < @° and v; < 0yu°. Linearizing (1.23) around @°, we obtain that v satisfies

the quasi-steady problem

Lev = =N(a5)+ ) afde,us,  0<w<l, (1.25a)

By = —Bu atx=0, Boo=-Bww at xz=1. (1.25b)

Here o, = da;(t)/dt and the operator L. is the same as in (1.18). Applying the similar

technique used in studying the equilibrium problem (1.16), we expand v in terms of ¢;

as v =377, c&(t) where
G = ~(N.(i), 60+ BT, 45 al@uids), j=1m.  (126)
=1
Since the eigenvalues A;,5 = 1,...,m are assumed to be exponentially small, for a

solution of (1.23) to exist in the limit ¢ — 0, we require that ¢; — 0 as ¢ — 0. Then, by

letting ¢; = 0 in (1.26), we get

(N.(a%), ¢;), = B.T. +Z (0,05, 05), J=1,....,m. (1.27)

This is a system of ordinary differential equations (ODEs), from which the dynamics of

m parameters aq(t),. .., (1) can be derived.
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In summary, the metastable dynamics for (1.23) is characterized by u ~ a[x; ay(2),

.+, 0y (1)], where the quasi-equilibrium @° is the MMAE solution and «;(?), 7 =1,...,m
is determined by the system of ODEs (1.27). The equilibrium values of for (%), j =
1,...,m, corresponding to the equilibrium solution for w(x,?), satisfy (1.22) which can

also be obtained by setting o, = 0 in (1.27).

1.3 The Numerical Method TMOL

To verify the ODE system (1.27) and other asymptotic results in the thesis numerically,
we need to compute the numerical solutions to the time-dependent singular perturbation
problems directly. The numerical algorithm we will use is called the transverse method of
lines (TMOL) (cf. [7]) which is applicable to various types of parabolic partial differential
equations or systems, especially in one spatial dimension. For illustration purposes, we
use the TMOL approach to compute numerical solutions to (1.23).

The TMOL is based on replacing the time derivative in (1.23) by a difference ap-
proximation and then solving the resulting boundary value problems in space. More
specifically, suppose t;, for 7 = 0,1, .., are the grid points in time that are determined
in the actual computation using a time—stepping control strategy. Then, we convert the
time—dependent problem (1.23) to a set of boundary value problems using the Backward
Differentiation Formulas (BDF) (cf. [7])

k
Zﬂjun_j(x) = Bup1 Neoug (), Biu,(0) = Bu,(1) =0. (1.28)

Here 5y = 1 and the differential operator N. is defined in (1.16a). The other coefficients
Bj, for j > 0, which depend only on h; =1, —t,_4, fort =n,n—1,..,n — k4 1, can be
computed numerically using Gaussian elimination in such a way that the BDF scheme

(1.28) is k—th order accurate in time.
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For every fixed n, (1.28) is a two—point boundary value problem which we solve
using COLSYS ([6]). Although this approach is computationally expensive, it yields
approximate solutions to (1.23) that are highly accurate in space. Since several time
scales may occur in our problem, we found it necessary to implement a time—stepping
control strategy to efficiently track the solution to (1.1) over long time intervals. To
achieve this, we employed a higher (e. g. , (k + 1)-th) order BDF scheme at each time
step for the purpose of comparison, and used the l;-norm of the difference between the
solutions of the k—th and the (k + 1)-th order BDF schemes as an error indicator to
reject large inaccurate time steps or to enlarge unnecessary small time steps. In all of
the calculations below we took k£ = 2.

Comparing the TMOL with the method of lines (MOL) which discretizes a time-
dependent PDE in space first and then solves the resulting initial value problem (IVP)
in time, we found that the TMOL is easier to implement and is rather accurate for
our metastable problems. The numerical computations of various metastable dynamics
showed that the global numerical errors are strongly dependent on the discretization er-
rors in spatial variable, whereas they are usually less sensitive to the time discretization.
Thus, we consider that a good implementation of a spatial discretization is critically
significant for a singular perturbation problem exhibiting metastable dynamics, whose
solutions often possess kinds of singularities in space such as internal layers and boundary
layers. Fortunately, COLSYS is a well-known effective software to yield a numerical solu-
tion adaptively to a boundary value problem within a prescribed precision. Incorporating
COLSYS into the TMOL makes it easier to treat various parabolic singular perturba-
tion problems in this thesis. Since our time discretization (2nd order BDF scheme) does
not depend on the specific nonlinearity, the major work to compute a new problem is
to define the parameters and supply the subroutines required by COLSYS to solve the

semi-discretized boundary value problems such as (1.28). On the other hand, if the
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MOL is employed to solve the time-dependent PDEs, we will have to pay much attention
to constructing the scheme and designing the corresponding mesh individually for each
problem considered. This method has another obvious drawback in that the spatial mesh
does not change. This means that for our metastable problems having transient regions
like a moving shock layer, a fine mesh should be used throughout the whole interval in
space. In other words, we do not have the flexibility in treating the spatial variation un-
less certain moving mesh techniques (cf. [54]) are employed. Moreover, even for problem
without internal layer regions, the MOL has a severe limitation of the number of mesh
points in space due to the capacity of a computer, if the resulting IVP is to be solved
by an IVP software not accounting for the sparse structure of the right-hand side of the
IVP. In consequence, we can not guarantee that the numerical results of the MOL are

accurate enough to examine the validity of our asymptotic results.

1.4 Contribution of This Thesis

The first goal of the thesis is to further the development and application of the projection
method to certain time-dependent singular perturbation problems having metastable
dynamics. The problems included in this thesis research fall into three categories: an
upwardly propagating flame front in a vertical channel, internal layers in a weakly varying
geometry and some phase separation models.

In Chapter 2, we study a Burgers-type equation modeling an upward flame front
propagation in a vertical channel. For this problem, it is shown that the principal eigen-
value associated with the linearization around an equilibrium solution corresponding to a
parabolic-shaped flame—front interface is exponentially small. This exponentially small

eigenvalue then leads to a metastable behavior for the time-dependent problem. This
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behavior is studied quantitatively by deriving an asymptotic ordinary differential equa-
tion characterizing the slow motion of the tip location of a parabolic—shaped interface.
The asymptotic results complement the rigorous, but qualitative, metastability result
obtained in [16]. Similar metastability results are obtained for a more generalized Burg-
ers equation. These asymptotic results are shown to compare very favorably with full
numerical computations. Most parts of this chapter are taken from the paper [100].

In Chapter 3, the projection method is applied to study two time-dependent singularly
perturbed problems related to exponentially slowly varying geometries. The first problem
is a Burgers-like convection-diffusion equation which describes one dimensional transonic
flow through a nozzle with a weakly variable cross-sectional area. The metastable be-
havior of the shock waves occurring in the nozzle is studied quantitatively by deriving
an asymptotic ODE characterizing the slow motion of the shock layer. From this ODE,
we found that a stable steady shock layer may exist in the convergent part of a nozzle,
which seems to contradict the previous experimental and analytical result that stable
steady shock layers only occur in the divergent parts of a nozzle. The disagreement is
explained. The second problem we consider in this chapter is a generalized Ginzburg-
Landau(G-L) equation in one dimension, which is employed to determine conditions for
the existence of stable spatially-dependent steady state solutions to the Ginzburg Lan-
dau equation in several space dimensions. In a convex domain, the Ginzburg-Landau
equation u; = e?Au + Q(u) with Neumann boundary conditions does not admit stable
spatially-dependent steady state solutions. However, this result does not hold for non-
convex domains. From the ODE describing the metastable dynamics of this generalized
G-L equation, which arises from an asymptotic reduction of a G-L. equation in a long,
thin, axially symmetric channel, we show that non-constant stable steady solutions to
the G-L equation may exist in some non-convex domains. Most parts of this chapter are

taken from the paper [101].
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In Chapter 4, we consider a viscous Cahn-Hilliard equation in one spatial dimension,
from which several phase separation models, including the constrained Allen-Cahn equa-
tion, the viscous Cahn-Hilliard equation and the Cahn-Hilliard equation, can be derived
by letting a continuation coefficient take on some limiting values. The metastable be-
havior associated with these phase separation models is quantitatively described by an
asymptotic system of differential algebraic equations (DAEs) derived by applying the
projection method. Through simplifying this system of DAEs, we identify the differences
and similarities of the metastable behavior associated with the various phase separa-
tion models and we compare our asymptotic results with some previous results for the
metastable dynamics associated with the Cahn-Hilliard equation. Our analysis is verified
numerically by solving the original viscous Cahn-Hilliard equation and the asymptotic
system of DAEs directly. In addition, a hybrid algorithm based on the asymptotic infor-
mation and the conservation of mass condition is proposed to model the entire coarsening
process associated with the phase separation models. Most parts of this chapter are taken
from the paper [102].

From a numerical point of view, it seems that there is an insurmountable obstacle in
solving exponentially ill-conditioned singular perturbation problems, say L.u = f. More
specifically, since u(x) can be exponentially sensitive to all the data in the equation, e.g.,
f(x), a perturbation Af in f(x) may cause rather large changes in u(x), of the order
O(M\ ' A f), where \g (exponentially small) is the principal eigenvalue associated with the
linearization operator of L.. Thus, one may naturally guess that the numerical truncation
error must be less than the order of the principal eigenvalue )y to guarantee the conver-
gence of the numerical method. Based on this conjecture, it seems impractical to treat
exponentially ill-conditioned problems by using conventional numerical methods, since
Ao might be smaller than the machine precision. On the other hand, however, we have

noticed that many classical numerical schemes with moderate size meshes have been
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successfully applied to obtain approximate solutions to these ill-conditioned problems
(cf. [32], [87], [88], [9], [8], [62]). Therefore, the second goal of the thesis is to explain why
these classical schemes succeed and shed some light on numerical computation of expo-
nentially ill-conditioned problems by studying the “simplest” linear metastable problem
— a boundary layer resonance problem in Chapter 5.

For this resonance problem, bounds for numerical errors for the upwind scheme (cf.
[90]), the coupled scheme (cf. [104]) and the II'in scheme (cf. [5], [55]) are established
rigorously. These bounds demonstrate our observations from numerical experiments that
although the discrete stability estimate is not valid for a numerical scheme of an expo-
nentially ill-conditioned problem, a truncation error may not result in very large errors
in the numerical solution and a scheme may still be uniformly convergent with respect to
e (i.e., the convergence constant does not depend on ¢ ). However, the coefficient matrix
of a scheme will usually inherit the ill-conditioning from its continuous problem and con-
sequently, we have to resort to high precision arithmetic to yield a true solution to the
scheme. In addition, through solving the time-dependent problem corresponding to the
boundary value resonance problem and a steady Allen-Cahn equation numerically, we
further believe that the traditional finite difference schemes and other standard numer-
ical methods may also provide accurate approximation solutions to the time-dependent
metastable problems and to nonlinear problems exhibiting exponentially ill-conditioning.

Finally, a summary of the major results in this thesis and the potential problems for

future research are presented in Chapter 6.



Chapter 2

Metastability in Upward Propagating Flame

2.1 A Generalized Burgers Equation

We now apply the projection method to study the dynamics of an upward propagating
flame-front in a vertical channel modeled by a generalized Burgers equation. We begin
with an outline of the physical background of this equation.

There are three basic distinct types of phenomena that may be responsible for in-
trinsic instabilities of premixed flames: body-force effects, hydrodynamic effects and
diffusive-thermal effects. Within the framework of a one-dimensional slab geometry (see
Figure 2.1), the weakly nonlinear flame interface evolution equation describing the effects

of buoyancy under conditions of diffusive-thermal instability of the flame was proposed

by Rakib and Sivashinsky [85] as

1
Fy = SUF? = aDyp Frp = 4D iy Frpar = %(F— < F>). (2.1)
b

Here y = F(x,t) is the perturbation of a planar flame front y = Uyt; < F > is the
space average over the gap between the vertical walls x = 0 and = = L; U, is the flame
speed related to the burnt gas; ¢ is the acceleration of gravity; v = (p— — p4)/p— is the
thermal expansion coefficient of the gas; p_ and p, are the densities of the unburnt and
burnt gases, respectively; Dy, is the thermal diffusivity of the gaseous mixture; [y, is the
thermal thickness of the flames; a = %ﬂ(l — Le)— 1 where 3 is the Zeldovich number and
the Lewis number Le = Dy /Do is the ratio of the thermal diffusivity of the mixture

to the molecular diffusivity of the deficient reactant.

19
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cold
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Figure 2.1: Diagram illustrating an upward propagating flame in a vertical channel.

Equation (2.1) covers the whole range of buoyancy and diffusive-thermal effects in the
flame and is a rigorous asymptotic equation derived from some equations of aerothermo-
chemistry (cf. [85], [96]). In the absence of the effects for buoyancy, the asymptotic equa-
tion (2.1) will reduce to the well known Kuramoto-Sivashinsky equation, i.e., (2.1) with a
homogeneous right hand side. In a particular parameter region (47 (2 — v)UZ/~vgL > 1)
(cf. [77]), a nonlinear analysis in [96] shows that one can also consider the equation

1 1
Fy— Uy F2 = Dy, |2B(1 — Le) — 1| Fop + “L(F— < F >), (2.2)
> > 20,

instead of (2.1). This equation was derived within the framework of the Boussinesq model
which neglects density variation everywhere except in the external forcing term. Here
we assume that the Lewis number Le is large enough to ensure the positive sign of the
coefficient of the second derivative. Otherwise, the corresponding evolution problem is ill-

posed. Assuming that the walls are thermally insulating, we thus consider the evolution
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equation (2.2) subject to the adiabatic boundary conditions
F.(0,t) = F.(1,t) = 0. (2.3)

In terms of certain appropriate dimensionless variables, problems (2.2), (2.3) may be

written as
1, 1
Yo g¥s = €ym-|-y—/yd:1:, O<az<l, t>0, (2.4a)
0
ya(0,8) = 0, gu(Lt)=0;  y(e,0) = yofe). (2.4b)

Here ¢ = 2a Dy, U, /vgL? > 0 is a small parameter and the dimensionless variables ¢ and
x have been chosen to share the same notations for the corresponding dimensional vari-
ables for convenience. Finally, the substitution u(x,t) = —y,(x,1) leads to the following

Burgers type equation

Uy + ULy — U = EUyp, O0< <1, t>0, (2.5a)

u(0,1) = u(l,t)=0, wu(x,0)=wue(z). (2.5b)

As shown numerically in [77], the solution to (2.4) (or (2.5)), for a certain class of
initial conditions relevant to flame—front propagation, exhibits a phenomenon known as
dynamic metastability when ¢ < 1. In Figure 2.2 we illustrate this metastable behavior
by plotting some numerical results for the shape of the interface y = y(x,t) versus = at
four different values of ¢ when ¢ = 0.0115. In Figure la we choose an initial condition
where the flame-front assumes a somewhat concave parabolic shape. Then, as shown in
Figure 2.2a—c, the tip location x¢ = x¢(t) of the parabola, defined as the location of the
maximum value of y at time ¢, moves towards the channel wall at * = 0 rather slowly.
For other initial conditions, the tip of this interface can move slowly towards the other

wall at @ = 1. When ¢ is decreased, this stage of the motion, whereby the tip of the
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parabolic flame—front moves towards one of the walls, becomes exceedingly slower than
in Figure 2.2a-c. In [16] it was proved that this motion is asymptotically exponentially
slow as ¢ — 0. Finally, when the tip of the interface comes close enough to the wall,
the rate of evolution of the flame-front increases and a final equilibrium state is attained

when the tip touches the wall (see Figure 2.2c—d).

. X . X X X 218 . . . . . . . . .
0 0t 0z 03 04 05 06 07 08 09 1 0O o1 02 03 04 05 06 07 08 09 1

(a) (b)

L L L L L L L L L 53 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

() (d)

Figure 2.2: Plot of y(x,t)versus & with ¢ = .0115 obtained from (2.84). () ini-
tial quasi—equilibrium solution y(x,?) with tip location ¢ = 0.45 at t = 0; (b)
quasi—equilibrium solution with xq = 0.4 at ¢ = 90.05; (¢) quasi—equilibrium solution
with 29 = 0.3 at t = 113.69; (d) final stable equilibrium solution at ¢t > 117.07.

For the equilibrium problem, it was shown in [16] that (2.5) admits multiple equi-
librium solutions when ¢ < 1. In particular, there exists a unique positive equilibrium
U} and a unique negative equilibrium U . These solutions were found to be linearly
stable. In addition, for ¢ < 1, it was shown that (2.5) has two unstable equilibrium

solutions U:l and U7, which each have exactly one zero—crossing in the interval (0,1).
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Other equilibrium solutions with more than one zero—crossing are also possible. The sta-
bility of these equilibrium solutions with more than one zero—crossing and the associated
time-dependent solutions were studied in [41]. In Figure 2.3 we plot the four equilib-
rium solutions U, UZ, UX, and UZ; when e = 0.005. From this figure we observe that
U and U have boundary layers of width O(¢) near one of the endpoints, U:l has an
internal layer of width O(e) near = 1/2, and UZ; has an O(e) boundary layer near
each endpoint. Among these solutions, U_; corresponds to a concave parabolic-shaped
equilibrium flame—front interface. We show that the linearization of (2.5) around U,
has an exponentially small principal eigenvalue as ¢ — 0. Thus, it is this equilibrium
solution that is the most significant for the occurrence of metastable behavior for the
time-dependent problem.

For the time-dependent problem, our numerical computations and the results in [77]
and [16] suggest that the occurrence of metastable behavior for (2.5) strongly depends
on the initial condition. In particular, from [16], a sufficient condition as ¢ — 0 for

metastable flame-front dynamics for (2.5) (or equivalently (2.4)) is that the initial data

ug(x) satisfies
up(z) <0 for x€(0,a), and  wug(z) >0 for z € (a,1), (2.6)

where a > 0. For other cases, our numerical computations suggest that a stable equilib-
rium configuration can usually be attained in an O(1) time interval. In Figure 2.4-2.6 we
illustrate the dynamics of the solution u to (2.5) for various initial conditions. Only in
Figure 2.4, where the initial data satisfies (2.6), is an exponentially slow motion observed.

Therefore, when the initial data satisfies (2.6) and when ¢ < 1, we have three different
time behaviors under (2.4): a transient O(1) phase where the parabolic—shaped flame—

front interface is formed; an exponentially slow phase where the tip of the parabolic
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Figure 2.3: Plots of four equilibrium solutions U(x) versus x for (2.5) with ¢ = 0.005.
The solid line and the dashed line represent the positive equilibrium solution U and
the negative equilibrium solution U, respectively. The dotted line and the dash—dotted

€

line show two unstable equilibrium solutions U} and Ufy. The solution U7, is closely

related to the metastable parabolic-shaped flame front.

flame—front drifts towards one of the walls; an O(1) collapse phase where the flame-
front collapses against the wall and attains its equilibrium configuration. In terms of
u(x,1), the first two phases are clearly seen in Figure 2.4. The fact that the time interval
corresponding to the second phase may become exceptionally long when ¢ is small creates
an illusion that the lame—front has reached some final equilibrium. However, this phase
is merely a quasi—equilibrium transient phase that persists for an exponentially long time
interval. If the initial data has several interior zeros, then we would expect that shock

layers would quickly be formed with each shock layer connecting two adjacent segments
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where u is roughly linear in . Numerical computations, which we do not give, show

that in certain cases metastable patterns may happen.
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Figure 2.4: Plot of the solution to (2.5) at various times with ¢ = 0.003, z§ = 0.45, and
initial data u(z,0) = z(1 — z)(x — z§). Notice that the zero of u, which is the tip of the
parabolic flame-front interface, moves slowly towards the wall at « = 0.

One of our objectives is to use the projection method to give an explicit asymptotic
characterization of metastable flame—front motion for (2.4), (2.5) in the limit ¢ — 0.
The asymptotic results complement the rigorous, but qualitative, metastability result
obtained in [16]. Using the method of matched asymptotic expansions, a quasi-steady
concave parabolic—shaped flame—front interface for (2.4) can be expressed in terms of

u(x,t) as u(x,t) ~ ulx; xo(t)], where
wlrsao) = — a0+ [5_1:1;; :1:0] + u, [5_1(1 —a); :1:0] ) (2.7)

Here w;(y; x0) and u,(y; xo) are boundary layer functions that tend to zero exponentially
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Figure 2.5: Plot of the solution to (2.5) at various times with ¢ = 0.003, 2§ = 0.48, and

initial data u(x,0) = —2(1 —2)(2 — 27). A shock-layer is formed in an O(1) time interval

and no metastable behavior is observed.

as y — o0, and the unknown xq satisfies 29 € (0,1). Thus, to within exponentially small
terms, xg is the zero of u. Since y, = —u, it follows that xo = x¢(¢) also represents the
trajectory of the tip of the parabolic—shaped flame—front interface for (2.4). For a fixed
xo satisfying xg € (0,1), we show below that the principal eigenvalue associated with the
linearization of (2.5) around @° is exponentially small and has the asymptotic estimate

Ao ~ é [:L‘o (51?0 _ 051/2) e—T8/% 4 (1= o) ((1 — 29) — 051/2) e—(1—$0)2/25] , (2.8)

as ¢ — 0, where ¢ = (8/7)"/2. This eigenvalue is responsible for the metastable behavior.
For the time-dependent problem, we use the projection method to derive an asymp-

totic ordinary differential equation for a¢(t), which explicitly characterizes the metastable
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Figure 2.6: Plots of the solutions to (2.5) at various times with ¢ = 0.01 and initial
data u(x,0) = 2(1 — x), (left figure) and u(x,0) = —z(1 — ), (right figure). Metastable
behavior does not occur for these initial data.
flame—front motion. This method is based on a quasi-steady linearization of (2.5) around
u® given in (2.7). Since Xg is exponentially small, a limiting solvability condition must
hold in the limit ¢ — 0 for the linearized problem. From this condition, we will derive
that xo(t) satisfies
2 7'('25 (1—20)2/2e 7T2€ _22/2e
1’6 ~ 7'('_5 [((1 — $0)2 —|— T) (& (1 0) /2 — (l’g —|— ?)6 0/2 . (29)
Rather than focusing exclusively on (2.5), we instead analyze the following generalized

form of (2.5):

ur + f(w)uy — f(u) = cupy, O<ax<l1, t>0, (2.10a)
u(0,1) = u(l,t) =0; wu(x,0) =ug(x). (2.10b)

Here f(u) is smooth, convex, and satisfies f(0) = f'(0) = 0. The special case f(u) = u*/2
yields (2.5). This generalized problem exhibits a very similar metastable behavior as that
for (2.5) and is no more difficult to analyze.

The chapter is organized as follows. In §2.2, we construct an asymptotic expansion

for a certain equilibrium solution of (2.10) and we outline an application of the projection
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method to (2.10). In §2.3 we derive a two—term asymptotic expansion for the principal
eigenvalue g associated with the corresponding linearized problem and we compare this
expansion with full numerical results for Ag. In §2.4, the asymptotic projection method is
used to derive an ordinary differential equation characterizing the metastability in (2.10).
The results are then applied to the special case f(u) = u?/2, and we show how to recover
the flame—front interface y(x,1) satisfying (2.4). In §2.5, we use a full numerical method
to compute metastable behavior for (2.10). The numerical results are found to compare

very tavorably with the corresponding asymptotic results in §2.4.

2.2 The Equilibrium Problem
We first consider the equilibrium problem for (2.10) in the limit ¢ — 0
gy — [(w)ug + f'(u) =0, O<a<l, (2.11a)

u(0) =0, u(l)=0. (2.11D)

Here f(u) is smooth, convex, and satisfies f(0) = f/(0) = 0. This problem admits
multiple equilibria. However, we will only construct a solution to (2.11) having the form
given in (2.7), since it is this solution that is closely related to metastable behavior in
the corresponding time—dependent problem.

The outer approximation for this solution is clearly u ~ « — x¢ for some o € (0,1).
This outer solution satisfies the differential equation (2.11a) exactly, but not the boundary
conditions (2.11b). Therefore, there are boundary layers near the end points @ = 0 and

x = 1. In the boundary layer near 2 = 0 we let y = 7!

x and u(y) = u(ey), and we
expand

w(y) = —zo 4w (y) +ely +un (y)l +--- . (2.12)

Substituting (2.12) into (2.11), collecting powers of &, and matching to the outer solution,
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we obtain
uy, — f'(—xo + g )uy, =0, 0<y<oo, (2.13a)
ug, (0) = 2o, U (y) ~ ae”™  as y — o0, (2.13b)
and
u?’l — [f'(—zo + ulo)ull]/ =yf"(—x0+ ulo)u;O , 0<y< oo, (2.14a)
u,(0) =0, up, (y) ~ apy’e™ +byye™Y  as y — oo. (2.14b)

Here a;, = f"(—w0)ai,/2 and b, = 2a;, /v;. Upon integrating (2.13), we find that the

positive constants v; and a;, are given by
v = —f(—x0), (2.15a)

0 1 1
loga;, = logxzy— v -
& o 5 l/—xo lf(s) — f(=20)  f'(=0)(s + x0)

ds.  (2.15b)

The asymptotic form in (2.14b) is obtained from (2.14a) by using the far-field behavior

of uy,(y) as y — oo. By integrating (2.13) we obtain the equivalent first order equation
uy, = flu — xo0) = f(=20),  w,(0) = w0, with 1w (0) = —f(—w0). (2.16)

Similarly, in the boundary layer near + = 1 welet y = ¢! (1—x) and w,(y) = u(l—ey),
and we expand

ur(y) =1 =0+t (y) +efur (y) =yl +--- . (2.17)

From (2.17) and (2.11) we obtain the boundary layer equation
w4 (1 — a0 + upg)uy,, =0, 0<y<oo, (2.18a)

U (0) = 20— 1<0, Upg (Y) ~ —ape”™Y  as y — 00. (2.18b)
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A similar equation holds for u,,. Here a,¢ and v, are defined by

b= . (2.19a)
1-x9 1 1
logar, = lox(1 —20) + v, | [f(l—:z:o)—f(S)+f’(1—$o)(5—1+$0) "
(2.19b)

Consider the left boundary layer expansion (2.12). Using the asymptotic behavior of
ug, and wy, as y — oo, we observe that (2.12) becomes disordered (i.e., cuy, < uy, does
not hold) as y — oo when ey? = O(1) or, equivalently, when 2 = O(&'/?). Thus, (2.12)
holds on the interval y = O(g?), where —% < ¢ < 0. A similar comment can be made
for the boundary layer expansion (2.17) near + = 1. This observation is used in §2.3 and
§2.4 to help evaluate certain integrals asymptotically.

A composite expansion for this equilibrium solution, valid for @ € [0, 1], is obtained

by combining (2.12) and (2.17). This yields,
u o~ ufr;xe] = — a0+ ulo[e_lx; To] + Uy, [5_1(1 —a);xo] + - . (2.20)

Here u;, and u,q satisfy (2.13) and (2.18), respectively. In (2.20), we have emphasized the
parametric dependence of u;g, u,9 and @° on the unknown constant xq, which satisfies 0 <
zo < 1. When f(u) = u?/2, this constant represents the tip of the equilibrium parabolic—
shaped flame—front interface. The difficulty in analytically determining the correct value
for ¢ still persists even after calculating higher order boundary layer corrections near
each endpoint. By symmetry, when f(u) is even, the correct value is clearly o = 1/2.
However, to determine xq analytically for general f(u) we must retain exponentially
small terms in the asymptotic expansion of the solution. One way to do this is to use

the projection method as shown below.
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2.2.1 An Application of the Projection Method

We now outline how this method can be used to determine the equilibrium value for z¢ in
(2.20) and to analyze metastability for the time—dependent problem (2.10). To analyze

metastable behavior for (2.10), we seek a solution to (2.10) for £ > 1 in the form
(st = s o] 4 ol 1) (221)

where v < @° and v; < 9;°. Linearizing (2.10) around @°, we obtain that v satisfies the

quasi-steady problem
Lov=—R+ 20,0, 0<z<l, (2.22a)
v(0,t) = —u(0;20), wv(l,t)=—u°(1;20). (2.22b)
Here the operator L. and the residual R = R(x; 1) are defined by

Lo = evg — [f/(a%)v], +vf(a), (2.23a)

R = cif, — f/(@)i + (i) (2.23b)

Now consider the homogeneous operator L. where xg is a parameter. Let A;, ¢; for

J > 0 be the normalized eigenpairs of the associated eigenvalue problem
L.¢p = Ao, 0<az<l1; #(0) =¢(1)=0. (2.24)
The A; are real and the ¢; satisfy the orthogonality relations
(65, 01), = & Jik=0,1,.... (2.25)

Here the inner product is defined by (u,v), = Ji uvw dx, where the weight function

w = w(x) is given by

w(z) = exp( / I8 (25 20)] ) : (2.26)
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Upon integrating by parts, we obtain Lagrange’s identity for any two smooth functions

v and ¢,
(6, Lev), = (edwo, — cpwon) | +(Le,0),, (2.27)

Next, we expand the solution v to (2.22) in terms of the eigenfunctions ¢; as

o0

v = Z_% i—quj. (2.28)

The coefficients ¢;, obtained from (2.22) and (2.27) are

(1) - (R7 ¢j)w + 1’6 (al’oﬂsv ¢j)w . (229)

¢ = —5@@,@&5

As shown in §2.3, the severe indeterminacy in selecting the correct xg for the equi-
librium problem results in an exponentially small principal eigenvalue for (2.24). Since
L.[04,u°] is uniformly small on [0,1] and 0,,a° is of one sign, this suggests that ¢q is
proportional to d,,u°. Since A\g — 0 as ¢ — 0, a necessary condition for the solvability
of (2.22) is that ¢ — 0 as ¢ — 0. Setting ¢o = 0 in (2.29) we obtain an asymptotic

differential equation for xq = xo(?):
1
1'6 (¢07 aﬂb’oas)w = (Rv ¢0)w + 5¢OxW&E ‘0 . (230)

This differential equation will be valid for time intervals over which zo > O(g) and
1 — a9 > O(e) (i.e., away from the endpoints). The metastable dynamics for (2.10) is
then characterized by u(x,t) ~ @°[x; xo(1)], where @* is defined in (2.20). The equilibrium
value for x, corresponding to the equilibrium solution for u, is obtained by setting x; = 0
in (2.30), which yields the algebraic condition

‘1

(R, ¢0)w = —5¢0ww&5 o (231)

In §2.3 we will estimate ¢9 and Ay as ¢ — 0, and in §2.4 we will evaluate the inner
products in (2.30) and (2.31) asymptotically. These calculations allow us to explicitly
determine the equilibrium value for o from (2.31) and the form of the ODE for x¢(#) in
(2.30).
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2.3 Asymptotics and Numerics for the Principal Eigenpair

We now estimate the principal eigenpair g, ¢o for (2.24). Let %o be a trial function for

@o. Then, from Lagrange’s identity (2.27), we get

Ao (on, </50)W = (quzo, </50)W + 5¢0qu~$0 ‘(1) . (2.32)

To a get a very rough estimate for Ay take 430 = 1 for which L.1 is exponentially small
for O(e) < © < 1 — O(e). Then, substituting ¢g ~ 09,,4° into (2.32), and using the fact
that w is exponentially small unless |z — zo| = O(g), it is readily clear that Ao = O(e™%*)
for some ¢ > 0.

To get a precise estimate for Ao, we first replace (2.24) with the approximate equation
L.¢o = 0. Then, in §2.3.1, we use boundary layer theory to construct ¢q for ¢ — 0. The
outer solution for ¢q is clearly ¢g ~ 1 (apart from a normalization constant). In §2.3.2

we use (2.32) to estimate Ao, and in §2.3.3 we compute Ao numerically.

2.3.1 Asymptotics for Principal Eigenfunction

In the left boundary layer we let y = £~'a, ¢y(y) = ¢o(ey), and we expand ¢, as
Gu(y) =14 o, (y) +edn(y) +--- . (2.33)
Substituting (2.33) into L.do = 0, and using (2.12), we obtain that ¢;, satisfies
¢ — (w0 +u)(1 4+ ¢5,)] =0, 0<y<oo, ¢5,(0)=—1, ¢,(c0)=0. (2.34)
Comparing (2.34) with (2.13), we conclude that ¢;, = —d,,uy,. Therefore, we have
$1,(0) = —f'(=20),  Gu(y) ~ (ay —a;) e™™", as y — o0. (2.35)

Here and in the formulae to be derived below, the primes on the constants a;,, a.,, v

and v, denote derivatives with respect to xq.
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Similarly, in the right boundary layer we let y = e~ (1 — z), ¢,(y) = ¢o(1 —ey), and
we expand ¢, as

Or(y) = 1+ bpo(y) + 600, (y) + - (2.36)

Substituting (2.36) and (2.17) into L.¢g = 0, we get to leading order that
Ol A+ (L= ot u) (146, =0,  0<y<oo, (2.37a)

$r(0) = =1, ¢y (00)=0. (2.37b)

Comparing (2.37) with (2.18), we have ¢, = —0yyty, -

For similar reasons as outlined following (2.19) above, the expansions (2.33) and (2.36)
hold only on the interval y = O(e?), where —1/2 < ¢ < 0. A composite expansion for
b0, valid for z € [0, 1], is

¢0(x) =1+ ¢10(€_1$) + ¢T0 [5_1(1 - l’)] +oee (238)

This asymptotic eigenfunction can then be suitably normalized.
In the derivation below to estimate Ay we require certain formulae involving the ratios

v/, and @) /uy . The first identity is obtained by combining (2.13) and (2.34) to get

% (ﬁ) = [owotun)(on 1), D<y<oo, (2.39)
(0 "(—x0 / / an, v ,
UEE(); B ]JCC((—:L'O)) ’ uggs -y (all Vll) +o(l), asy—oco. (2.39b)

In a similar way, combining (2.18) and (2.37) we obtain

% (u—) = —f'(l—zotuy) (o +1), 0<y<oo, (2.40a)
QS;O(O) . f/(l B xo) gb;o(y) . l//y . (aToyT)/ _|_0(1)7 as y — 00 . (2.40b)

w0 T 0w w YT an
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2.3.2 Asymptotics for the Principal Eigenvalue

To estimate A\g from (2.32) we choose the comparison function do = 1 and use (2.20) and

(2.38) for u® and ¢, respectively. Substituting (2.38) and do =1 into (2.32) we get

Ao (L @o), ~ (Lel, 1), 4 (Lel, byy), + (Lels b)), — 0, (0)w(1) — 6] (0)w(0),  (2.41)

where (u,v), = [§ vwwdr and w = w(x) is defined in (2.26). From (2.23a), we calculate
Lo = (@) (1 — ) . (2.42)

To evaluate the three integrals on the right side of (2.41) we break the range of
integration for each integral into the three regions = € [0,e”], © € [, 1 — &P], and
x € [1 —eP,1]. Here the choice 1/2 < p < 1 gives an intermediate scaling between the
outer and boundary layer regions and is needed to ensure that the leading order terms
in the expansions for ¢y and %° in the boundary layer regions are asymptotically valid
(see the remark following (2.19) above). To determine which integrals are asymptotically
dominant we make the following observations: w = O(1) for |x — 2¢| = O(¢); w = t.s.t.
for | — xo| > O(e); ¢y, = t.s.t for x> O(£?); ¢,y = t.s.t for 1 —a > O(e?). From these

considerations, we can reduce (2.41) asymptotically to

Mo (1,1), ~ (11 = 61,(0)(0)) + (I = ¢, (0)(1)) + s, (2.43)

where

1—eP

W(1 4 ¢y )Ll da | 135/ wholde. (2.44)

b

eP 1
le/ w1+ ¢, ) Lol da | 125/
0

1—eP

We first estimate I;. Letting y = e 'a and using (2.20) and (2.42) we get

I~ — /061’_1 wugo(y)f”[—l‘o + ulo(y)] (1 + ¢lo(y)) dy . (2‘45)
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As shown in (A.5) of the Appendix, wuj is asymptotically constant on [0,”~']. Then,
substituting (2.39a) into (2.45) we get

ep—1 d ;0 ;0 ep—1
w0 0) [ (%) o~ st () | (2.16)
Therefore, using (2.39b), we obtain
/ / 1 _p—1 (aloyl)/
I — qblo(())w(()) ~ —w(())ulo(()) vjelTh — ———| . (2.47)
Cllol/l

The integral Iy can be estimated in a similar way by using (2.40) and (A.7) of the

Appendix to derive

I = 8, 0)o(1) ~ ol (0) [t = LD (2.45)

Aro Vy
Asymptotic formulae for w(0)u; (0) and w(1)u; (0) are given in (A.6) and (A.7) of the
Appendix, respectively.

Next we estimate [5. Using (2.42) and (2.20) we can decompose [5 as
1—eP 1—eP
Iy ~ I3;, + Isp; I3, = —/ wf(a )y, dv, Izp = —/ wf (W )y, dx . (2.49)

For & € [¢P, 1 —&?] we have from (A.1) of the Appendix that w(x) = exp[—f(a — x0)/e](1+
t.s.t.). Thus, using the decay behavior (2.13b) for w;, and @° ~ & — o, I3, becomes

1—eP

I, ~ 5_1a101/1/ 'z — :Jco)e_hl(l’)/6 dz , hi(x) = v + f(e — o), (2.50)

b
where v} = —f'(—xg). Clearly hy(x) has a minimum on [¢7,1 — £P] at @ = ¢P. Thus,
for ¢ — 0, the dominant contribution to [I3; arises from the region near x = ¢?. Let
x =¢eP 4 s in I3, and expand hy(x) and f"(x — xo) near & = e to get
Ly ~ 5—1aloyle—f(—xo)/s/ [F"(—x0) + s (o) + -]
0

1
X exp [—%f"(—xo) (32 + 2ePs + 52p)] ds. (2.51)
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Then, using Laplace’s method and the bound 1/2 < p < 1, we obtain as ¢ — 0

T 1/2 " —
Iy ~ aloyle—f(—xo)/s l(%) [f//(_xo)]l/Z _ 619—1]6//(_3;0) + %] . (2.52)

A similar calculation, which we shall omit, can be used to calculate I3z as ¢ — 0. We

find

Y

T\ 1/2 "~z
Iip ~ aTOVTe—f(l—xo)/s l(%) [f”(l . 1’0)]1/2 _ 5p_1f”(1 — xo) — ﬁ] . (2.53)

Finally, we estimate (1,1)_ in (2.43). The dominant contribution to this integral
arises from the region near & = x¢. Assuming that f”(0) > 0, we obtain upon using

(A.1) of the Appendix and Laplace’s method that

(1,1), ~ /OO e~ @=a0)/= gy o V20 (14 20, + -+ (2.54a)

- 27 1/2 o 1(0) 5[f///(0)]2
b = (f”(())) ) 0 = ( S[F7(0)]2 + 24[f”(0)]3) . (2.54b)

To obtain our asymptotic estimate for Ag we substitute (2.47), (2.48), (2.49), (2.52),
(2.53) and (2.54) into (2.43). This leads to the following result:

Proposition 2.1 Let f(u) be smooth, convex, and satisfy f(0) = f'(0) = 0 with f"(0) >

0. Then, fore — 0 and 0 < x9 < 1, the principal eigenvalue Ao for (2.24) satisfies

an 1/2
N o~ O (e =00 [, + 12, 1 -]
2e

+ CLTOZ/Te_f(l_xO)/E [bTO + 51/26T1 + - D , (2.55)

where

b, = [f//(—:lio)]l/27 by, = (%) v [f’"(—l‘o) — (aloyl)/] , (2.56a)

T F"(—x0) a,v

be = [P0 —a by == (2) s R ERCE LY

! Vs F(1 = ) Aro Uy
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Here iy, vi, any, and v,, which depend on xo, are defined in (2.15) and (2.19). The

primes on these coefficients indicate differentiation with respect to xq.

This estimate for Ay characterizes the ill-conditioning of the equilibrium problem

(2.11). Since Ag > 0 it also indicates that the equilibrium solution is marginally unstable.

2.3.3 Numerics for the Principal Eigenvalue

We now verify (2.55) by comparing it with full numerical results for Ag computed from
(2.24) for two choices of f(u) and for various values of x¢ and . Numerical methods
to compute eigenvalues include the software packages SLEDGE and SLEIGN, and the
NAG library code SLO2FM (cf. [10], [11], [83], [84]). Our approach to compute Aq is to
use the boundary value ODE solver COLSYS [6] with a suitable initial guess.

To numerically evaluate the operator L. in (2.24) we must first determine a° given in
(2.20). In general, this requires us to numerically compute the boundary layer functions
ug, and u,, satisfying (2.13) and (2.18) using COLSYS. Then, to compute Ag we re-write
(2.24) as a first order system. Using Ag = 0 and (2.38) for ¢¢ as initial guesses, we found
that COLSYS readily converged to the principal eigenvalue for (2.24).

Example 2.1: Let f(u) = u?/2, which corresponds to the flame—front problem (2.5).

For this problem, we calculate from (2.15) and (2.19) that a;, = 20, v = 20, @y, =
2(1 — x9), and v, =1 — x¢. Thus, (2.55) becomes

1/2 ,
)\0 ~ 5_1 (l’o [l’o — (8—5) ] €_$0/26
n

+ (1 — 20) [(1 — xg) — (8—5)1/2] e_(l_x°)2/26) : (2.57)

s

For this example, uy, (y; x0) and w,,(y; xo) can be found analytically as

ug,(y) = xg — x¢ tanh (:L’QL?J) s U (y) = (1 — x0) [tanh w — 1] ) (2.58)
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Thus, the composite expansion @°, which is needed in (2.24), is obtained explicitly.

Example 2.2: Here we choose the function f(u) = u — 24 4/(u + 2), which is not

even. A careful calculation from (2.15) and (2.19) yields

v
vy

Substituting (2.59) into (2.55) gives the asymptotic result for Ag. For this example the

= —1+

ot
(3 — o)

= 11—

(2 —20)?’

Sy n = (1 — xq)exp [4(3 — 79) % log (

ap, = Tgexp [4(2 — 79) % log (

4 —

T

)] . (2.59a)
)] . (2.59b)

boundary layer functions, and hence L., must be computed numerically.

€ Ao (num.) Ao (2.57) 1-term | ratel | Ag (2.57) 2-term rate2
0.004 | 0.2676x 10~ 0.3351x 10~ 0.252 0.2674 <10~ -6.13x10~1
0.006 | 0.5626x10~7 0.7465x1077 0.327 0.5619x10~7 -1.23%x1073
0.008 | 0.7333x107° 0.1023 <1074 0.395 0.7312x107° -2.88%x1073
0.010 | 0.1276x1073 0.1863 <1073 0.461 0.1269x1073 -5.57x1073
0.012 | 0.8182x1073 0.1247x 1072 0.524 0.8111x1073 -8.70x 1073

Table 2.1: Example 2.1: Comparison of asymptotic and numerical values for Ag with

f(u) = u?/2 and o = 0.50.

€ Ao (num.) Ao (2.57) 1-term | ratel | Ag (2.57) 2-term rate2
0.002 | 0.2443 <10~ 0.3068x 10~ 0.256 0.2442x 1011 -3.52x10~4
0.003 | 0.4168x10~7 0.5548 1077 0.331 0.4163x1077 -1.31x1073
0.004 | 0.4893x107° 0.6854x107° 0.401 0.4878 x107° -3.08x1073
0.006 | 0.4920x1073 0.7526 <1073 0.530 0.4868 <1073 -1.05x1072
0.008 | 0.4369x10~2 0.7244 <1072 0.658 0.4290 <1072 -1.81x1072
0.010 | 0.1476x1071 0.2680x 1071 0.815 0.1458x 1071 -1.22x1072

Table 2.2: Example 2.1: Comparison of asymptotic and numerical values for g with

f(u) = u?/2 and o = 0.35.

In Table 2.1-2.4 we display the asymptotic and numerical results for Ay for each of

the two examples. In each of these tables, the second column gives the numerical results
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€ Ao (num.) Ao (2.55) 1-term | ratel | Ag (2.55) 2-term rate2
0.00325 | 0.3888x 107! 0.5267 <10~ 0.354 0.3791 <10~ -2.49%x1072
0.00350 | 0.3210x10~1° 0.4405x1071° 0.372 0.3124 <1071 -2.68x1072
0.00400 | 0.9736x107? 0.1371x1078 0.408 0.9448 <1078 -2.96x1072
0.00450 | 0.1358x1077 0.1961x10~7 0.444 0.1314x1077 -3.24 %1072
0.00500 | 0.1101x107° 0.1629x1076 0.480 0.1063 <1076 -3.45x1072
0.00550 | 0.6026x107° 0.9129x1076 0.515 0.5798 %1076 -3.78 %1072
0.00600 | 0.2458x107° 0.3809x10~° 0.549 0.2357x107° -4.11x1072

Table 2.3: Example 2.2: Comparison of asymptotic and numerical values for A\g with

flu)=u—2+4/(u+2) and 2o = 0.40.

€ Ao (num.) Ao (2.55) 1-term | ratel | Ag (2.55) 2-term rate2
0.00225 | 0.4172x 10712 0.5519x10~12 0.323 0.4082x10~12 -2.16x1072
0.00250 | 0.9997x 10~ 0.1346 <1071 0.347 0.9769x 10~ -2.28%x1072
0.00300 | 0.1137x107% 0.1584 <1078 0.393 0.1107x1078 -2.64x1072
0.00350 | 0.3239x107 0.4659x10~7 0.439 0.3145x1077 -2.90x1072
0.00425 | 0.1077x107° 0.1621x107° 0.506 0.1041x107° -3.34%x1072
0.00550 | 0.4114x10~* 0.6645x10~4 0.615 0.3937x10~4 -4.30x1072
0.00650 | 0.2637x1073 0.4489x1073 0.702 0.2500x 1073 -5.20x 1072

Table 2.4: Example 2.2: Comparison of asymptotic and numerical values for A\g with
flu)=u—2+4/(u+2) and 2o = 0.35.
for Ao, while the third and fifth columns show the asymptotic expansion (2.55) with one

term and two terms in the pre-exponential factors, respectively. In the fourth and sixth

columns we display the relative error

e — Ao(asy.) — Ag(num.) ‘

(2.60)

Ao(num.)
Here Ag(asy.) denotes the asymptotic result with either one or two terms in the pre-
exponential factors.

From these tables we observe that a two-term asymptotic expansion for the pre—

exponential factor of Ay is certainly needed to obtain close quantitative agreement with



Chapter 2. Metastability in Upward Propagating Flame 41

the numerical results for Ag. A similar situation was found in [67] for some related
problems with exponentially small eigenvalues. From Tables 2.1 and 2.2 we find that,
in most cases, the relative errors for the two-term expansion in most cases are below
1 %, while they are only between 20 % and 70 % for the one—term expansion. Similar

behavior is observed in Tables 2.3 and 2.4 for the relative errors for Example 2.2.

2.4 Derivation of the Metastable Dynamics

We now asymptotically evaluate the various terms in (2.30) to obtain an explicit ODE
for 29 = 20(t). The metastable dynamics for (2.10) is then given by u(x,t) ~ a°[x; xo(1)],
where @° is defined in (2.7).

Similar considerations as given following (2.42) above show that (2.30) reduces asymp-

totically to
—ay(1,1), ~ L 4 I, + I, (2.61)

where the [;, for y = 1,2, 3, are defined by

1 1—eP

w(l + ¢y )Rdx, I3= / wRdx. (2.62)

P

hz/im+@mm% bz/
0

1—eP

Here R is defined in (2.23b) and 1/2 < p < 1 gives the intermediate scaling used in §2.3.
We note that the boundary term e¢g wu® ‘(1) in (2.30) can be neglected in comparison to
each I; since it involves the product of the two exponentially small terms w and u® at
x =0,1. To calculate R we substitute (2.20) into (2.23b) and use (2.13a) and (2.18a) to
get

B (=0t ) = P8Vt + (L= 20+ tr) = F@ ). (263)

The inner product (1,1)_ in (2.61) was calculated for e — 0 in (2.54).

We first estimate [;. In the region 0 < x < & we can approximate R by R ~

1

—["(—xo+uy,)xuy,,. Substituting this expression into [; and letting y = ¢!« we obtain,
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upon using (2.39a) and (A.5) of the Appendix, that
b~ =2 [ wu s (—aa ) (1+60) dy

~ —ew(0)u, (0) /0_ y% (i) dy . (2.64)

u}o
Then, since ¢), = —0y,u;, and uj, < 0 we can re-write (2.64) after integrating by parts
as
I ~ ew(0)u;, (0)0s, ly log(—uy,) ‘Zp_l _/Osp‘ log (—u;O) dy] : (2.65)

Recall from (2.13b) that uj, ~ —a;,ve™¥ as y — oo. Since 7! — oo as ¢ — 0
for 1/2 < p < 1 we can use this decay behavior to estimate log(—u; ) at the upper
endpoint y = 7!, In addition, we can add and subtract the term log (a;,v;) — vy inside
the integrand in (2.65) so that the resulting integral converges when the upper limit of

integration is set to infinity. In this way, we obtain that

I ~ cw(0)uy (0) (—%;52?7_2 + ﬁ;) . (2.66)

Here v] = dv/dxo = f"(—x0) from (2.15a), and §; = Fi(x0) is defined by

B = —di% (/OOO [log (—ugo(y)) — log(a,v) + l/ly] dy) : (2.67)

A very similar calculation can be done to estimate I3 in (2.62). In the region 1 —e? <
x < 1, we have R ~ —f"(1 — xo + uyy ) (@ — 1)uy,, in (2.62). Thus, upon using (A.7) of

the Appendix and (2.40a), I, becomes

L, ~ —5/0 wu;oyf"(l — 20+ Upy) (1 + ¢y ) dy
/

~ cw(l)d (0) /Osp_ly% (—) dy . (2.68)

/
(T

/

Then, since ¢, = —0y,u;, and u, > 0 we can re-write (2.68) after integrating by parts

as

Iy ~ —ew(1)u;, (0)0x, ly log ()., ) Z_ —/0 log (u;o) dy] : (2.69)
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Finally, using u; ~ a,,v,e™¥ as y — oo in (2.69) we obtain, in analogy with (2.66),
that

I ~ —ew(1)u; (0) (—%;521’_2 + ﬂT) . (2.70)

Here v/ = — f"(1 — x¢) and (3, is defined by

By = —d%) (/OOO [log (u/,(y)) — log(a,v,) + v,y dy) : (2.71)

Next we estimate I3 in (2.62). Using (2.63) we first decompose Is as I3 ~ I, + Isg,
where

I~ [ g, [+ ) — )] (2.72a)

I~ [ Gt [ = o) = )] da (2.72D)

The dominant contribution to I3 arises from the region near = ¢?. To calculate I31

we use (A.1) of the Appendix to estimate w, (2.13b) to evaluate w,, , and we expand

f(—=xo 4 uy) — f'(a°) for @ — 0. This yields,

1—eP 2
]3L ~ €_la101/1/ (l’f”(—l‘o) + %f’”(-l’o) + - ) e_hl(w)/s dl’, (273)

where hi(x) = vz + f(x — o). It is clear that () is minimized on [?, 1 —eP] at @ = &P.
Therefore, we can use Laplace’s method to evaluate (2.73) by expanding hj(x) as @ — 0.
In this way, we obtain for ¢ — 0 that

2p—1

]3L ~ aloyle_f(_$0)/5 (1 _ 6—

5" (=wo) + - ) : (2.74)

A similar calculation, which we shall omit, can be done to calculate I3 as ¢ — 0, with

the result
2p—1
]3R ~ —aTOZ/Te_f(l_xO)/E (1 _ E:T

F(1 = 2) + - ) . (2.75)

Then, I5 in (2.62) is given by I5 ~ Is1, + I3p.
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Finally, an explicit ODE for xq = x¢(?) is obtained by substituting (2.54), (2.66),
(2.70), (2.74) and (2.75) into (2.61). The formulae (A.6) and (A.7) of the Appendix are

used to evaluate w(0)uy (0) and w(1)u! (0), respectively. This leads to our main result.

70

Proposition 2.2 (Metastable Dynamics): Let f(u) be smooth, convex, and satisfy
f(0) = f'(0) = 0 with f"(0) > 0. Then, fore — 0 and t > 1, the metastable dynamics
for (2.10) is given by u(x,t) ~ u[x; x0(t)], where a° is given in (2.20) and xo(t) satisfies

the asymptotic nonlinear ODE
Tg ~ 5_1/2051 (1+ 501)_1 [CLTOI/T (1 +¢p,) e~ f-z0)fe _ apv (1 —ef) e_f(_xo)/s] . (2.76)

The coefficients ay,, vi, ary, vy, Bi and [3,, which all depend on xo, are defined in (2.15),
(2.19), (2.67) and (2.71). In addition, 8y and 01 are given in (2.54b).

The following equilibrium result is obtained by setting x{ = 0 in (2.76):

Corollary 2.1 (Equilibrium): The (unstable) equilibrium solution to (2.10) of the

form given in (2.7) is u ~ u[x; x|, where xf satisfies the nonlinear algebraic equation
aryVy (1 4 20,) e~ f(1=wo)/e apv (1 —ef) e~/ (=m)/= (2.77)

The special case f(u) = u?/2 corresponds to the flame—front problem (2.4) (or equiv-
alently (2.5)). For this special case, a;, = 229, v; = xg, @,y = 2(1 — x9) and v, = 1 — xq.
In addition, since u;, and wu,, are given analytically in (2.58), we can calculate 3; and £3,
explicitly as

B, = Qd;;;lo (/OOO log [1 + e—(l—xo)y] dy) = ﬁ, B = —%. (2.78)
In addition, when f(u) = u?/2, we have 6, = (27)"/% and 0, = 0. Substituting these

formulae into (2.76) yields the following explicit metastability result for (2.4) (or (2.5):
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Corollary 2.2 (Metastable Flame—Front Dynamics): For e — 0 and t > 1, the
tip xo = xo(t) of the metastable parabolic—shaped flame—front interface for (2.4) satisfies

the asymptotic nonlinear ODE

/ 2 —(1—)2/2e , T —22/2e
o~ — [ (1 —x0) 4+ — e 0 — (x5 + ?)e 0 ) (2.79)

e

Some trends can be observed from these results. Let z§ = z4(0) denote the initial
condition for (2.76). Then, since for ) < z§* (2§ > x4') we have a2, < 0 (z} > 0) from
(2.76), it follows that xo(?) will not approach «{" as ¢ — oo, but instead will eventually
hit the wall at @ = 0 (x = 1). In addition, when O(¢) < zg < 1 — O(e), (2.76) shows
that z{ is exponentially small and hence the motion is metastable. It is also clear that
unless z§ is within an O(¢) neighborhood of xj only one of the exponentials on the right
side of (2.76) is significant for ¢ — 0. Finally, in the case when f(u) is even, it is easy to

see from the definitions of the coefficients in (2.77) that 5, = —/3,, a;, = a,, and v; = v,.

Hence, in this case we have 2§’ = 1/2 as expected.

2.5 Comparison of Asymptotic and Numerical Results

We now compare the asymptotic results (2.76), (2.77) and (2.79) with corresponding full
numerical results computed directly from (2.5), (2.10) and (2.11) using the TMOL in
§1.3.

The metastability results (2.76) and (2.79) are valid only after the completion of
an O(1) transient period that describes the formation of the quasi—equilibrium solution
(2.20) from initial data. As discussed in §2.1, a metastable quasi—equilibrium solution
will not be formed for arbitrary initial data wug(x). A sufficient condition on wug(x) for
metastability to occur is given in (2.6). To eliminate the effect of the initial transient,

0

in the computations below we took u(x,0) = u[x; xg] as the initial data for (2.10) and

(2.5). Here @ is the quasi—equilibrium profile given in (2.20) and z§ € (0, 1) is the initial
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zero of u. The value 2 is then used as the initial condition for the asymptotic ODE’s
(2.76) and (2.79) (i. e. 20(0) = z§). With this initial condition, these ODE’s are solved
for t = t(xo) using a numerical quadrature.

Asymptotic and numerical results for ¢ = ¢(zg) are compared for f(u) = u*/2 and for

the asymmetric f(u) of Example 2.2 in §2.3.3 given by

flu)=u—2+

. 2.80
— (2.80)

For this latter form of f(u), explicit formulas for v, a;,, v, and a,, are given in (2.59).
However, the functions 3(xo) and §,(xo) in (2.76) are calculated from a numerical quadra-

ture after first using COLSYS to solve for the boundary layer functions u; and w] . For
the f(u) of (2.80) we have 6y = (271')1/2 and 0; = 3/32 in (2.76).

To t(num.) t(asy.)
0.3999125 | 0.196752251 x10° | 0.192198642 x10°
0.3972259 | 0.554179455 x10° | 0.541388563 x10°
0.3943236 | 0.997547019 x10° | 0.974550456 x10°
0.3829263 | 0.197541881 %107 | 0.193020273 =107
0.3636165 | 0.235602159 x 107 | 0.230237584 %107
0.3094434 | 0.245565007 x107 | 0.240006441 =107
0.2514594 | 0.245728124 =107 | 0.240171229 =107
0.2005907 | 0.245732411 x107 | 0.240176186 =107
0.1122723 | 0.245732918 x 107 | 0.240176776 =107

Table 2.5: A comparison of the asymptotic and numerical results for the tip ¢ = t(x0) of
the flame—front for (2.5) with ¢ = 0.004 and 2 = 0.4.

For f(u) = u?/2, in Table 2.5 and 2.6, we compare the asymptotic and numerical
results for the tip ¢ = #(x0) of the flame—front interface for ¢ = 0.004 and ¢ = 0.002,
respectively. The initial tip location of the interface was x) = 0.4 for ¢ = 0.004 and
2y = 0.3 for £ = 0.002. The asymptotic and numerical results for the elapsed time agree

to roughly within 2% for each of these examples. In Figure 2.7 we plot, at different times,
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To t(num.) t(asy.)
0.2996765 | 0.110811891 %107 | 0.108295000 %107
0.2958542 | 0.109730472 x10® | 0.107247855 x10®
0.2907243 | 0.180669282 x10® | 0.176594370 x10®
0.2875337 | 0.205054498 x10% | 0.200430705 x10®
0.2704028 | 0.245669157 x10® | 0.240128133 x10®
0.2500379 | 0.250251570 x10® | 0.244610251 x10®
0.2306506 | 0.250644804 x10% | 0.244996311 x10®
0.1811032 | 0.250699164 x10® | 0.245050448 x10®
0.0903085 | 0.250699778 x10% | 0.245051150 x10®

Table 2.6: A comparison of the asymptotic and numerical results for the tip ¢ = t(x0) of
the flame—front for (2.5) with ¢ = 0.002 and 2§ = 0.3.

the numerical solution to (2.5) for ¢ = 0.002 with the initial data u(z,0) = a°(x;x)),
where 2§ = 0.3. In Figure 2.8 we compare the asymptotic and numerical tip trajectories
t = t(xo) for different initial conditions ) when ¢ = 0.005. A logarithmic (base 10)
scale is used for the vertical axis and the horizontal axis represents the parabolic tip
location xg. On this logarithmic scale, the asymptotic and numerical results are virtually
indistinguishable.

For the asymmetric f(u) of (2.80), in Tables 2.7 and 2.8 we give a similar comparison
between the asymptotic and numerical results for ¢ = () for ¢ = 0.004 and ¢ = 0.003,
respectively. The initial zeroes ) of u are given in the captions of these Tables. For
both values of ¢, the agreement between the asymptotic and numerical results is slightly
closer than that for the case f(u) = u*/2. For the f(u) in (2.80), in Figure 2.9 we plot
the numerical solution to (2.10) at different times when ¢ = 0.004. In Figure 2.10 we
compare some asymptotic and numerical trajectories for t = #(xq) for different initial
conditions ) when & = 0.006.

For the asymmetric f(u) of (2.80), we now verify the asymptotic result (2.77) for the

equilibrium location xz¢ = " corresponding to the equilibrium solution u ~ @*(x; ).
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To t(num.) t(asy.)
0.3999931 | 0.131068167 x10° | 0.133057866 x10°
0.3999216 | 0.149606553 x 107 | 0.151644288 =107
0.3983913 | 0.277759851 x10® | 0.281609517 x10®
0.3904987 | 0.103529490 x10° | 0.105057930 x10?
0.3750825 | 0.140377491 x10° | 0.142599219 x10?
0.3202282 | 0.146999074 x10° | 0.149374926 x10°
0.2574865 | 0.147019482 x10° | 0.149396440 x10°
0.2020624 | 0.147019608 x10° | 0.149396594 x10?
0.0898295 | 0.147019614 x10° | 0.149396603 x10?

Table 2.7: A comparison of the asymptotic and numerical results for ¢ = #(x¢) for the
asymmetric f(u) of (2.80) with ¢ = 0.004 and z = 0.4.

In Table 2.9 we compare asymptotic and numerical results for z(' at different values of
. The asymptotic result for ' was computed from (2.77) using Newton’s method. The
numerical value for x{" was computed from (2.11) using COLSYS (cf. [6]). These full
numerical equilibrium solutions are plotted versus = for various ¢ in Figure 2.11 for the
asymmetric f(u) of (2.80) as well as f(u) = u?/2. As expected, the asymptotic results
provide a closer determination of the corresponding numerical result as ¢ is decreased.
Finally, we show how to recover the solution y(x,t) to (2.4) from w(x,?). Since

u = —1vy,, we have

xr

y(,t) = h(t)—/ u(s, t) ds, (2.81)

0

where h(1) is to be found. To determine h(t), we substitute (2.81) into (2.4a) to derive
B () = —euy(0) +/01 /Oxu(s,t) dsda . (2.82)

Since (2.4a) is invariant under a constant shift in y, we can take h(0) = 0. Therefore,
h(t) = /Ot {—%(0) + /01 [ utstyas d:z;} i (2.83)

To determine h(t) during the metastable evolution we substitute u(x,t) ~ a°[x; xo(t)]

into (2.81) and (2.83). Here @° is given by (2.7), where u;, and wu,, are given in (2.58).



Chapter 2. Metastability in Upward Propagating Flame 49

To t(num.) t(asy.)
0.3499993 | 0.112330078 x10° | 0.111349461 x10°
0.3499269 | 0.132980269 x107 | 0.134879406 =107
0.3493105 | 0.120121899 x10® | 0.121708663 x10®
0.3476808 | 0.359540384 x10% | 0.364335772 x10®
0.3380873 | 0.102874830 x10° | 0.104310107 x10?
0.3005508 | 0.126006321 x10° | 0.127873597 x10?
0.2503833 | 0.126203956 x10? | 0.128078207 x10”
0.2012807 | 0.126205089 x10° | 0.128079463 x10?
0.0884271 | 0.126205114 x10° | 0.128079498 x10?

Table 2.8: A comparison of the asymptotic and numerical results for ¢ = #(x¢) for the

asymmetric f(u) of (2.80) with ¢ = 0.003 and z§ = 0.35.

This yields,

1
y(x7t) = h(t) — {5:[2 — xox _I_ 25 10g2 _ 25 log(l _I_ e—l’ol’/s)

+2e [log(l + e~ (1=m0)/2) _og(1 + e_(l_l’o)(l_w)/s)]} , (2.84a)

where h(t) is defined by

h(t) B /t 7'('252 —I_ (1 4 1) _I_ 1 2 1 _I_ 1 —I— 2 1 (1 —I— —(1—1’0)/6)
= Jo U bzo(l —z) VB pfo T gt T g TRl T e
1 1 — 1 —xg/e 1 —(1—=zg)/=
+=(1 — 0)* [1 — tanh? :1;0] — 2&* gl fe ) + gll+e ) dt
2 2e o 11— s
¢ 2e2 1 1 1
~ - logd — 1) + —a2 — = — b dt. 2.84b
/0 { Goo(l —ag) T clogd =1+ 5 2x0+6} (2.84b)

Here g(x) is the Dilogarithm function defined by g(x) = [ lloffdt, which satisfies g(x) ~
1 —x as @ — 1. To determine y(x,t) during the metastable evolution we solve the ODE
(2.79) numerically and obtain A(?) from a numerical quadrature. Equation (2.84a) then
yields y(x,1).

In Figure 2.2 and Figure 2.12 we plot the metastable solution y(x,?) versus « with

¢ = 0.0115 and ¢ = 0.006, respectively, at several values of t. For the example in
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1
—t=0
0.8 A
- — t=.250251570e8 e
~ - t=.250696615€8 PR,
t=.250699782e8

u(x,t)

Figure 2.7: Plot of the numerical solution to (2.5) at different times. Here ¢ = 0.002 and
x5 =0.3.

Figure 2.2 it takes a time ¢t ~ 117.1 for the tip of the parabola to move from its initial
position z§ = 0.45 to its final equilibrium state at zg = 0. The height /() of the parabola
increases by roughly 5.86 during this evolution. A similar observation was observed in
the numerical computations of [77] (see Figure 3 of [77]). When ¢ is decreased, the
height h(?) can increase dramatically as shown in Figure 2.12. This can be explained

from (2.84b) since for ¢ — 0

trl o, 1 1 1
h(t) /0 (2:1;0 2:1;0 + 6) dt 24t (2.85)
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parabolic—shaped flame—front interface for (2.5) with ¢ = 0.005. A logarithmic (base 10)
scale is used for the vertical axis.

Table 2.9: The equilibrium location of zj' for the asymmetric f(u) of (2.80).

e

xy (asy.)

xg (num.)

0.004
0.005
0.006
0.007
0.008
0.009
0.010
0.011
0.012
0.013

0.4412712
0.4420214
0.4427894
0.4435751
0.4443787
0.4452002
0.4460395
0.4468968
0.4477721
0.4486654

0.4412866
0.4420579
0.4428554
0.4436858
0.4445542
0.4454679
0.4464367
0.4474730
0.4485919
0.4498109
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Figure 2.9: Plot of the numerical solution to (2.10) with the asymmetric f(u) of (2.80)

at different times. Here ¢ = 0.004, and z = 0.4.
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Figure 2.10: Plots of asymptotic and numerical results for ¢ = #(x¢) for (2.10) with the
asymmetric f(u) of (2.80) with ¢ = 0.006. A logarithmic (base 10) scale is used for the

vertical axis.
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Figure 2.11: Plots of the equilibrium solutions to (2.11) versus « for various ¢: (a) For

f(u) =u?/2, z7* = %; (b) For an asymmetric f(u) of (2.80), 2§ are given in Table 2.9.
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Figure 2.12: Plot of y(x,t) versus x given by (2.84) with ¢ = .006 that approximates
the metastable behavior in (2.4). (a) initial quasi—equilibrium solution y(x,t) with tip
location 29 = 0.45 at t = 0; (b) quasi—equilibrium solution with zo = 0.4 at ¢t = 130745
(¢) quasi—equilibrium solution with zo = 0.3 at ¢t = 136353 ; (d) final stable equilibrium
solution at ¢t > 136394 .



Chapter 3

Metastability in Slowly Varying Geometry Problems

3.1 Convection-Diffusion-Reaction Equations in Thin Domains

In this chapter, we study two singularly perturbed evolution equations exhibiting meta-
stable dynamics in a weakly inhomogeneous medium. The first problem we consider is
the following generalized Ginzburg-Landau equation, which models the slow propagation
of an internal layer in a thin channel

2

u = %(Aux)l,—l-Q(u), O<a<l, t>0, (3.1a)
ur(0,1) = wuy(l,t)=0, u(x,0) = ug(x). (3.1b)

Here ¢ > 0 is a small parameter and A = A(x,e) > 0 is the local cross-sectional area
of the channel, which is specified below. In addition, Q(u) is a smooth function with
exactly three zeroes on the interval [s_, sy ] located at w = s_ < 0, u = 0 and u = s, > 0.

Introducing the double-well potential V(u) by V(u) = — [* Q(n)dn, we assume that

!

Q(s) <0, @ (0) >0, V(sy)=0. (3.2)

A typical example is Q(u) = 2(u — u®) for which sy = £1 and V(u) = (1 — v?)%.
The motivation for studying (1.1) is related to the problem of determining the con-
ditions for the existence of stable spatially inhomogeneous steady-state solutions to the

Ginzburg-Landau equation
up=Au+Qu), x€D; Oyu=0, xz€dD. (3.3)

)
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Here D is a bounded domain in RY and 0, denotes the outward normal derivative to
dD. In a convex domain it is well-known that (3.3) does not admit a stable spatially
inhomogeneous steady-state solution (cf. [28], [73]). However, this non-existence result
does not hold for non-convex domains (cf. [45], [57], [73]). In Appendix B we show how
(3.1) arises from an asymptotic reduction of (3.3) when D is a thin, axially symmetric
domain as shown in Fig. 3.1. In this context, x represents the direction along the axis of
the channel and A represents the local cross-sectional area of the channel. When A =1,
which yields a constant channel cross-section, it is well-known that the propagation of
an internal layer for (3.1) is exponentially slow as ¢ — 0 (i. e. metastable) and that a
stable spatially inhomogeneous solution for (3.1) does not exist (see [26], [39], [62], [109]).
When A =1, the metastability is a consequence of an exponentially small eigenvalue for
the linearization of (3.1) around an internal layer solution.

This exponential ill-conditioning suggests that the dynamics of an internal layer so-
lution for (3.1) will depend very sensitively on the channel cross-section A, when A is
slightly offset from the uniform value A = 1. In particular, exponentially small changes
in A—1 should influence the dynamics greatly. Therefore, in §3.2 we study (3.1) as e — 0
for an A(x;¢) of the form

Alwie) =1+ e'g(a)e ¢, (3.4)

Here p and d > 0 are constants and g(x) is smooth. If ¢”(x) < 0 then D is convex and
we expect that (3.1) will have no stable spatially inhomogeneous equilibrium solutions.
When ¢”(x) > 0 and 0 < d < d., where d. is some constant, we show in §3.2 that
(3.1) can have a stable spatially inhomogeneous equilibrium internal layer solution where
the internal layer is located at a zero of ¢’(x). This phenomenon in which an internal
layer or other localized structure is stabilized by a weakly inhomogeneous medium is

called pinning. The effect of pinning of other localized structures such as vortices in
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R=RgF(X/L

Figure 3.1: A cylinder of revolution with cross-section described in dimensional variables
by R= RoF(X/L).

superconductivity has been studied in [29], [70]. When ¢"(2) > 0 and d = d,., we show
in §3.2 that the internal layer can be pinned at other locations in the interval [0,1]. In
§3.2.1 we provide an asymptotic estimate for the principal eigenvalue Ay associated with
the linearization of (3.8). In §3.2.2 we use the projection method to derive a differential
equation for the location x¢(t) of the internal layer, and we determine its limiting behavior
ast — oo. Finally, in §3.2.3 we compare our asymptotic results with corresponding results
obtained from a full numerical solution of (3.1).

The second problem we consider is the nonlinear convection-diffusion equation
ur + [f(w)]s — e(z;e)h(u) = cupe, O0<ax<1, t>0, (3.5a)

w(0)=a_, u(l)=ar; ul(x,0)=ue(z). (3.5b)
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Here 0 < e < 1, a— > 0 and a4 <0 are constants, and h(u) and f(u) are smooth. The

flux function f(u) is assumed to be convex and satisfies
flay)=fla),  fO)=f(0)=0, uf(u)>0 for u#0.  (3.6)

The function c(z;¢) is chosen to be
o(zye) = —etg (x)e= 1. (3.7)

Here 1 and d > 0 are constants and g(x) is smooth.

A primary motivation for studying (3.5)-(3.7) is that for the special case when h(u) =
u and f(u) = w*/2, this problem models transonic gas flow in a nozzle of cross-sectional
area A(x;e) given by c(x;e) = —Ay(a;e)/A(x;e) (cf. [53], [51], [71], [94]). Hence, for
e < 1, the cross-sectional area A(x;¢) can be taken precisely as in (3.4). In this context,
the nozzle is said to be divergent if ¢’(x) > 0 for all x, convergent if ¢'(x) < 0 for all z, and
convergent-divergent if ¢'(z) has no definite sign. For Burgers equation (f(u) = u?/2)
in a straight channel where g(z) = 0, it was shown in [61], [64] and [87] that there
exists a unique and stable equilibrium shock layer solution centered at xq = % It was
also shown that for the corresponding time-dependent problem, a viscous shock, which
gets formed from the initial data, tends toward the steady-state solution only over an
asymptotically exponentially long time interval as ¢ — 0. This metastable behavior
arises from the occurrence of an asymptotically exponentially small principal eigenvalue
for the linearization of Burgers equation around the viscous shock solution. In view of
this exponential ill-conditioning of Burgers equation, we expect that shock-layer solutions
can be significantly altered by perturbing the differential operator by exponentially small
terms. The effect of such spatially homogeneous perturbations were considered in [64].

Our primary goal in §3.3 is to study the pinning effect induced by the spatially

inhomogeneous term c(x;¢) in (3.5). In particular, we analyze the existence, stability
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and dynamics of equilibrium and time-dependent shock-layer solutions to (3.5). In §3.3.1
we obtain an asymptotic estimate for the principal eigenvalue Ay associated with the
linearization of (3.5) around a shock-layer profile. In §3.3.2 we use the projection method
of [110] to derive a differential equation for the location x¢(¢) of the shock-layer trajectory.
We then analyze the equilibrium solutions of this differential equation and determine
their stability properties. In §3.3.3 we illustrate the results for certain forms of g(x)
when h(u) = u and f(u) = u?/2, modeling transonic nozzle flow, and we compare our
asymptotic results with corresponding numerical results. Our results show that, under
certain assumptions, there can exist stable steady-state shock-layer solutions along a
convergent nozzle or in the convergent part of a convergent-divergent nozzle. In contrast,
it was shown using a nonlinear stability analysis in [34] that when ¢(x; ¢) is independent of
e and when the diffusive term eu,, in (3.5) is absent, the corresponding inviscid problem

does not admit stable shock waves in these nozzles.

3.2 A Generalized Ginzburg-Landau Equation

We now study (3.1) in the limit ¢ — 0 with A(x;¢) as given in (3.4). A one-layer

metastable pattern for (3.1) can be approximated by
u(x,t) ~ u, [ (@ — zo())] (3.8)
where u.(z) is the heteroclinic orbit that connects s; and s_, which satisfies
ul(z) + Qu.) =0, —oo<z<oo, u(0)=0, (3.9a)

Ue(2) ~s_Fa_e’=%, as z— —00; u(z)~ sy —agpe”, as z— oo, (3.9b)

Here the positive constants v4 and a4+ are defined by

+ 1
I ds.  (3.10)
2V(s)]z 5 — 5+

vy = [—Q’(si)]% , logay =log(£sy)+ /05i [[
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We now look for a solution to (3.1) for ¢ > 1 in the form
u(,t) = . [=7 (@ — wo(t))] + w(x,t), (3.11)

where w < u. and wy < du.. The trajectory xg = xo(t) gives the approximate location
of the zero of u(x,t) during the metastable evolution. Substituting (3.11) into (3.1), and

using (3.9), we obtain that w satisfies the quasi-steady problem

’ Ax ’
Low = A (—5_1x0u’c(z) — ejuc) , O<a<l, (3.12a)
w(0,1) = uy(0,t) — Jptic]|p=o0 ~ e gy e v , (3.12b)
wo(1,1) = up(1,8) — Dtto]gmy ~ —c Laywyes v+1m70) (3.12¢)

where z = ¢z — zo(t)]. Here A is given in (3.4) and the operator L. is defined by

Low = &? (Aw,), + AQ'(u)w . (3.13)

3.2.1 The Eigenvalue Analysis
For a fixed 9 € (0,1), we now study the eigenvalue problem

L.p = d¢p, O0<a<l1, (3.14a)

6:(0) = ¢,(1)=0, (¢,0)=1. (3.14b)

Here (u,v) = f; uvdz . For this eigenproblem, the eigenvalues A; for j > 0 are real and
the principal eigenvalue Ag is exponentially small as ¢ — 0. To estimate Ay and the

corresponding eigenfunction ¢y we use the trial function ¢y = u'le™!(x — x0)]. Then,

upon integrating by parts, we derive

Xo (0. 60) = (0. Ledo) — £*Adodos s - (3.15)

Using (3.4) and (3.12) we estimate

!

Lego = &+ (x)e™ gy, . (3.16)
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Since L. is exponentially small and ¢q is of one sign, we have that ¢g ~ Nodo away
from O(e) regions near the endpoints at @ =0 and @ = 1, where Ny is a normalization
constant. However, this approximate form for ¢y does not satisfy the homogeneous
boundary conditions in (3.14b) and so we cannot use it to calculate ¢o(0) and ¢o(1).
Instead, these quantities are calculated after constructing boundary layer profiles for ¢q
near each endpoint.

Since A is exponentially close to 1, the boundary layer analysis given in [109] for the

case A =1 can be used to calculate
¢0(0) ~ 2N0(l_l/_€_6_1y_x0 5 ¢0(1) ~ 2N06l+l/+€_6_1y+(1_x0) . (317)

Then, since the dominant contribution to the inner product integrals arises from the

region near x = xq, the left side of (3.15) is estimated as

(4507430) ~ Ny (onaqzo) ~efoNo; o= /_OO [u;(z)]z dz = /:+ [2V(u)]1/2 du. (3.18)

o0

Next, we use (3.16) to estimate
(qbo, LEQNSO) ~ Ny (q;o, quzo) ~ Nog“""ze_s_ld/ ul(2)g'(xo + e2)ull(2) dz . (3.19)
By using a Taylor series expansion for g/(:zjo + ez) we get

(60, Ledo) ~ —Noe#2e774 37 chglth) (g (3.20)

k=0

where the coefficients ~; are defined by

1 o]
= - [l k=0, (3.21)

— 00

The first two coefficients are readily calculated to be

Yo = 0, M= 60/2 . (322)

Moreover, if u.(z) is an even function then v5; = 0. Finally, substituting (3.17)-(3.20)

into (3.15), we obtain the following key estimate for Ag:
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Proposition 3.1 (Exponentially Small Eigenvalue): For ¢ — 0, the exponentially

small eigenvalue of (3.14) satisfies

_ —9e—1 _ _9.—1
Ao = Ao(xg) ~ Zﬂol{aiyi’_e 2T v (lmmo) 4 28 o2 ”‘9”0}

— By lertt e > kgD (20)y;, . (3.23)
k=1

Here vy, ay are defined in (3.10), By is defined in (3.18), and ~, is defined in (3.21).

3.2.2 The Metastabilty Analysis

We now derive a differential equation for the location xg = x¢(t) of the internal layer

trajectory. We first expand the solution w to (3.12) in terms of the eigenfunctions ¢; of

(3.14) as
w(e,t) = 3 20 (3.21)

j:O )\]

The coeflicients ¢;, which are found by integrating by parts, are
¢; = —e 7t (Axgu., ;) — e (Apu,, ¢;) — 2 Aw, ;L i =0,1,.... (3.25)
J 0%er V7 ey Vg V710> J P

Since A\g — 0 as ¢ — 0, a necessary condition for the solvability of (3.12) is that ¢g — 0
as ¢ — 0. Setting ¢o = 0 in (3.25), we obtain the asymptotic differential equation for
Lo = $0(t>

e g (Aul, do) ~ —¢ (AL, do) — e2goAws]y . (3.26)

To obtain an explicit differential equation for xo(%) we must evaluate the inner product
integrals and the boundary terms in (3.26). The dominant contributions to the inner
product integrals arise from the region near = = z.

First, the boundary terms in (3.26) can be calculated asymptotically from (3.12) and
(3.17) as
W

g2 Agow, | ~ 2Noe (—a 2 v (1ma0) 1 aiz/ie—%””—%) . (3.27)
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Now to evaluate (Al,ulc, qbo) we use (3.4) and ¢g ~ Noulc to get

o0

(Al,ulc, qbo) ~ Noe“"'le_s_ld/ g (zo + e2)[ul(2))? d= . (3.28)

By using a Taylor series expansion of g(x¢ + £z) we obtain
(At 0) ~ Nzt 1m0 32 kgt o) 5 (3.29)
k=0

where the coefficients 3, are defined by

1 0
B = o /_Oo[uls(z)]zzk dz E=0,1,.... (3.30)

Upon integrating by parts, we can show that f; = 2y411 for & > 0, where 7y is defined
in (3.21). Next, for ¢ — 0, we estimate the left side of (3.26) to get

e g (Aul, ¢o) ~ Nofowy . (3.31)

Finally, substituting (3.27), (3.29) and (3.31) into (3.26) we obtain our main result
for the metastable dynamics associated with the generalized Ginzburg-Landau equation

(3.1):

Proposition 3.2 (Metastable Dynamics): For ¢ — 0 and t > 1, a one-layer
metastable pattern for (3.1) is represented by u(x,t) ~ u.[e™ & — xo(t))], where the

internal layer trajectory xo(t) satisfies the asymptotic differential equation

vy~ hlzg) = 2685 [afpde 0TI g2 2 7T v
e t2eme BTN kg gD () (3.32)
k=0

Here vy, ay are defined in (3.10), By for k > 0 is defined in (3.30), and u.(z) is defined
in (3.9).

The following equilibrium result is obtained by setting xy = 0 in (3.32):
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Corollary 3.1 (Equilibrium): For ¢ — 0 an equilibrium solution U(x;e) to (3.1)
corresponding to a one-layer pattern is given by U(x;e) ~ u.[e7 x — xf")], where u.(z)
is defined in (3.9) and xf" satisfies the nonlinear algebraic equation h(xo) =0, i.e.,

Vie—26—1y+(1—x0) . a?_l/ze—Qg—ly_xO — %gu—l—le—s—ld f: a,_:kﬂkg(k—l—l)(xo) ] (333)

k=0

2
ay

We now discuss the behavior of the equilibrium solutions for xo(¢). We first observe
that in (3.32), h(0) < 0 and A(1) > 0 for ¢ — 0. Thus, there exists at least one
equilibrium value af" for x¢(t). The existence of any other equilibrium value for g
depends on the constants d and g and the function ¢’(x). For example, when d >

e~ 1d

0 is sufficiently large, the terms in (3.33) proportional to e~ are insignificant and

consequently, the equilibrium value for xq is given uniquely by

l/_|_ & Cl_|_l/_|_
Mo~ — | . 3.34
o Vo + vy Vo + vy o8 [G_V_] ( )

Alternatively, when d > 0 is sufficiently small, the right side of (3.33) dominates the left
side of (3.33) and, consequently, for ¢ — 0, (3.33) has a root x§* near each zero of ¢'(z).
As shown in the examples below, when d is near some critical value so that the right
and left sides of (3.33) balance as ¢ — 0, we can have equilibrium internal layer solutions
centered at different points on the interval [0, 1].

Although the only stable equilibrium solutions to (3.3) in a convex domain are con-
stants, the generalized G-I equation (3.1) may admit stable spatially dependent equi-
librium solution with an internal layer structure. Let af' satisfy h(x{)=0. Then, since
B = 27k41 , as seen by comparing (3.21) and (3.30), we can show that h'(z{") = 2Xo(2),
where Ag is given in (3.23). This shows that the decay rate for the differential equation
(3.32) associated with infinitesimal perturbations about «{" is 2A7" , where AJ' = Ao(2").
This leads to the following criterion for the stability of the equilibrium internal layer so-

lutions:
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Corollary 3.2 (Stability of Equilibrium): Let a)' satisfy h(xf) = 0. Then the
equilibrium solution to (3.1) has the form U ~ u e~ (x — x')] and is stable (unstable)
if Ao(zd) < 0 (Ao(zg") > 0). Here u.(z), Ao(zo) and h(zg) are given in (3.9), (3.23)
and (3.32).

Using this corollary, it follows that an equilibrium solution with an internal layer
located at xo = x{' is unstable when ¢”(z{') < 0. Since ¢"(x) < 0 corresponds to
a convex domain in higher dimensions, this result re-states the conclusion in [28] and
[73] concerning the instability of non-constant steady-state solutions to (1.3) in convex
domains. However, when ¢”(x3") > 0, then AJ" can be negative for certain choices of
p and d, resulting in a stable internal layer solution centered at zj'. The key point to
construct a stable equilibrium solution is to guarantee that (3.32) has multiple equilibria
corresponding to simple zeroes of h(xg). Then, we must have exactly one stable equilib-
rium of (3.32) between every two consecutive unstable equilibria. We will see from the

examples below that this can be realized by selecting the cross-sectional profile A(x,¢)

(i. e. g(x)) appropriately.

3.2.3 Comparison of Asymptotic and Numerical Results

We now compare the asymptotic results obtained above with the corresponding full
numerical results computed directly from (3.1). We also show the existence of stable
equilibrium solutions with an internal layer structure to the generalized G-L. equation
(3.1).

In all of the calculations below, we have taken Q(u) = 2(u — u?), for which a; =
a_ =2, vy = v =2 and ug(z) = tanh(z). In addition, we calculate that 5y = 4/3,

1 =2/3, v =(7*—6)/36 and v = 0 for £ > 0. Thus, (3.23) becomes

)\0 = )\0([E0) ~ 48 [6_45_1(1_750) _I_ 6—46_1x0:|
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1 _
e )+

72 —6
o0 gV (20)e? + -- ] : (3.35)

Noting that 8y = 29541 , the differential equation (3.32) becomes

l’é) ~ h(l‘o) = 24e [6_45_1(1—1’0) _ 6—46_11’0]

72 —6

24

gt [g'(:z;o) + g (20)e? + -- ] . (3.36)

To check the validity of (3.36), we solved (3.1) numerically for a number of choices of
g(x), three of which are described below.

To compute numerical solutions to (3.1) we use a transverse method of lines approach
(cf. [7]). This method is based on replacing the time derivative in (3.1) by a difference
approximation and then solving the resulting boundary value problems in space. More
specifically, we convert the time-dependent problem (3.1) to a set of boundary value
problems using the second order Backward Differential Formulas (BDF) [7], which we
solve at each time step using the boundary value solver COLSYS [6]. Since the motion
of the internal layer solutions is exponentially slow, we found it necessary to implement
a time-stepping control strategy to efficiently track the solutions to (3.1) over long time
intervals. To achieve this, we used the [3-norm of the difference between the solutions of
the second order and the third order BDF schemes as an error indicator to reject large
inaccurate time steps or to enlarge unnecessary small time steps. See [100] for details of
these algorithms, where they were used in a different context.

The metastablity result (3.36) is valid only after the completion of an O(1) transient
period that describes the formation of an internal layer from initial data. In the compu-
tations below we took u(z,0) = u.(e™'[x — z§]) as the initial data for (3.1), where u.(2)
is defined in (3.9) and a) € (0,1) is the initial zero of u. To eliminate any unwanted
transient effects we computed the solution to (3.1) with this initial data until £ = 5.

At this time, z§ is reset to be the zero of u predicted by the numerical method. This
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new value for x is used as the initial condition for (3.36). The differential equation
(3.36) is then solved numerically for xo(¢) using the initial value solver DP12 [27] and
for t(x¢) using a numerical quadrature, and the results are compared with corresponding

numerical results for the zero of v computed from the finite difference scheme.

To t(asy.) t(num.)
0.3991489 | 0.100998498%10° | 0.100998673 x10°
0.3902339 | 0.111103064x10° | 0.111104540 x10°
0.3459655 | 0.515111092x10° | 0.515123233 x10°
0.3013976 | 0.818109359x10° | 0.818137253 x10°
0.2646857 | 0.102010258x107 | 0.102014660 x 107
0.2024301 | 0.127991981x107 | 0.127995306 x 107
0.1683312 | 0.133126841x107 | 0.133127901 x107
0.1350323 | 0.133755526x107 | 0.133756144 x 107
0.0753443 | 0.133805967x107 | 0.133806497 =107

Table 3.1: Example 3.1: A comparison of the asymptotic and numerical results for
t = 1t(xo) for Q(u) =2(u —v?) and g(x) = —4(z — 1)? withe =0.05, p =0, d=0.4
and x0(0) = 0.4.

Example 3.1: Let g(z) = —1(2 —1)?, which corresponds to a convex domain. Then

a solution to the equilibrium problem h(xq) = 0 for (3.36) is ' = 1/2, independent of
the constants g and d. This is the only solution to h(ze) = 0, since ¢ (2¢) < 0 implies
that h'(zo) > 0 for zo € [0,1]. This unique equilibrium solution z* = 1/2 is unstable
since Ag(1/2) > 0 in (3.35). This conclusion is confirmed by the full numerical results
shown in Table 3.1. This table displays the asymptotic and numerical results for the
elapsed time as a function of the internal layer location zy for ¢ = 0.05, ¢ = 0 and
d = 0.4, when the initial location is x¢(0) = 0.4. The results for ¢ = t(x¢) agree to at
least four significant decimal places.
1

Example 3.2: We choose g(x) = 1(x — })*, which corresponds to a non-convex

domain. Again, «{' = 1/2 is an equilibrium solution to (3.36) for any p and d. However,
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this solution can be stable depending on the values of y and d. From (3.35), a simple
calculation gives A\o(1/2) = —%€“+2€_6_1d +96e=27" . Let d. be the zero of Ao(1/2) as
a function of d, ie., d. = 2 —clog192 + (¢ + 2)eloge. Then, from Corollary 2.4, the
equilibrium x§" = 1/2 is stable (unstable) when d < d.(d > d.). Given p = —2 and
e = 0.1, we have d. ~ 1.4742. In Fig. 3.2 we plot the numerical solution to (3.1) at
different times for d = 1.4 and d = 1.5. For d = 1.5 and ¢(0) = 0.49 we observe that
the internal layer located at xo(f) moves at an accelerating speed away from zf = %
and eventually, it collapses against the wall at * = 0. Alternatively, for d = 1.4 and
z0(0) = 0.45 the layer drifts toward its equilibrium location at zf* = 1 at an exceedingly
slow rate. Thus, this example demonstrates the influence of the constants g and d on the
stability of the equilibrium solution. Comparisons between the asymptotic and numerical

results for the internal layer trajectories are displayed in Table 3.2a for d = 1.4 and in

Table 3.2b for d = 1.5. They agree to at least 3—4 significant digits.

t zo(asy.)

zo(num.)

0.1009705
0.5824404
0.6115657
0.1266815
0.3232563
0.4510299
0.8933232
0.1586249
0.2243776

x10%
x10°
x 108
x 107
x 107
x 107
%107
x 108
x10?

0.4500052
0.4503374
0.4541856
0.4600576
0.4790305
0.4875179
0.4981489
0.4999096
0.5

0.4500052
0.4503374
0.4541852
0.4600546
0.4790227
0.4875137
0.4981502
0.4999098
0.5

2

Table 3.2a: Example 3.2: A comparison of the asymptotic and numerical internal layer
trajectories for Q(u) = 2(v — v®) and g(z) = (v — 1)* withe =0.1, p=—-2,d =14

and x0(0) = 0.45.

By plotting h(xo) in (3.36) versus xg we can show that ' = 1/2 is the only equilib-

rium to (3.36) when it is unstable. Alternatively, if the equilibrium x{" = 1/2 is stable
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T

t(asy.)

t(num.)

0.4899742
0.4892876
0.4758890
0.4519193
0.4263499
0.4015483
0.3522899
0.3018846
0.2021744
0.0794917

0.255661494 x10°
0.679551367x 10°
0.747594011 <107
0.105770564 x 10®
0.113221195%x 108
0.115273938x10°®
0.116191551 x10®
0.116312395x10°®
0.116330380x 10®
0.116330716x10°®

0.255661329
0.679517141
0.747469530
0.105738718
0.113185051
0.115236708
0.116153855
0.116274632
0.116292599
0.116292938

x10°
x 108
x 107
x 108
x 108
x 108
x 108
x 108
x 108
x 108
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Table 3.2b: Example 3.2: A comparison of the asymptotic and numerical internal layer

trajectories for Q(u) = 2(u — v®) and g(z) = F(x — 3)* withe =01, p=-2,d=1.5

2
and x0(0) = 0.49.

then (3.36) has two additional (unstable) equilibria that emerge from a pitchfork bifur-
cation as d is decreased below d = d.. In particular, for the parameter values ¢ = 0.1,
p=—2 and d = 1.4, we calculate that there are two other equilibria at zg' ~ 0.4435 and
xy &~ 0.5565. For a more general g(x), the set of equilibria to (3.36) consists, for ¢ — 0,
of the zeroes of g/(:zjo) and probably one or two others near the endpoints provided that
d < 2min(v_ap,, v4(l — apr)), where x,, and xp; are the smallest and largest zeros of
¢'(x) on the interval [0,1]. Since the equilibrium solution closest to the endpoint = 0
or # = 1 is unstable, a stable equilibrium z{’ must be near those zeros of ¢'(x) satisfying
g"(xf) > 0. This analysis is illustrated in the next example.

Example 3.3: We now consider g(x) = [(s—3)(s—2)ds, which has one maximum

and one minimum at z, = 2.

— 1
at x1 = 3

3 From the discussion before, since ¢"(z1) <

0 (¢"(x2) > 0), we expect that when d > 0 is sufficiently small the equilibrium of (3.36)
near 7 (x3) is unstable (stable). This is confirmed by the numerical results plotted

in Fig. 3.3, where ¢ = 0.08, ¢ =0 and d = 0.2. Fig. 3.3a shows that the internal
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Figure 3.2: Example 3.2: Plots of the numerical solutions to (3.1) at different times

with Q(u) = 2(u — v?) and g(z) = (2 — 1)?, where ¢ = 0.1, p = —2 with initial

condition ug(x) = u.(c7 'z — zf]). _(a) When d = 1.4 and x) = 0.45 the internal layer
moves towards its equilibrium ' = 1/2; (b) When d = 1.5 and 2§ = 0.49 the internal
layer moves towards the left and collides with x = 0.

layer drifts slowly towards the stable equilibrium location at x(, ~ 0.6608 when its
initial location is at x(0) = 0.4. However, in Fig. 3.3b, the internal layer with initial
location x0(0) = 0.333 moves slowly towards the left and finally collapses against the
wall at * = 0. This shows that there is an unstable equilibrium near z;, which is
calculated from (3.36) to be aj; ~ 0.3401. Corollary 2.3 and 2.4 suggests that there
is another unstable equilibrium (3 between x5 and the right endpoint. We compute
from (3.36) that «{} ~ 0.7762. To confirm this conjecture, we compute the solution to
(3.1) numerically for two different initial locations of the internal layer and we plot the
corresponding numerical results at different timesin Fig. 3.4. From this figure we observe
that when 20(0) > «{} or a(s < x0(0) < x{}, the internal layer moves exponentially slowly
away from x(}; until it eventually collides with the endpoint @ = 1 or it reaches its stable
equilibrium location at a(; , respectively. In summary, this example has three equilibrium
internal layer solutions. The ones located at z(; and x(3 are unstable, and the other one

located at x(}, is stable.
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Figure 3.3: Example 3.3: Plots of the numerical solutions to (3.1) at different times
with Q(u) = 2(u —v?) and g(x) = [y (s — +)(s — 2)ds, where e = 0.08, p =0, d =0.2

3
with initial condition ug(x) = u.(e™'[x — 2]]). (a) When z) = 0.4 the internal layer

moves towards a{, & 0.6608 ; (b) When 2§ = 0.333 the internal layer moves towards the
left and collides with @ = 0.

For this example, in Table 3.3a and Table 3.3b we give a comparison between the
asymptotic and numerical results for the evolution of the internal layers corresponding
to Fig. 3.3a and Fig. 3.3b, respectively. In these tables the second column gives the
numerical results for xo(?) or () while the third and fourth columns show the corre-
sponding asymptotic results from (3.36) with the one term and the two term expansions
for the second pair of brackets in (3.36), respectively. Since it may happen that ¢'(xo)
is close to zero during the evolution of an internal layer, the higher order term in (3.36)
proportional to ¢"(x¢) can be quantitatively significant in some cases. In most cases, we
find that the relative errors for the two-term expansion are below 0.002% in Table 3.3a
and 0.02% in Table 3.3b, while they are only about 3% in Table 3.3a and 50% in Table
3.3b for the one-term expansion. Thus, a two-term asymptotic expansion for (3.36) is
certainly needed to obtain close quantitative agreement with the numerical results.

We finally remark that by taking g(x) to be a periodic function it is possible to con-

struct a domain profile A(x,¢) such that (3.1) has arbitrarily many (stable) equilibrium
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Figure 3.4: Example 3.3: Plots of the numerical solutions to (3.1) at different times
with Q(u) = 2(u —v?) and g(z) = fy(s — 3)(s — 2)ds, where e = 0.08, ¢ =0, d = 0.2

3

with initial condition ug(z) = u.(e7 [z — 2]]). (a) When 23 = 0.76 the internal layer

moves towards 2, ~ 0.6608; (b) When 29 = 0.79 the internal layer moves towards the
right and collides with z = 1.

solutions.

3.3 A Burgers-like Convection-Diffusion-Reaction Equation

We now study (3.5) in the limit € — 0 with ¢(x;¢) as given in (3.7). The viscous shock

solution for (3.5) can be approximated by
u(a,t) ~uy 67 (@ — 20(1))] (3.37)
where the viscous shock profile u,(z) satisfies

ul(z) = flus(2)] — flaz), —oo<z<oo; us(0)=0, (3.38a)

us(z) ~a_ —a_e’7 | z— —o0; us(z)~aytapet) 2 — 4. (3.38b)

The positive constants vy and a4 are defined by

a+t

1 1
+ ds . (3.39)

[f(s) — flag)  va(s —ay)

a
ve=Ff0x), log(+ %) = o |
a4 0
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t zo(num.) zo(asy.) l-term | xg (asy.) 2-term
0.4531527x10* | 0.446231116 0.452053925 0.446234119
0.7487310x10* | 0.484045085 0.493797390 0.484052581
0.8965202x10* | 0.503953307 0.515317905 0.503963248
0.1339888x10° | 0.560669741 0.574424596 0.560683682
0.2881822x10° | 0.650108735 0.658569607 0.650107041
0.4544450%10° | 0.660137084 0.666792280 0.660135732
0.5741542x10% | 0.660748955 0.667250946 0.660748242
0.1175766 %106 | 0.660847732 0.667319903 0.660847282
0.5677799x10% | 0.660847731 0.667319905 0.660847287

Table 3.3a: Example 3.3: A comparison of the asymptotic and numerical inter-
nal layer trajectories for Q(u) = 2(u — v*) and g(x) = [F(s — L)(s — 2)ds , with
e=0.08, u=0,d=0.2 and 2(0) = 0.4.

We now look for a solution to (3.5) in the form
u(,t) = u, [e7 (@ — wo(1)] + v(w. 1), (3.40)

where v < u; and vy < Gyus. The trajectory g = xo(t) gives the approximate location
of the zero of u(x,t) during the metastable evolution. Substituting (3.40) into (3.5), and

using (3.38), we obtain that v satisfies the quasi-steady problem

Ve — [ (us)v], + ch/(us)v = —ch(us) — 5_1:1;6u’5(2), 0<a<l1, (3.41a)
v(0,1) = a_ —u,(—c"tag) ~ a_e~v=w0 (3.41b)
v(1,0) = ay —uy(e 'l — o)) ~ —aye v+ (1mw0) (3.41c¢)

where z = e} — o(1)).
As in [87], it is convenient to transform (3.41) to self-adjoint form by introducing a

new variable w(x,t) defined by

v(a,t) = w(a, (=), b(2) = [i(2)/ul(0)]2 , 2=z — o). (3.42)
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T

t(num.)

t(asy.) l-term

t (asy.) 2-term

0.3327547
0.3316803
0.3058932
0.2457738
0.2015392
0.1500169
0.1145554
0.1014824
0.0747960

x10°
x 108
x 108
x 107
x 107
x 107
%107
x 107
x 107

0.340885709
0.147718828
0.744277679
0.101699029
0.110200256
0.116129605
0.117455785
0.117521955
0.117546167

0.153239646 x10°
0.444448389 x10°
0.120475205 x 107
0.148559051 x 107
0.157152695 x107
0.163121386 x107
0.164451780 x107
0.164518040 x 107
0.164542305 x 107

0.340916775x10°
0.147738247x10°
0.744387573x10°
0.101710846 <107
0.110210654 107
0.116139950 x 107
0.117466741 %107
0.117532979 %107
0.117557243 %107
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Table 3.3b: Example 3.3: A comparison of the asymptotic and numerical inter-
nal layer trajectories for Q(u) = 2(u — v*) and g(x) = [F(s — L)(s — 2)ds , with
£=0.08, pu =0, d=0.2 and z¢(0) = 0.333.

Substituting (3.42) into (3.41), and using the asymptotic behavior of ¢)(z) as z — +oo,

we find that w(x,t) satisfies

!

L.ow = etwpr — V] elw ~ —gp™! (c h(us) + 5_1x0u;(2)) ., O<a<l,

w(0,1) ~ [a_flaz)/v ] e v=r0l2,

w(l,t) ~ —lapflay)/vs]

Here V(x;¢) is defined by

1

[T

€

—elyy (1—20)/2 )

Viwie) = 7 [ (us(2))]" + %f”[us(Z)]u;(Z) — cch’[us(=)]

4

where z = ¢} (a — z¢) and ¢ = ¢(z;¢) is given in (3.7).

3.3.1

For a fixed 9 € (0,1), we now study the eigenvalue problem

The Eigenvalue Analysis

L5¢ =

o(0) =

Ag,

o(1) =

0<e <,

0, (¢,0)=1.

(3.43a)
(3.43b)

(3.43c¢)

(3.44)

(3.45a)

(3.45b)
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Here (u,v) = fy uvdz . For this eigenproblem, the eigenvalues A; for 5 > 0 are real and
the principal eigenvalue \g is exponentially small as ¢ — 0. We now extend the analysis
of [87] to give an estimate for A\ and for the corresponding eigenfunction ¢g.
We first define the trial function ¢y by qzo(:zj) = ¢~ 2)ul(2), where 2 = e7!(z — )
and v is defined in (3.42). Then applying Green’s identity to ¢y and o, and using (3.7),
we get
Ao (%7 on) = (¢O,Ls</~50) + 22 Posolg (3.46a)

where
Leo = =g/ ()™ 0 [uy(2)]ul(2) /(=) - (3.46b)
Since L.¢o is exponentially small and ¢p is of one sign, we have that ¢g ~ Nodo , except
near the endpoints at + = 0 and x = 1. Here Ny is a normalization constant. We must
modify ¢ by inserting boundary layer profiles near the endpoints in order to satisfy the
boundary conditions in (3.45b). These boundary layers can be analyzed in the same way

as in [87] and from this analysis, we obtain that

G0:(0) ~ —5_1N01/_[a_l/_f(oz_)]%e_s_ly‘l’o/z, (3.47a)

bos(1) ~ e Novg[agpwy f(ay))re el (3.47b)

Since the dominant contribution to each of the inner product integrals in (3.46a) arises
from the region near * = x¢ we can calculate (qbo, 430) and (qbo,quNﬁo) using Laplace’s

method. As in [87], we estimate

(%7 on) ~ No (ona on) ~ 5N0/_ [, ()% (2) dz = eNo(a- —ag)fla) . (3.48)
To calculate (qbo,quNﬁo) we use (qbo,quNﬁo) ~ Ny (QEO,LEQEO). Substituting do = v,
into this expression, and using (3.42) and u.(0) = —f(a_), we derive

(60, Ledo) ~ Nof(a)e" e / §' (20 + e )l (2)h'Tus(2)] d . (3.49)

— 00
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A Taylor series expansion for ¢'(xo + £2) then yields

(60, Led) ~ ~Nof ()26 3 chay 40 ag), (3.50)

k=0

where the coefficients 4 in (3.50) are defined by

1 &0 ! !
w= - [ R, k=01 (3.51)

Since we have assumed that A’'(u) is bounded on the interval [ay, a_], the exponential
decay of u;(z) as z — too ensures that ~; is finite for each & > 0. We can calculate 7
explicitly to get

Yo = h(a-) —h(ay). (3.52)
Notice that if f(u) is even and h(u) is odd we get y2p41 = 0 for & > 0. Finally,
substituting (3.47), (3.48) and (3.50) into (3.46a) we obtain the following key estimate
for Ap:

Proposition 3.3 (Exponentially Small Eigenvalue): For e — 0, the exponentially

small eigenvalue of (3.45) satisfies

—1 —1 —1
Ao = Ao(xg) ~ ———— [a_|_1/_|2_e_6 vi(l=w0) 4 p2e® ”‘l’o]
o_ — Oé_|_

€u+le—s_1d 00
S gt () (3.53)

A — ay k=0

Here vy, ay are defined in (3.39), and vy is defined in (3.51).

3.3.2 The Metastability Analysis

We now derive a differential equation for the location xg = x¢(t) of the internal layer

trajectory. We first expand the solution w to (3.43) in terms of the eigenfunctions ¢; of

(3.45) as

wizt) =3 g (). (3.54)

7=0 )\]
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The coeflicients r;, which are found by integrating by parts, are

rp= =g (65,07 ,) —e (65,07 ch) + ctwejlh (3.55)

where ¢ is defined in (3.42). Since Ay — 0 as ¢ — 0, a necessary condition for the
solvability of (3.43) is that ro — 0 as ¢ — 0. Setting ro = 0 in (3.55), we obtain the

asymptotic differential equation for x¢ = xo(?)
‘ —1, -1 2 1
2o (60, v u,) ~ —= (b0, ¥ eh) + erwoo b (3.56)

To obtain an explicit differential equation for xo(#) we must evaluate the inner product
integrals and the boundary terms in (3.56). The dominant contributions to the inner
product integrals arise from the region near = = z.

First, we use (3.43b), (3.43¢c) and (3.47) to asymptotically calculate the last term on

the right side of (3.56) as

2 waog|y ~ Nocf(a) {a_l/_e_6 —%0 — a+1/+6_5_1”+(1_x°)} ) (3.57)

Next, we evaluate the term on the left side of (3.56) as

(60, 971;) ~ eNo(am — ay)f(a), (3.58)

which is the same as (3.48). To evaluate the first term on the right side of (3.56), we use

b0 ~ Nogo and go = 1~ (2)ul(2) to get

1

e (fo, 07" eh) ~ Noc"H e (o) / 7 (@) h(u,[e = wo)]) da . (3.59)

0
Since h(us(z)) — h(ag) exponentially as z — +o00, we can evaluate the integral in (3.59)

by decomposing it as

[ @bl =zl de ~ bl [glwo) — o(0)] + hlar) [o(1)  glo)]

[ ) = hao)lg e+ [ ) = has ) (e de . (360
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The integrands in the two integrals on the right side of (3.60) are localized near x =

and can be evaluated using a Taylor expansion to get

[ @bl =zl de ~ b [gtwo) — g(0)] + hlar) [o(1)  g(o)]

e 3 " Brg ) (zg), (3.61a)

k=0

where the coefficients 8y, for £ = 0,1, ..., are defined by

5= [ ()] = o) e o [ (o)) = ha)) Fd= . (3610)

Using integrating by parts it is readily seen that B; = ~ry1, where 7, was defined
previously in (3.51). We also observe that when f(u) is even and h(u) is odd, then
Bar, = 0 for k > 0.

Finally, substituting (3.57), (3.58), (3.61a) into (3.56) we obtain our main result for

the metastable dynamics associated with (3.5):

Proposition 3.4 (Metastable Dynamics): For ¢ — 0 and t > 1, the metastable
viscous shock dynamics for (3.5) is represented by u(x,t) ~ us[e7(x — xo(t))], where the

internal layer trajectory xo(t) satisfies the asymptotic differential equation

' 1 -1 -1 _ 1 -1
ry ~ M(zg) = ——— {a_l/_e Tv=to g e 950)} — e
a_ — Oy a_ — Oy

X {h(a—) [9(z0) — g(0)] + h(ay) [9(1) — g(wo)] + ¢ i 5%9(’““)(%)}. (3.62)

k=0
Here the coefficients ax and vy are defined in (3.39), By for k >0 is defined in (3.61b),
and us(z) is defined in (3.38).

The following equilibrium result is obtained by setting z, = 0 in (3.62):

Corollary 3.3 (Equilibrium): For ¢ — 0 an equilibrium shock-layer solution to (3.5)

is given asymptotically by U ~ us[e ' (x — af')], where us(z) is defined in (3.38) and



Chapter 3. Metastability in Slowly Varying Geometry Problems 79

xo = xy satisfies the nonlinear algebraic equation M(xo) =0, i.e.,

-1 el _
e lu_xg —ayvye e tvy (1—20)

. {h<a_> [9(x0) — 9(0)] 4 hloy) [9(1) — glao)] + ¢ 3 ekmg<k+l><xo>} (363)

k=0

1
=ghe™" 0%

To qualitatively understand the equilibrium problem for z; = M (z), we first note
that M(0) > 0 and M(1) < 0 as ¢ — 0 when d > 0. Thus, there is at least one

equilibrium solution for (3.62) as ¢ — 0. If d > 0 is sufficiently large, then the term in

e~ 1d

(3.62) proportional to e~ can be neglected and hence the unique root x§" of M(x¢) =0

is given asymptotically by

l/_|_ & Cl_|_l/_|_
Mo~ — | . 3.64
o Vo + vy Vo + vy 8 (a_l/_) ( )

Alternatively, if d > 0 is sufficiently small then M(x¢) = 0 may have multiple roots for
some choices of ¢g(x). This will be illustrated below for some specific examples.

Since vy, = fy_1 , it follows that M'(z¢) = e ' Ag(2o). Thus, the decay rate associated
with infinitesimal perturbations about z* is e !'Ag(2f'). This leads to the following

criterion for the stability of the equilibrium shock-layer solution.

Corollary 3.4 (Stability of Equilibrium): Let «f' satisfy M(xy) = 0. Then the
equilibrium solution to (3.5) has the form U ~ us[e™ (x — x§')] and is stable (unstable)
if Ao(xf') < 0 (Ao(af) > 0). Here us(z), Ao(xo) and M(xzq) are given in (3.38) , (3.53)
and (3.62).

It is easy to show that a sufficient condition for M'(z¢) < 0 on ¢ € [0,1] as ¢ — 0 is

that

!

g (20) [h(a) — h(ag)] >0, for all z¢ €10,1]. (3.65)

When this condition holds, the shock-layer solution centered at xy = =z, where g is

the unique root of M(xo) = 0, is stable for ¢ < 1. In particular, (3.65) is satisfied
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when A'(u) > 0 for u € [a;,a_] and ¢'(z) > 0 on = € [0,1], which models a diverging
nozzle flow as discussed following (3.7) above. More generally, a sufficient condition for
the stability of a root x{" of M(xo) = 0 is that (3.65) holds at x¢ = z{'. This stability
conclusion for an internal layer solution is consistent with [53].

However, when ¢ (z0)[h(a_) — h(ay)] < 0 on [0,1], the stability of an equilibrium
internal layer solution can only be determined by explicitly calculating the sign of Ag(2§'),
where (' is a root of M(x¢) = 0. In this case, multiple equilibrium solutions for l’é) =
M (xg) are possible (see the examples below). We now illustrate the existence of multiple
equilibria in this case when d > 0 is sufficiently small and ¢ — 0. Let’s suppose that
g (z0) < 0on [0,1] and h(a_) > h(ay) > 0. Then, when d > 0 is sufficiently small and

e — 0, there is a root xfs of M(x¢) = 0 that is O(e) close to the unique solution of

h(a)[g(zo) = 9(0)] + h(ay) [9(1) — g(z0)] = 0. (3.66)

The assumption ¢ (zf3)[h(a_) — h(ay)] < 0 then yields that M'(275) > 0 when d > 0
is sufficiently small and ¢ — 0. Hence, this root is unstable. However, when d > 0 and
¢ — 0, we calculate that M(0) > 0, M(1) < 0, M'(0) < 0, M'(1) < 0. Hence, there
must exist additional roots «{; and x(3 to M(xz) = 0 that satisfy 0 < «{; < x5 and
x, < afy < 1 for which M’(zf;) < 0 and M'(2f) < 0. Thus, these additional roots are
stable equilibria of x, = M/(z¢) and the profiles u, [¢~"(z — 2§})] and wu, [e™ (z — 23]
correspond to stable internal layer solutions. Notice, as d — 07, 2} — 0 and x5 — 1 so

that these internal layer solutions become stable boundary layer solutions in agreement

with the analysis in [53] for the case d = 0.

3.3.3 Comparison of Asymptotic and Numerical Results

We now compare the asymptotic results obtained above with the corresponding full

numerical results computed directly from (3.5). For all of the calculations below we
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consider the case
flu) =u?/2, h(u) =u, —ap =a_ =a. (3.67)

As discussed in [94], and following (3.7) above, this problem models the transonic flow

through a nozzle of cross-sectional area A(x;e) = 1 + che=ed

g(x). We will consider
nozzles of different cross-sectional areas by varying the term g(x) in (3.53), (3.62) and
(3.63). Recall that the nozzle is said to be divergent if ¢’(x) > 0 for all x, convergent
if ¢'(z) < 0 for all , and convergent-divergent if ¢'(x) has no definite sign. We use a
similar numerical method as described in §3.2.3 above to compute numerical solutions to
(3.5) and to compare with the corresponding asymptotic results.

When f(u) = u?/2 and a_ = —a; = a, we have ax = 2a vy = a and u(z) =
—atanh(az/2). We also calculate that (7o, v1,72,73,-..) = (20,0,7%/3c,0,...). From
(3.53) the principal eigenvalue Ag(xq) satisfies

) 2.2

—e 1o —Z0 —eT T axg —e—1 TE
Ao ~ —a? (e (1=w0) | ¢ ) — ghtle d [g'(:z;o) + 62

" (o) + .. ] . (3.68)
In addition, since B = yx41 for k > 0, (3.62) becomes
zo~ M(zo) = a (6_5_1”0 — e‘s_la(l_l’o))

e [(g(:z;o) _9(0) +g(1)) T ) £ ] . (3.69)

"
9 a2 ?

In most cases, the higher order terms in the square brackets on the right sides of (3.68) and
(3.69) make only very minor improvements to the results. Thus, except when specified
otherwise, they are ignored when making the comparisons below.

Example 3.4: We first consider a divergent nozzle, where g(x) = Caz for some

C' > 0. From (3.68) and (3.69) the only equilibrium value for zo(t) is ' = § and the

principal eigenvalue \g(1/2) is always negative for any g and d > 0, C' > 0. Thus, from

Corollary 3.3 and 3.4, there is a unique shock-layer solution centered at x = % and it
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is stable. This agrees with the conclusion in [34] and [71] that flows along a divergent
nozzle are always stable. The case C' = 0 was well-studied in [61], [64] and [87] and
comparisons between asymptotic and numerical results can be found in [64] and [87].

Example 3.5: We now consider a convergent nozzle, where g(x) = C'z for some

C < 0. In this case, 2§ = 1/2 is still a root of M(x0) =0 in (3.69), but now from (3.68)

we calculate Ag(1/2) as
Mo(1/2) ~ —2a%e e /2 _ ghe M0 (3.70)

Thus, the stability of " = 1/2 is determined by the values of 1, d and C'. For example,

if £ = —1 and d = a/2, then the shock layer located at z{' = I is stable (unstable)

if ¢ > —2a* (C < —2a?). It g = —1 and C' = —2a*, then it is stable (unstable) if
d> /2 (d < af2). These stability results are fully confirmed by the numerical results
displayed in Table 4 and Table 5. In these tables, we give the asymptotic and numerical
results for xo() in the second and third columns respectively, and the error representing
the difference between the asymptotic and numerical results in the fourth column. The
asymptotic results agree with the numerical ones to at least five decimal places. From
these tables we observe that when the equilibrium zg' = % is unstable, the shock layer
will move away from ' = % to somewhere else, but not to the endpoints x = 0,1. This
suggests the existence of other stable equilibria for (3.69). For this example, it is easy to
1

show that when z{’ = £ is unstable (i.e., Ao(3) > 0), then M(zo) has exactly two more

zeros that are symmetric about zf = % They correspond to two stable equilibrium
values for zo(t). When 2" = 1 is stable, then it is the only zero of M(xo). This analysis
is illustrated by plotting M(x¢) in Fig. 3.5.

Therefore, there exists either one or two stable steady-state solutions of the form

u ~ ugle ' (x — 27')] along the convergent nozzle we are considering. The analysis of [34]
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t zo(t)(asy.) | xo(t)(num.) error
7466667 <101 | 212682157 | 212676330 | .582x10~°
5013333102 | 236113084 | .236101298 | .117x10~*
3754166 x10% | 285065717 | .285059434 | .628x107°
3879890 10% | .352169342 | 352167776 | .156x107°
2523277x10° | 404404274 | .404403590 | .683 <1076
A144176 %108 | 465271835 | 465271222 | .613x107°
3061509 %107 | 489469516 | 489468465 | .105x107°
8745862107 | .496984897 | .496983905 | .991x107°
8407137108 | .499999999 | .499999999 | -.204x10~°
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Table 3.4a: Example 3.5: A comparison of the asymptotic and numerical shock layer
trajectories for (3.5) with f(u) = v?/2 and ¢'(z) = —1.9. Here ¢ = 0.03, p = —1,
d=0.5, =1 and 2§ = 0.205712482.

for the inviscid problem

U + uuy — c(x)u =0, (3.71)

proved that standing shock waves in a convergent nozzle (i.e. ¢(x) > 0 for all ) or in
the convergent portion of a convergent-divergent nozzle are unstable. Our example has
shown that the effect of viscosity and the boundary conditions in (3.5) allows for the
existence of a stable standing wave in a convergent nozzle when ¢(x) is replaced by the
form in (3.7).

Example 3.6: Next, we let @« = 1 and consider a convergent-divergent nozzle

where g(z) = (z — a)?, and the constant a satisfies 1 < ¢ < 1. Now the algebraic
equation 2¢(xg) — ¢(0) — ¢g(1) = 0 has one root * € (0,a). If we choose d so that
0 < d < a*, then it is easy to see that for ¢ — 0 the function M (x¢) in (3.69) will have
three zeros z(}, x(, and a3}, satisfying 0 < ) < 2g, < @ and a < 2g; < 1. These
zeros are illustrated in Fig. 3.6 for the parameter values ¢ = 0.04, o =1, g = —1,

d = 0.171244968 and ¢ = 0.8. From the discussion following Corollary 3.4, it is clear

that zg, and z(, are stable equilibria and that g, is unstable. In Fig. 3.7, we verify
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t zo(t)(asy.) | xo(t)(num.) error
22988174 x10% | 494997385 | .494997382 | .346x1078
1725713 %106 | 494847418 | 494847363 | .548x 1077
4950768 %107 | .489521616 | 489522250 | -.633x107°
7862987 %107 | .486497884 | .486497678 | .206x107°
9804466 %107 | .485206361 | .485204630 | .173x107°
1465816108 | 483947388 | .483944120 | .326x107°
1659964 %108 | .483811685 | .483908521 | .316x107°
2242408 <108 | .483701958 | .483699155 | .280x10~°
.8697827x10% | 483689263 | .483686417 | .284x107°

Table 3.4b: Example 3.5: A comparison of the asymptotic and numerical shock layer
trajectories for (3.5) with f(u) = w?/2 and ¢'(z) = —2.1. Here ¢ = 0.03, g = —1,
d=0.5, =1 and 2§ = 0.494999996.

the stability of «{; and g3 by plotting the numerical solution to (3.5) at different times
for two initial values . The two initial values z§ in Fig. 3.7a and Fig. 3.7b are so close

that there is only one unstable equilibrium for x¢(#) between them, which is x7} .

Example 3.7: Finally, we give an example to illustrate that it is possible to con-

struct a nozzle geometry to guarantee an arbitrary number of steady state internal
layer solutions. We take g(x) = sin(nwa) where n is a positive integer. Let 27 = ¢/n for

i = 0,..,n be the i-th zero of g(x). In this case, the differential equation (3.62) for xo(t)

becomes

n27r452

62

!

Ty~ [e—s—lal’o _ e—s_la(l—l’o)] _ gﬂe—s_ldc sin(m?'l‘o) , C =1 —

+.... (372)

It is easy to see if d is chosen such that 0 < d < 7, then for ¢ — 0, there exists
N =n+ (n— 1)mod2 equilibria z3., ¢ = 1,2,..., N. Among these equilibria, x{} for
t=1,3,..., N are stable and the rest are unstable. Note that if d > 27, then the number
of the equilibria may be less than N .

We now implement a numerical experiment to illustrate this analysis. We choose

n=4 a=1, p =0, d =019 and ¢ = 0.02. In this case, we have three stable
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x10° x10°
! ! ! ! ! ! !

-5 L L L L L L L -5 L L L L L L L
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

(a) (b)

Figure 3.5: Example 3.5: Plots of Mj(x¢) = oz(—e_s_la(l_“’o) + 6_5_1”0) (solid lines)
and My (xo) = 5“6_5_1d0(:1;0 — %) (dash lines) versus @, where o = 1, ¢ = 0.03, p = —1
and C' = —2. The intersection(s) of My(xo) and Ms(xq) is the zero(s) of M(xo). (a)
d =0.55: we have X\g(3) < 0, and the only equilibrium ' = 1 is stable; (b) d = 0.45:
we have three zeros of M(xq) given by x{; ~ 0.3902, x{, = 0.5 and aj; ~ 0.6097. Here

235 = 0.5 1s unstable and the rest are stable.

equilibria at zg; ~ 0.2044, 275 = 0.5 and 27 ~ 0.7955, and two unstable equilibria
at x(y &~ 0.2440 and x{;, ~ 0.7559, which we compute from (3.72) using a two-term
expansion for (. We choose the initial values #3 = 0.24 and z§ = 0.25 when computing
the numerical solution to (3.5). The asymptotic and numerical results are shown in
Tables 6a and 6b. These tables also display the asymptotic result (3.72) with both the
one-term and the two-term expansions for (. The error terms in the fourth and sixth
columns represent the difference between the asymptotic and numerical results. Since
the higher order terms in ¢ in (3.72) are significant, we observe from Table 6 that a
two-term expansion for 5 is certainly needed to obtain close quantitative agreement with
the numerical results for x¢(¢). Finally, in Fig. 3.8 we plot the shock layer evolution
corresponding to the data in Table 6, which shows that 27; and x(} are stable equilibria,

while 2} is an unstable equilibrium.
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t zo(t)(asy.) | xo(t)(num.) error
.1270000x10% | 216714648 | 216706869 | .777x107°
AT765000%x 102 | 235153498 | .235142419 | .110x10~*
3321062 x10% | 281796238 | 281790749 | .548x10~°
1271548 x10% | .320208345 | .320206583 | .176x107°
1494813 x10° | .392954938 | .392955455 | -.517x107¢
1429582106 | 457781790 | 457782599 | -.808x10~°
5020859106 | 488305699 | .488306411 | -.712x107°
1608928 %107 | .499637394 | .499637666 | -.271x107°
5455925108 | 500000000 | .499999999 | .582x10~°
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Table 3.5a: Example 3.5: A comparison of the asymptotic and numerical shock layer
trajectories for (3.5) with f(u) = u*/2 and ¢'(z) = —2. Heree = 0.03, p = —1, d = 0.55,

a=1 and ) = 0.205646164 .

t zo(t)(asy.) | xo(t)(num.) error
3895482 % 10° | 494967222 | .494967221 | .946x 10~
7976059 10% | .494295191 | 494295125 | .658x 1077
3291548 x10° | .491389800 | .491389298 | .502x1076
8279433 x10° | .480483494 | .480480756 | .273x107°
1491332106 | .445338979 | .445330373 | .860x 1075
1690847 <108 | 429122276 | .429116007 | .626x107°
.2249490 <106 | .395546688 | .395541088 | .560x107°
3072491 <106 | .390353158 | .390348796 | .436x107°
2905679100 | .390284916 | .390281195 | .372x1075

Table 3.5b: Example 3.5: A comparison of the asymptotic and numerical shock layer
trajectories for (3.5) with f(u) = u*/2 and ¢'(z) = —2. Heree = 0.03, p = —1, d = 0.45,

a=1 and ) = 0.494999513 .
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_1 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.6: Example 3.6: Plots of Mj(x¢) = oz(—e_s_la(l_“’o) + 6_5_1”0) (solid lines)
and My(xzo) = 5“6_5_1d((:1;0 —a)? — %[aQ + (1 — a)?] + 7?a™%c*/3) versus x¢, where
e=0.04, a =08, a=1, g =—1 and d = 0.1712.... The intersections of M;(zo) and
Ms(x0) , which are the zeros of M (), are a2 ~ 0.1286, 205 ~ 0.2077, and ag; ~ 0.9122.

Here the equilibrium a(}, is unstable, and the other two are stable.
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Figure 3.7: Example 3.6: Plots of the numerical solutions to (3.5) at different times

with f(u) = v*/2 and g¢(x)

d=10.1712...

(v — a)?, where ¢ = 0.04, « = 0.8, = 1, p = —1,

and initial condition ug(x) = us[e™!(x

0

moves towards left; (b) z§ = 0.25: shock layer moves towards right.

)]. (a) 2§ = 0.2: shock layer

t zo(t)(num.) | (3.72) 1-term errorl (3.72) 2-term error?
1133545x10° | .239718703 239610666 -.108x1073 239726721 .801x107°
5512484 x10° | 238497828 237864222 -.633x1073 238543918 A460x1071
1135106 %10 | 236387221 2347724657 -.166x1072 236505117 117x1073
2580156 x10% | 228182044 222194243 -.598 %1072 228599741 A17x1073
A255100x10* | .214978265 206459679 -.851x1072 215700702 722%x1073
6061413 x10%* | .206403299 201517420 - 4881072 206902782 499%x1073
8360356 x10* | 204368747 200989316 -.337x1072 204672929 3041073
.1606592x10° | .204187662 200966538 -.322x1072 204461290 273x1073
6239090 x10° | .204187642 200966538 -.322x1072 204461248 273x1073

Table 3.6a: Example 3.7: A comparison of the asymptotic and numerical shock layer
trajectories for (3.5) with f(u) = v?/2 and g(z) = sin(4rz). Here ¢ = 0.02, o = 1,
p=0,d=0.19 and 2§ = 0.239991525 .
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t zo(t)(num.) | (3.72) 1-term errorl (3.72) 2-term error?
19389256 x 10% | 250384983 | .250386816 | .183x107° | .250384917 | -.664x1077
5804413 x10° | 1252677437 | 252755503 | .780x107* | 252672223 | -.521x107°
1650848 x10* | 1261513735 | .262616867 | .110x1072 | .261438939 | -.748x10~*
3207804 x10* | .296383726 | .306534177 | .101x10~! | .295721003 |-.662x107°
4969111 x10* | .398142523 | .424482167 | .263x10~! | .396102752 | -.204x1072
6545529 x 10* | 469337132 | .481526941 | .121x107"' | .468203669 | -.113x1072
9610786 x10* | .497704786 | .498961715 | .125x1072 | .497567194 |-.137x1073
1570298 x10° | .499987099 | .499996630 | .953x107° | .499985677 | -.142x107°
6945472 % 10° ) ) B573x107? ) 274 %1072

Table 3.6b: Example 3.7: A comparison of the asymptotic and numerical shock layer
trajectories for (3.5) with f(u) = v?/2 and g(z) = sin(4rz). Here ¢ = 0.02, o = 1,
p=0,d=0.19 and zJ = 0.250022546 .

— t=0 —t=0

-~ t=.30778e4 — - 1=.43027e4
0.5

— - t=.46542e4 — - t=.55385e4

t>.28723e5 t>.26794e5

-05}F

-15 L L L L L L L L L 15 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) (b)

Figure 3.8: Example 3.7: Plots of the numerical solutions to (3.5) at different times
with f(u) = u?/2 and g(x) = sin(4rz), where ¢ = 0.02, a = 1, v = 0, d = 0.19 and
initial condition ug(x) = us[e ™' (x — 29)]. (a) a3 = 0.24: shock layer moves towards left;

(b) x5 = 0.25: shock layer moves towards right.



Chapter 4

Phase Separation Models in One Spatial Dimension

4.1 The Viscous Cahn-Hilliard Equation

Numerous attempts have been made in recent years to explain the dynamics of phase
separation in binary alloys. When a binary alloy, composed of species A and B, is
prepared in a state of isothermal equilibrium at a temperature T}, greater than the critical
temperature T, the alloy’s composition is spatially uniform with the concentration u,
of B taking the constant value w,,. Suppose now that the two component system is
quenched (rapidly cooled) to a uniform temperature T3 less that T.. Then the cooled
system will separate itself out into a coexistence of two phases, one phase rich in species
A and the other rich in B.

A rough description of the behavior of such systems can be provided by consideration
of the Gibbs free energy G/(u,T'), which is single welled for T' > T, but has the double
well form shown in Figure 4.1 for T < T.. The interval (u?,uj) is called the spinodal
interval, where v} and uj are spinodal points and are defined by the conditions 882762; <0
in (uf,u;) and 882762; > 0 outside the interval [uZ, u;]. Near the two local minima are the
binodal values wu, and wu,, which are the two unique tangent points of the curve with the
supporting tangent. A state u is said to be stable, metastable or unstable according to
whether it corresponds to a homogeneous state which is a global minimizer, local but not

global minimizer, or local non-minimizer respectively, for the free energy functional

F(u) = /QG(u(:zj),T)dx , (4.1)
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at constant average concentrations (i.e., [ udz is constant). For GG as in Fig.4.1, the
spinodal region u? < u < wuj is unstable, states satisfying u < u, or u > uy, are stable, and
the remaining intervals are metastable. A mixture, initially with a homogeneous spatial
composition taking values in the spinodal interval, will quickly evolve from this unstable
state to an equilibrium configuration consisting of two coexisting phases with a spatial
pattern composed of “grains” rich in either A or B. Such an evolution is called phase
separation or spinodal decomposition. Then, a coarsening or ripening process ensues on
a much slower time scale, as the system losses some of the grains, tending toward more

stable patterns.

G

Figure 4.1: Free energy of the system below the critical temperature.

A naive attempt to extrapolate the dynamics of phase separation from the energy

minimization of (4.1) would lead to a backward-forward heat equation
u,=— A Q(u), with Q(u) = —G'(u). (4.2)

Here the diffusion coefficient @)'(u) is positive in the spinodal interval. Thus, the initial

value problem 1is classically ill-posed from the mathematical viewpoint. Experimental
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data (cf. [46]) showed the importance of gradient energy effects to the phase separation
and coarsening process. One way to obtain a physically justifiable regularization for
equation (4.2) is due to Cahn and Hilliard [24] who included the energy contributions in
their definition of the free energy. They modified the free energy G/(u) of the system by

adding a gradient term ¢| 57 u]*/2 to get

N

Glw) = Glu)+ S| vl (43)

Here ¢ — 0 is the interfacial energy parameter, Gi(u) is called the homogeneous free
energy and G(u) is known as the Landau-Ginzburg free energy. Given that the mass u,,
is fixed, the Cahn-Hilliard model for the equilibrium description of phase separation is

characterized by minimizing the total energy viz.

2
min [(u) = /Q {G(u) + %| \V/ u|2} dx , subject to /Qu(:zj)dx = u,|Q] . (4.4)

The kinetics of phase separation can be modeled using non-equilibrium thermodynam-
ics. For an isothermal binary mixture, the mass flux J is proportional to the gradient of

the intrinsic chemical potential p,
J=-M VA (45)

where M > 0 denotes the mobility and the chemical potential y is the variational deriva-
tive of the energy I(u):
of

,u:%:—ezAu—Q(u) . (4.6)

Then, from the diffusion equation, u; + 5/ - J = 0, assuming the mobility M = 1, one

obtains the Cahn-Hilliard equation
uy = N—e* Au—Q(u)) . (4.7)

When the viscous stresses arising from the relative fluxes of the two components are taken

into account, the diffusion equation as suggested in [78] gets modified to u; = A(p+yuy),
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where the term ~yu; represents the viscous effects in the mixture. Taking the chemical
potential g as in (4.6), Novick-Cohen [78] obtained the following viscous Cahn-Hilliard

equation describing the dynamics of viscous first order phase transitions
up = A(—&* Au— Qu) + yuy) . (4.8)

Here the terms —e* A? u and v /A u; represent a gradient energy regularization and a
viscous stress regularization, respectively, of the ill-posed backward-forward heat equation

(4.2). Boundary conditions may be taken to be of Neumann type
n-v(Qu)—&e* Au+yu) =0 (noflux), m-yu =0 (variational) , (4.9)

where n is the outward unit normal to df2. Another model for phase separation, which
was introduced by Rubinstein and Sternberg [85] as a particular limit of the viscous

Cahn-Hilliard equation, is the constrained (non-local) Allen-Cahn equation

up = gQAu—l—Q(u)—ﬁ/QQ(u)dx,:L'EQ,t>O, (4.10a)
du
n =0, z€00Q,t>0. (4.10Db)

Note that these phase separation models (4.7), (4.8) and (4.10) can also be recovered
from the phase-field equations which arise in the modeling of solidification of super-cooled
liquids (cf. [8], [20], [21], [81]) in particular parameter limits.

There has been much recent work analyzing the dynamics associated with the phase
separation models (4.7), (4.8) and (4.10). These studies have revealed that the phe-
nomenon of phase separation and coarsening process in a binary alloy does occur in
these models. In one dimensional setting, the dynamics associated with these models
typically proceeds in two stages when ¢ is small: a relatively fast stage during which a

pattern of internal layers is formed from initial data in an O(1) time interval, followed by
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an exponentially slow coarsening process during which the internal layers move exponen-
tially slowly in time until they collapse together in pairs. For the Cahn-Hilliard equation,
the existence of metastable internal layer motion has been proved in [2], [9], [15], [17], [32],
[76], etc. and an explicit characterization of metastability is given in [15] (see also [35])
using a dynamical system approach. In [88] and [86] an asymptotic projection method
is used to obtain similar explicit results for the viscous Cahn-Hilliard equation and the
constrained Allen-Cahn equation, respectively. In a multi-dimensional setting, dynamic
metastability can also occur for the phase separation models that conserve mass. For
the Cahn-Hilliard equation, the motion of radially symmetric internal layer solutions,
referred to in [3] as bubble solutions, has been shown to exhibit metastable behavior in
[3] and [4]. In [112] the projection method is employed to give an explicit asymptotic
description of metastable bubble motion for the constrained Allen-Cahn equation.

In this chapter, one of our main goals is to study the similarities and differences of
the dynamics of an n-layer (n > 2) metastable pattern associated with the three phase
separation models in one spatial dimension mentioned above and to compare our results
with those of Bates and Xun [15] and Eyre [35]. The second goal is to use a hybrid
algorithm based on our asymptotic information and the conservation of mass condition
to characterize the entire coarsening process for these models. To do so, we consider the

viscous Cahn-Hilliard equation in the following form

(1—a)uy = —(*Upp + Qu) — akUL)py, —1<x <1, t>0, (4.11a)

ur(£1,1) = Upee(£1,8) =0;  u(x,0) = up(x), (4.11b)

where u(x,t) is the concentration of one of the two components in the alloy. Here x > 0
is the viscous parameter, ¢ — 0 is the interfacial energy parameter, o is a homotopy
parameter satisfying 0 < o < 1, and Q(u) = —G'(u) where G(u) is a double-well

potential with wells of equal depth. More specifically, we assume that Q(u) has exactly
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three zeros on the interval [s_, s, ], located at u = s_ < 0, v =0 and v = s, > 0, with

Q'(sx) <0, Q(0)>0, G(sx)=0.

Prototypical is Q(u) = 2(u — u?), for which sy = +1 and G(u) = (1 — v?)?/2. When
0 < a < 1, the mass 2u,, = [, u(z,t)dz is conserved for (4.11). We assume below that
the initial value wg(x) is such that s_ < w,, < sy. The importance of the homotopy
parameter « is to distinguish three cases: (i) a =0, (ii)) 0 < o < 1, & # 0 and (iii)
a =1, k #0. In case (i), equation (4.11) reduces to the Cahn-Hilliard equation
for spinodal decomposition. In case (iii), we can integrate the right side of (4.11a)
twice, explicitly impose a mass constraint, and re-scale ¢ to obtain the constrained Allen-
Cahn equation. Case (ii) corresponds to the viscous Cahn-Hilliard equation. Thus, the
homotopy parameter « enables us to understand how three different models are related
by studying only (4.11).

The organization of the chapter is as follows. In §4.2, we describe the asymptotic
differential algebraic equations (DAEs) of motion, derived in [88], for the locations of the
internal layers corresponding to an n-layer metastable pattern for (4.11), and compare
these asymptotic results with corresponding full numerical results. In §4.3, by decoupling
this system of DAEs, we study the metastable dynamics associated with the three phase
separation models and compare our results for the Cahn-Hilliard equation with those
in [15] and [35]. Finally, in §4.4, we propose a hybrid algorithms based on this DAE
system and an interface realignment technique to simulate the entire coarsening process

associated with these models.

4.2 Dynamics of an n-layer Metastable Pattern

In [88], a system of differential-algebraic equations that describes the metastable dynam-

ics of an n-layer pattern for (4.11) was derived by applying the projection method. From
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this DAE system, the metastable behavior associated with patterns of two internal layers
was obtained and the asymptotic results for the layer dynamics were shown to compare
very favorably with corresponding full numerical results. However, for a general pattern
having n > 2 internal layers, this DAE system was not verified in [88] nor were general
properties of the layer dynamics obtained. Here we first present the main asymptotic
results in [88] and then supplement it with some numerical results.

Let us(z) be the unique heteroclinic orbit connecting s_ and s, which satisfies

ul(2)+ Qus(2)] =0, —oco<z<oo; us(0)=0; ul(z)=0; (4.12a)

vy z

Ug(2) ~ sy —age™™° ) 2 — Foo; uy(z) ~ s +aet?) 2 — —o0. (4.12b)

The positive constant vy and ay in (4.12b) are defined by

vy = [—Q/(si)]% , logay =log(+sy)+ /Osi ([25(’;71)]% + p —181) dn . (4.13)

For j = 0,1,...,n, we define {; = (—1)&,, where & = %1 specifies the orientation of
the internal layer closest to # = —1. For j = 0,1,...,n, the triplet (a;,v;,s;) is defined
by
(@5.05,5) = (a4,v4,84), when ¢ =—1, (4.14)
(a—,v_,s_), when ¢ =+1.
Then an n-layer metastable pattern for (4.11) shown in Figure 4.2 is represented by the

approximate form u ~ u*(x), where

n—1
() = (@520, 21, ) = waleT o0 — o)+ Y (w7 (2 — )] — s5) - (415)
7=1
Here x; = x;(t) for j = 0,1,...,n — 1 and x;_1(¢) < x;(f). Since us(0) = 0, the
curves @ = x;(t), ¢ = 0,1,...,n — 1, closely determine the locations of the zeros of

u(x,t) during the slow evolution. The internal layer distances d; = d;(t) are given by

d; =x;—x;_1 for j =0,1,...,n, where we have introduced the fictitious layers x_; and
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x, by x_y = =2 — 29 and x, = 2 — x,_1 . The layers are assumed to be well-separated
in the sense that d;(t) = O(1) ase — 0 for j =0,1,...,n. A lengthy calculation in [88]
leads to the following results for the metastable dynamics in the viscous Cahn-Hilliard

equation (4.11).

1 T T T T T T

0.8 b

0.6 b

0.4r b

0.2 b

1 | | | | | | | | |
-1 -08 -06 -04 -02 0 02 04 06 08 1
T-1  Zo 1 T3 3 Tp—2 Tn—1 T,

Figure 4.2: An n-layer metastable pattern for the viscous Cahn-Hilliard equation (4.11).

Proposition 4.1 (From [88]) For ¢ — 0, an n-layer metastable pattern for (4.11) with
widely separated layers is represented by (4.15) , where x;(t), ¢ =0,1,....,n—1, and an

unknown function o.(t) satisfy the explicit DAFE system

n—1

arfBe i+ (1—a) Y dwbyp ~ obj(sy —s_)+H;, j=0,1,...,n—1,(416a)
k=0

Zsk(xk—xk_l) ~ m—en(f-—0.). (4.16b)

k=0

Here the exponentially weak forces H; for j =0,1,....n—1 and the coupling coefficients
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bir for 3,k =0,1,....n—1 are defined by

] ]
H;, = 2(a§+11/]2+16 ‘ ”J“d”l—a?l/?e ‘ ”Jdﬂ) ) (4.17a)

e = | 11 (w60 (e — )] — s2) (=650 = 2)] = 5301 ) do,  (1.17D)

where
0

= [ e, 0= [

) —sddy 0= [ lse—umldy . (418)
To validate the DAE system (4.16) numerically, we compare the asymptotic and nu-
merical results for the internal layer locations z; corresponding to an n-layer metastable

pattern for (4.11) with Q(u) = 2(u — v?) and x = 1. For this form of Q(u), the

heteroclinic orbit constants needed in (4.16) and (4.17) can be obtained analytically as
ai:2, l/:|::27 Si:il, ﬂ:4/3, 0i210g2.

In the comparisons below, we chose different values of « resulting in different types
of phase separation models and took u(z,0) = w*(x;2),...,2%_,) as the initial data
for (4.11). Here u* is the n-layer metastable pattern (4.15) and 29 € (—=1,1),j =
0,1,....,n — 1 are initial zeros of . To eliminate any unwanted transient effects, we
computed the full numerical solution to (4.11) with these initial data until ¢ = ¢, where
t. was some positive constant, and reset :1;? to be the zeros of the numerical approximation
u” at timet = ¢.. With these new values of :1;? as its initial data, the DAE system (4.16)
was solved numerically and results were compared with corresponding full numerical
results.

We solved the DAE system (4.16) using the implicit-ODE solver LSODI (cf. [48]).
This solver requires the initial values of o.(t), x;(t) for ¢ = 0,...,n — 1 and their

derivatives. For given initial values of x;, for i = 0,...,n—1, in our computations, o.(0)

was determined by the asymptotic estimate (4.25b) or (4.34) below, &.(0) was set to zero
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and @;(0) were obtained by solving (4.16a) which was treated as a linear system of ;.
In addition, instead of calculating the coefficients b; in (4.16a) precisely from (4.17a),
we used (4.24) below to evaluate them.

To compute numerical solutions to the evolution problem (4.11), we used the trans-
verse method of lines approach introduced in §1.3, with a slight modification. Since the
right hand side of (4.11) contains the derivative u;, it is convenient to rewrite (4.11) in

the form

aku; = e+ Qu)—o,  uy(E£l,t) =0, (4.19a)

(1 —a)uy = —04p, o.(£1,t) =0, (4.19b)

with u(x,0) = ug(x). Then, by replacing the time derivatives u; in (4.19) by the backward
differential formulas (BDF), this problem can be converted into a set of boundary value
problems with two unknowns w, and o, at each time step. These boundary value
problems were solved by applying COLSYS [6]. This procedure works for 0 < o < 1,
since (4.19) is not well-defined when o = 1 unless a mass constraint is imposed. For the

special case o« = 1, we computed solutions to the constrained Allen-Cahn equation

1 1

Uy = €2u1’x + Q(U) - 5 1

Qu)dr , u(£1,1) =0, u(z,0) = ug(x). (4.20)
After u; 1s discretized by the BDF schemes, we obtain

> Bttnm(a) = B (ez(un)m + Q(uy) — %/11 Q(un)d:z;) (1) =0, (4.21)

where k and f3; are same as in §1.3. Since these boundary value problems are non-local,

we introduce the new variables 2= (21,..., z4)7 with

1 z 1
2= Uy, Z2= (Up)p, 23 = / Quy)dr , z4 = / Q(un)dx// Quy)dx . (4.22)
-1 -1 -1
With these new variables, (4.21) is reduced to a local problem

2o=F(2), z(—1)=2(1) = 24(~1) =0, z(1)=1, (4.23)
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where nonlinear function F' : R* — R*' can be easily derived from (4.21) and (4.22).
Again, COLSYS was used to solve the boundary value problem (4.23) at each time step.

It has been clear from [15] and [88] that for the phase separation models specified
by (4.11), the closest layers will move towards each other at an extremely slow rate and
eventually undergo a collapse phase, leaving behind a metastable pattern with two fewer
layers. In Tables 4.1 — 4.3, we give a comparison between the asymptotic and numerical
results for the evolution of these collapse layers for three types of phase separation models
corresponding to a = 0, % and 1. In these tables, the initial values of z; for j =
0,...,n —1 with n = 6 were chosen to be near —0.7, —0.4, —0.1, 0.15, 0.5 and 0.8,
so the second and third columns compare the numerical and asymptotic elapsed time
necessary for the distance ds to be given by the values in the first column. These elapsed
times are found to agree to more than three significant digits. In Figure 4.3 — 4.5, we plot
the full numerical solutions at different time to (4.11) corresponding to the parameter
values used for Table 4.1 — 4.3, respectively. The behavior of the solution during the
metastable phase and the collapse phase shown in these figures will be discussed in the

next few sections.

1

0.8 0.8

0.6 0.6
0.4r 0.4r
0.2r 0.2r
ok

-0.21 -0.21

-0.4r -0.4r

— =0 —— t=4796.41
_o6H- - t=aapar

- - 1=4763.1

o6l |~ t=4796.43
— - t=4796.44

081 tzafose -0.8r =4796.50

-1 7 T 1\
-1 -08 -06 -04 -02

I I
0.8 1 -1 -08 -06 0.8 1

Figure 4.3: Plot of the numerical solution to the Cahn-Hilliard equation at different times
corresponding to the parameter values given in Table 4.1.
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ds

t(num.)

t(asy.)

0.2499637
0.2490057
0.2457128
0.2353902
0.2221106
0.2049384
0.1503616
0.1028643
0.0697038

0.11805135
0.31421876
0.12120381
0.30076767
0.40610571
0.45628835
0.47902868
0.47961152
0.47963267

x 10?
x10°
x10%
x10%
x10%
x10%
x10%
x10%
x10%

0.11805099
0.31423049
0.12121263
0.30080758
0.40615483
0.45634494
0.47909376
0.47967273
0.47971114

x 10?
x10°
x10%
x10%
x10%
x10%
x10%
x10%
x10%

Table 4.1: A comparison of the asymptotic and numerical results for ¢t = #(ds) for the
Cahn-Hilliard equation (o = 0) with ¢ = 0.03. The initial values of x; for j = 0,...,5
were -0.7000000,-0.3999999, -0.0999999, 0.1499999, 0.4999999, 0.8000000.

4.3 Properties of the Metastable Dynamics

The DAE system (4.16) provides a quantitative characterization of metastable internal

layer motion for the viscous Cahn-Hilliard equation (4.11). However, it is not easily

analyzed and thus gives little analytical information about the metastable dynamics

unless the system is asymptotically simplified. In this section, we decouple the DAE

system (4.16) and then study this reduced system to reveal the analytical behavior of

the metastable dynamics associated with the three phase separation models.

4.3.1

Simplification of the DAE System (4.16)

In [88], the coefficients b;;, defined by (4.17b) have been evaluated asymptotically as

b]‘k

bjj

~

~

—(=1)"**M(z; — ap) (s —5_)°
—e (1= (=1)**) (s = 52)(0- = 04) , for j >k,

—ep, bip=0(e°), forj<k.

(4.24)
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ds

t(num.)

t(asy.)

0.2499080
0.2457898
0.2354383
0.2268495
0.2068120
0.1687788
0.1484624
0.1016572
0.0545736

0.10960657
0.45001770
0.11982005
0.15722918
0.20064226
0.22184970
0.22420676
0.22539916
0.22551925

x 10?
x10°
x10%
x10%
x10%
x10%
x10%
x10%
x10%

0.10947517
0.45013814
0.11986815
0.15731235
0.20078002
0.22204742
0.22442599
0.22564691
0.22576482

x 10?
x10°
x10%
x10%
x10%
x10%
x10%
x10%
x10%
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Table 4.2: A comparison of the asymptotic and numerical results for ¢t = #(ds) for the
viscous Cahn-Hilliard equation (o = 0.5) with ¢ = 0.04. The initial values of x; for
J=0,...,5 were -0.7000000,-0.3999999, -0.0999996,, 0.1499996, 0.5000000, 0.8000000.
Here p = [7 [s4 —us(n)][us(n)—s_]dn and cis a positive constant that is proportional to
the distance xy — x;. If we write the left side of (4.16a) in the matrix form B, then the
matrix B is lower triangular to within exponentially small terms. Moreover,if 0 < o < 1,
then the entries in the matrix B that are below the main diagonal are O(e) smaller than
the entries along the main diagonal. In this case, a simplified form of the DAE system
(4.16) was obtained in [88], although only a preliminary description of the metastable
behavior was given there. In addition, numerical verification of the asymptotic results in
[88] are needed to make the work in [88] complete.

For 0 < a < 1, we follow [88] and introduce the decoupled form of (4.16). Since
B is a diagonal matrix to within O(e) terms, the system (4.16) can be asymptotically

decoupled for this range of « to obtain

n—1
akBi; ~ e&m sy — s )TN (sk—spp)Hy +eH;, j=0,....n—1,(4.25a)
k=0
n—1
oo ~ nl(sy —s_)7? Z(Sk — 41 ) Hy, . (4.25b)
k=0

This form is an exact reformulation of (4.16) when o = 1. Let n > 2 and label the
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ds

t(num.)

t(asy.)

0.2499500
0.2494742
0.2450228
0.2370225
0.2201322
0.2058314
0.1635920
0.1171353
0.0497620

0.11561895
0.12103537
0.10128793
0.21550525
0.34372605
0.39218631
0.43265906
0.43761505
0.43813902

x 10?
x10°
x10%
x10%
x10%
x10%
x10%
x10%
x10%

0.11528481
0.12102348
0.10130617
0.21555446
0.34383206
0.39233456
0.43291128
0.43793961
0.43846704

x 10?
x10°
x10%
x10%
x10%
x10%
x10%
x10%
x10%

Table 4.3: A comparison of the asymptotic and numerical results for ¢t = #(ds) for the
constrained Allen-Cahn equation (o = 1) with ¢ = 0.04. The initial values of z; for
j=0,....5 were -0.7000000,-0.4000000, -0.0999997, 0.1499996, 0.5000000, 0.8000000.

initial layer separations d;(0) for j = 0,...,n by d} = d;(0). Assume that there is some
J with J # 0 and J # n such that v;dj < v;d? for all j =0,...,n and j # J. Then,
from (4.25a), it is easy to show that the distance d;(t) between x; and x;_; satisfies the

approximate evolution equation

4e 2 _e—1y,
B (D) e a0 = >0 (1.26)
Integrating (4.26), we obtain
1—2/n]7t ) o
Byt ~ &+ toglt — 1)), 1, = 2P _ 3/ M et (4.27)
vy 4asvy

Thus, dj = O(e) when t & t,. Since the right hand sides of (4.25a) do not depend on «,
it is clear that the viscous Cahn-Hilliard equation (0 < o < 1 ) has the same metastable
dynamics as the constrained Allen-Cahn equation (o = 1 ) except for the scale of the
collapse time.

For the Cahn-Hilliard equation (o = 0), an asymptotic simplification of (4.16) is not so

straightforward. Using (4.24), adding up two consecutive ODEs in (4.16a), differentiating
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- -1=2418.6

28533

)

-0.5r

o = ;
-1 -08

Figure 4.4: Plot of the numerical solution to the viscous Cahn-Hilliard equation at dif-

ferent times corresponding to the parameter values given in Table 4.2.

(4.16b) and performing certain rescalings, we can obtain

where pp and r; are defined by, for 0 < &k <n —2,

" (Tr41 — wi) (54 — 52)2

7
)
; (Hr + Hi1)
2
)

(Thg1 — k) (54 — 5-)?

e upyodigo

2 2 -
o (whpr — ) (s —s)? (ak+2yk+2€

1 — Elo —E&lo 0 0 0 0 i’o

—1 1-— gl —EU1 0 0 0 j/’l

1 —1 1-— El2 —EU 0 0 i’z
(=" —(=1)" (=) —(=1)" 1= yy —Epn—2 Tnog
1 ~1 1 ~1 (1)t (=1)" i

2.2 —e"lyd
— agvpe - ROk

o
1

L)

T'n—2

0
(4.28)

(4.29a)

). (4.29b)

From the first three rows of (4.28), it is not hard to derive that &g ~ epo@y + 79,

$q ~ i +ro+ 1 and @y ~ epads + 11+ 1o+ epr(ro+ 1) . In general, we can use the
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15 T T T T T T T T T 15
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— t=0,
~05[ |- - t=2856.0
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Figure 4.5: Plot of the numerical solution to the constrained Allen-Cahn equation at
different times corresponding to the parameter values given in Table 4.3.

induction principle to show that

i i1
Ty~ Ep;Tip + ZeJ_k (ri—t + ) T pu s for 1 <j<n-—2. (4.30)
k=1 =k

Multiplying the last row of (4.28) by (—1)"' and adding it to the second to last row,
we have
_g,un—Qj;n—2 + (1 - 5#71—2)1‘;71—1 ~ Tp—2, (431)

which can be combined with (4.30) to yield

n—2 n—2
o1~ 3" e I e (4.32)
k=0 [=k+1

Substituting (4.32) into (4.30), we can obtain &; for j =n—2,...,0, recursively. Specif-
ically, the internal layer locations x;(¢) for j =0,...,n — 1 satisfy

n—2 ] k-1 -1 ) J-1
i}j ~ Z €k_]7“k H Hi + Z@J_I_krk H Hi (433)
k=j =5 k=0 I=k+1

where i and ry are given in (4.29). From (4.16a) and (4.33) with j = 0, it is straight-

forward to get the following estimate for o.(t)

1 n—2 k-1
oo ————————— (Ho +ep Z eFry H ,u;) ) (4.34)

Solsy —s-) k=0 1=0
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Since pry = pr(Hyk + Hy1), we can neglect some higher order terms in this estimate to

obtain

Te ™~ —

50(3+ . Z & Hk H Hi . (435)

As a partial check on our simplified results, the estimates for o. in (4.25b), (4.34)
and (4.35) were evaluated for various sets of internal layer locations and were found to
compare very favorably with corresponding numerical results computed directly from

(4.16) using LSODI. The results are shown in Table 4.4 and 4.5.

(20, 21,22, 3) o, (num.) o, (4.34) o, (4.35)
(—0.9,—-0.4,0,0.6) 0.336661 x 1077 0.336380 x 1077 0.329785 x 1077
(—0.4,-0.1,0.1,0.5) | —0.117992 x 10~% | —0.109940 x 105 | —0.104577 » 10~
(—0.5, —0.2,0.2,0.8) —0.149581 x 1071 | —0.149597 x 1071 | —0.144732 x 10~
(—0.6,—0.2,0.2,0.6) | —0.697625 x 1071 | —0.696720 x 10716 | —0.679726 x 10716
(—0.7,-0.3,0.25,0.6) | —0.729543 x 10716 | —0.725283 x 10716 | —0.707289 x 10716

Table 4.4: A comparison of the asymptotic and numerical results for o. for the
Cahn-Hilliard equation (o = 0) with ¢ = 0.02 and Q(u) = 2(u — v*). Here n = 4
and & =1.

(20, x1, 29, 3) o, (num.) o, (4.25b)
(—0.5,0.1,0.1,05) | 0.127273 x 10°* | 0.129567 x 10~
(—0.7,-0.3,0,0.5) 0.162085 x 10~ | 0.164682 x 10~7
(—0.5,-0.1,0.3,0.7) —0.213520 x 1071% | —0.209847 x 10~1©
(—0.75,-0.25,0.2,0.75) | 0.738668 x 10~12 0.747657 x 10712

Table 4.5: A comparison of the asymptotic and numerical results for o. for the viscous
Cahn-Hilliard equation (o = 1) with e = 0.03 and Q(u) = 2(u — v”). Here n =4 and
50 — 1
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4.3.2 Comparisons of the Internal Layer Dynamics

Using the decoupled ODE systems (4.25) and (4.33), we are able to study analytically
the metastable behavior associated with the viscous Cahn-Hilliard equation (4.11). We
first consider the Cahn-Hilliard equation (o = 0). Let n > 4 in (4.33) and label the
initial layer separation d;(0) for j = 0,...,n by d? = d;(0). Assume that for some J
with 2 < J < n — 2, we have that v;dY < l/]‘d? for all j = 0,...,n and j # J. Then,

from (4.29b), it is easy to show that

2

dyj_1(s4 —s_)

2. 2 —6_1lljd] 2 2. 2 —6_1lljd]
Sajvye . Ty~ — ~ajvye , (4.36)

dypa(sy —s2)

rj—a ~

and the rest of the r;’s are exponentially small, compared with r;_; and r;. Now, from

(4.33), we have
i}J_QNTJ_2>O, i}J_lNTJ_2>O, i}JNTJ<0, i}J+1NTJ<O. (437)

This means that the interfaces of the annihilating interval (x;_1, 2 ) will approach each
other and eventually disappear, while the nearest neighboring intervals move together in

an asymptotically rigid way. For the layers that are left of x;_5 and right of z .1, we
can find from (4.33) that

J-3

Gk o~ 7y ] o~ OE e iy >0, k> 2, (4.38a)
I=J—k
J4+E-1 .
i}J+k ~ €k_1TJ H Hi ~ —O(@k_le_s yjd]) <0 5 k Z 1. (438b)
=J+1

Therefore, we expect that the layers x4 and xj_3 (x; and x741) will move at the same
speed and direction to the right (left), and that the other layers on the left (right) will
move in the same direction as xy_; and xj_s (x; and x;41), but at a successive slower
speed, i.e., xj_k, with ky > 3 (xy4k, with ks > 2) is O(e) slower than its right neighbor

Tj_g, 41 (left neighbor @ j4k,-1). This analysis has been verified numerically (e.g., see
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Figure 4.3). From (4.36) and (4.37), it is easy to show that the distance d;(t) between

ry and zj_y satisfies

2 1
df] -~ _magy?je—s vydy (d}il + d;—}—l) , dJ(O) = dg > 0. (439)
_I_ - —

Since the distances dj_; and dj41 are constant to within O(e) terms before the layer

collapse, we integrate (4.39) to obtain

-1 _1\—1
e = (BT BT

9
dy(t) ~ d + V—Jlog (1—t/ty), t,= 2077

Here t; is the approximate collapse time for the Cahn-Hilliard equation.

We now return to study the motion of the layers characterized by the ODE system
(4.25a) for the viscous Cahn-Hilliard equation with 0 < o < 1. We note that in this
case the metastable dynamics is insensitive to the value of a except for the time scale
of the motion. Let n > 3 and assume that there is some J with 1 < J < n —1
such that v;dj < v;d for all j = 0,...,n and j # J. Then, from (4.17a), we have
Hy~—Hj {1~ —Zagl/?je_s_l”df, while the other H;’s are exponentially small compared

with Hy and Hjy_1. Thus, using (4.25a), it is easy to obtain that

akfBiyj_y ~ eHj4[1—=2/n]>0; arpaj~—cHy 11 —2/n]<0; (4.41a)

2 2
akBig; ~ f(—wﬂj_l, i>2; mﬂgz;mwf(—wﬂj_l, i >1. (4.41D)

Therefore, when 0 < o <1, as the collapse layers move toward each other, the other layers
move asymptotically at speeds of a same order as the collapse layers and in alternate left
and right directions (see Figure 4.4 and 4.5). In other words, the mass of the disappearing
“island” will be consumed evenly by the rest of the “islands” by expanding their widths.
This has been verified by the full numerical results in Figure 4.4 — 4.6.

Now let’s analyze the motion of internal layers with collapse layers close to the bound-

aries. For the Cahn-Hilliard equation, let n > 3 and assume that for / =0,1,n—1 or n,
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we have that I/Jdg<l/]‘d? forall j=0,...,nand y # J. If J=n—1, then
2 2 2

T3 ~~ a’_v:_,e
dn_2(8_|_—8_)2 n—1"n—1

—1
€ wp_1dn_1

will be dominant, as the other r;’s are exponentially small compared with r,_5. Thus,

we obtain from (4.33) that

n—4

i; o~ " s [ >0, for0<j<n—4, (4.42a)
=3

Lpz ™~ Tp_z > 0, Tpg ~ Thog > 0, Tyl ~ Efbp—2Tp_3 > 0. (442b)

Using these asymptotic estimates, it follows that all layers will move to the right, but
their speeds are different: while the layers x,_3 and x,,_5 are shifting at the same speed
rn—3 , other layers are almost static. This is verified in Figure 4.6(a). In Figure 4.6-
4.8, we plot the full numerical solutions to the viscous Cahn-Hilliard equation (4.11) for
the metastable phase in parts (a), (¢) and (e) and for the collapse phase in parts (b),

(d) and (f). In each of these figures, we plot the solutions at different times for (4.11)

corresponding to a =0, a = ; and o = 1. From (4.42b), we have that

. 2 -1
dn_ ~ 2 2 —e T Up—1dn—1 4.43
1 o a(sg — S_)Qan—lyn—le ) ( )

and d,,_, is constant to within O(e) terms before the annihilation. Hence, we can integrate
(4.43) to obtain

£ e(sy —s_)?d>_, 1, o
log (1 —t/t,), t,= n=2 e Tmadiy (444
o (1 -1/t et (1.44)

dn—l(t) ~ dg—l +

Next, consider the Cahn-Hilliard equation with J = n. Then
2

Tr_g ~ 5 a’lvie
dp—1(s4 — s_)

—e v, dn

will be dominant in this case. From (4.33), it is easy to show that

n—3

i o~ " [[m>0, for 0 <j<n-—3, (4.45a)
=3

Tpeo ™~ Tp_g > 0, Tyl ~ Tpea > 0. (445b)
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Thus, the layers x,,_5 and x,,_; will move to the right at the same speed r,_,, while other
layers will move in the same direction, but at a much slower speed. This is verified in
Figure 4.7(a). In a similar way as in the derivation of (4.44), we can estimate the length

of the annihilating interval (x,,x,-1) as

e(s+ = sy a0 (4.46)

dult) ~ %+ —log (1 —1/t) . 1,
Vp

4a?v?
For J =0or J =1, it is clear by symmetry that the metastable behavior of a pattern
of n internal layers is similar to that for the case J =n or J =n — 1, respectively.

For the viscous Cahn-Hilliard equation (4.11) with 0 < a <1, let n > 2 and assume
that for J = 0 or J = n, we have that v;d} < l/]‘d? for all j = 0,...,n and j # J.
When J = n, we have from (4.17a) that H,_y ~ 24?12 e~ 'mdn and that other H;’s are

exponentially small compared with H,_; . Thus, (4.25a) reduces to

1 ,
akfBinq ~e(l — —)Hpo1, arfi; ~ E(—1)”_]Hn_1 , for0<j<n—2. (447)
n n

This means that =,y will collapse at the boundary and other layers will be shifting at
the same speed and at opposite directions. As a results, the change of the mass due to
the annihilation of z,_; will be compensated by the remaining layers evenly. This is

verified in Figure 4.7(c) and (e). Using d, = —2i, ; and (4.47), we have

1—-1 -1
d)~ d + log(1—tfty), 1, = 2B YnT s (1.48)

Un, da2v3

The dynamics is similar when J = 0.

Next, we consider the dynamics of an n-layer metastable pattern which has two
smallest neighboring “islands”. Specifically, we assume that n > 4 and there is some
J with 2 < J < n — 2 such that v;d% = I/J+1d9_|_1 < l/]‘d? for all y = 0,...,n and
J # J,J+ 1. For the sake of simplicity, we let Q)(u) be an odd nonlinearity for which

ar =a_ =a and vy = v_ = v. In this case, dj = dj,; and thus we further assume that
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d=dy~ dsy as e — 0 during the metastable phase. Defining H = 2a?12 e~ *? | we
obtain from (4.16) that Hy_y ~ H and Hj4; ~ —H , and that the remaining H;’s are
asymptotically negligible. From now on in this section, we use the notation f = o'(g),
by which we mean that f is exponentially small with respect to ¢ as ¢ — 0. For the
viscous Cahn-Hilliard equation with 0 < o < 1, we can find from (4.25) that 0. = o'(H)
and

akfijqy~eHj_1 >0, akfijq~ecHj <0, &;=0(H), (4.49)
for j #J —1,J 4 1. Thus, we can claim that during the metastable phase, the layers
xj_1 and x 31 move towards each other, while the other layers, including the interface
xy joining the smallest intervals (zy_1,2s) and (2,2 41), remains stationary in time to

within exponentially small precision. For the Cahn-Hilliard equation (o = 0), it is easy

to show from (4.29b) and (4.33) that

1 1
_ ~ H _ _ ~ H —
rj—2 dy1(54 —5_)? J-1, rJy-1 dr(sy —s_)? J-15
1 1
"y dJ-I-l(S-I- _ S_)2 J+1 TJ+1 dJ_|_2(S+ _ S_)2 J+1 ( )

r; = o(H), forj4J+1,J+2.

Therefore, the internal layer locations x;(¢) satisfy

Ty_g ~ TJ_2>0, i}J_lNTJ_l—I—TJ_2>O,
i}J_|_2 ~ TJ_|_1<0, i}J+1NTJ—|—TJ_|_1<O, (4.51)
#; = O(eH), fory£J+1,J+2.

Here we have to assume dj_, = dJ,, to ensure that our former assumption dy ~ dj1
is valid. Therefore, the internal layers whose motion is most noticeable during the
metastable phase are xj_5, ;-1 that move to the right and x;.1, 719 that move to
the left. The other layers remain stationary to within at least O(e) precision. In ad-

dition, from (4.51), it is clear that x;1; moves at a higher speed than does xj13. The
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numerical evidence supporting the analysis given above can be observed in Figure 4.8(a),

(c) and (e).

4.3.3 Other Explicit ODE Systems

There are some other systems of ODEs for the motion of the internal layers for the Cahn-
Hilliard equation (cf. [15] and [35]) and it is of interest to determine if these seemingly
different systems are consistent with (4.16). In our notation, the ODE system (4.36) in

[15] can be rewritten as
gj~ri+rio, forl<j<n—2, @g~rg, Tpo1~Tp2, (4.52)

where s are defined in (4.29b). Comparing this system with (4.33), we find that if
the “higher order terms” in (4.33) (i.e., Y5=7, e ry, Hf:_jl o+ ST ey, H{:—;_I_l ()
are omitted, then our ODE system (4.33) reduces to (4.52). However, it is clear that
these “higher order terms” may be significantly greater than the remaining rs. For
example, suppose J with 2 < J < n —2 (n > 4) is the index of a unique annihilating
interval. Then our asymptotic formula (4.38) indicates that the internal layer x; for
Jg=dJ—kwithk>2and j = J+k with £ > 1 will move at an algebraic slower
speed than the annihilating layers. On the other hand, from (4.52), the corresponding
internal layers x; will satisfy @; = o'(iy), i.e., they move exponentially slower than the
collapsing layers. Thus, the results in [15] provide useful information for the motion
of layers for the annihilating interval and its two nearest neighborhoods, but may be
inaccurate for other layers. Similarly, for the case corresponding to Figure 4.7(a) and
(b), where the annihilating interval is (2,1, ,), the system (4.52) yields 2/, = o'(r,—1)
for 5 < n — 3. In contrast, our ODE system (4.33) gives (4.45a) instead. Here we
illustrate that (4.45a) is correct by giving the full numerical results for the locations

xj, their deviations ¢; = x; — 2 and the ratios p; = ¢;/e;11 at two different times in
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Table 4.6. From (4.45), we expect that the ratio p; with 7 < n — 3 should be O(¢),
and the deviation e; should satisfy O(s""?/¢,_) for j <n —3. This is exactly what is
obtained in Table 4.6.

Eyre [35] also derived an explicit ODE system using a collocation technique, but we
can’t find any similarities between his results and our asymptotic and full numerical

results.

t = 140.22 t = 156.02
Z; € Pi Z; € Pi
-.800000 | .000000 - -.800000 | .000000 | -

-.499998 | .000002 | .05 | -.499995 | .000005 | .04
-.099961 | .000039 | .05 | -.099861 | .000139 | .05
200718 | .000718 | .04 | .202578 | .002578 | .04
617812 | .017812 | 1.04 | .671481 | .071481 | .81
917114 | 017114 987852 | .087852

O = W o — O~

Table 4.6: Numerical results (using TMOL) for the Cahn-Hilliard equation (o = 0) at
two different times corresponding to the parameter values used for Figure 4.7(a) and
(b). Here, x; for j = 0,...,5 are the locations of internal layers, ¢; = x; — :1;? and

pi = €j/ejt.

4.4 Simulation of the Entire Coarsening Process

The DAE system (4.16) is not valid when two internal layers, or an internal layer and a
wall, become closely separately by an amount of O(e). In particular, when two approach-
ing internal layers become closely separated, the layers will undergo a strong local inter-
action which leads to an annihilation of two internal layers, leaving behind a metastable
pattern with two fewer layers. This strong local interaction of two approaching inter-
nal layers during annihilation is very complicated (see Figure 4.3-4.8) and will not be

discussed. Instead, we will find an approximation of the interface realignment after an
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annihilation, using the explicit characterization of motion of the layers in the previous
section. Here interface realignment refers to an algorithm that maps interface locations
before an annihilation to locations immediately after an annihilation. Since an annihila-
tion event takes place on a much faster time scale than metastable dynamics, we believe
that incorporating the interface realignment into the metastable evolution described by
the DAE system (4.16) could provide, approximately, a complete quantitative description
of the coarsening process associated with the phase separation models.

In our discussion below, we assume that at any time, the interval having the least
length is unique, i.e., there is some J with 0 < J < n such that v;d; < v;d; for all
J=0,...,nand y # J . Another assumption is that the solution u(x,t) is a piecewise
constant with v = s, or u = s_ during the metastable phase. This is reasonable when
¢ is small since the interfaces of the metastable pattern (4.15) have length O(e). Under
this assumption, the mass constraint is equivalent to the length conservation conditions
that both 3=, 14 di and 3, eyen d; are constant. Here and only here the interval lengths
do and d,, represent xg + 1 and 1 — x,,_1, respectively. Since the interval with the least
length annihilates first, the layers ;_; and x; will be referred to as the left and right
annihilating interfaces, while the layers z;_5 and z ;41 will be referred to as the left
and right nearest interfaces. During the annihilation of the .J-th interval, the interface
number decreases by two (one if J = 0 or n). Let the locations of the resulting interfaces
immediately after the annihilation be denoted by #’ for j =0,...,J -2, J+1,...,n—1,
where we assume that the set {0,...,J —2} ({J+1,...,n — 1}) is empty if J < 2
(J >n—2).

We now describe how the interface realignment is realized. First, consider the viscous
Cahn-Hilliard equation with 0 < o < 1, and assume J(# 0,n) is the index of the only
annihilating interval. It has been found in §4.3 that the annihilating interfaces approach

each other and eventually coalesce and that the other interfaces move at the same speed
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and in opposite directions. So the new locations of the internal layers after an annihilation

can be approximated by
di=a (=176, =0, =1, jET -1, (4.53)

where 6 > 0 is a constant. Using the length conservation conditions, we have 6 =
dy/(n—2). If J =0 or n, then the new internal layer locations after an annihilation will

approximately be
, 1
ah=a;+ (=176, j=0,...,n—1, jAA==)T, (4.54)

with 6 = dj/2(n —1).

For the Cahn-Hilliard equation, the asymptotic analysis and numerical experiments in
§4.3 indicate that when 2 < .J <n —2 (n > 4), the nearest interfaces x;_5 and ;41 will
move at the same speeds and directions as the corresponding annihilating interfaces = y_,
and xy, while all other interfaces remain unchanged to within at least O(e) precision.

Thus, the new locations of the interfaces can be approximately represented by

2, = wj_o+ddy, ey =al  +di +dyg, (4.55a)

o= ay, J=0,....J=3,J+2,....n—1. (4.55b)

Here 6 > 0 is a constant to be determined. To find an approximation for é, we compare
the speeds of the nearest interfaces during the metastable phase. It is clear from (4.37)
that the annihilating interfaces move towards each other, each being followed by its
nearest interface moving at approximately the same speed. The ratio of the speeds of
these two rigid motions is equal to the inverse ratio of the distances between the pairs of

the nearest and annihilating interfaces. So, we obtain

i
dy_1 +dyi1
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Note that if dj_y = djiq, then 6 = % and the length of the annihilated interval is
redistributed equally to its neighboring intervals. The above arguments are limited to
the annihilating intervals that are separated from the boundary by at least two intervals.
When the annihilating interfaces are near the boundary, it is not hard to see from (4.42)
and (4.45) that if J = n — 1 or n, then the interface(s) z; for J —1 < j < n —1 will
eventually disappear. Since, during this annihilation, the interfaces z; for 0 <y < .J —2
are almost unchanged, the new location of the left nearest interface = ;_, can be calculated

using the length conservation conditions. Specifically, we have

Ty = Tpoy —dpy, i=wx;, for j=0,....,n—4, if J=n—1,(4.56a)

! = 1—-d,_1, e =wx;, for j=0,....n =3, if J=n. (4.56b)

The interface realignment for J = 0 or 1 can be implemented similarly. Our discussions
here are motivated by the work of Eyre (see [35]) for the Cahn-Hilliard equation. Com-
paring (4.55) and (4.56) with the corresponding equations for the interface motion during
annihilation in [35], we find they are essentially equivalent.

We now present a procedure, that is conceived to be able to approximately describe
the entire coarsening process associated with the phase separation models. We first
integrate the DAE system (4.16) until a collapse criterion is satisfied. Then we use the
interface realignment technique to determine the new locations of the interfaces after
an annihilation, and with these new interface locations as initial values, we return to
integrate the DAE system again. We repeat the procedure above for each successive
collapse event until a stable equilibrium state with only one internal layer is achieved.
Using this procedure, we calculate and plot the interface locations as a function of time for
the Cahn-Hilliard equation and the constrained Allen-Cahn equation in Figure 4.9. This
figure shows the entire coarsening process associated with the phase separation models

and the two distinct time scales of the fast annihilation and the metastable interface
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motion.

Next, we explain a prominent phenomenon that we can observe from Figure 4.3-4.8.
These figures show that for the viscous Cahn-Hilliard equation with 0 < a <1, the tops
of the non-collapse “islands” and the bottoms of the non-collapse “valleys” will deviate
some visible distance vertically from the original positions u ~ si. This deviation,
however, does not occur for the Cahn-Hilliard equation (o = 0) during the coarsening
process. By examining the version (4.19) of the viscous Cahn-Hilliard equation, we
conjecture that this behavior may result from the different signs and values of o(x,t)
for different models. Specifically, we can expect from the graph for Q(u) that if o <
0 (o > 0), then the top of an “island” and the bottom of an “valley” will go up (down),
and furthermore, the deviated distance will depend on the value of 0. Now we derive
asymptotic expressions for o(x,t) for different models to interpret this difference.

It has been shown in [88] that we can decompose o(x,1) as

n—1

O'(l',t) = (1 - Oé) Z j;]Mj(x; l’]‘) + Uc(t) ) (457)
7=0
where M; defined by M; = [, (u*[e¢7'€;(n — ;)] — s;) dn satisfies
M;~0 ife<az;, M;~¢&(sy—s_)(x—a;)+e0-—04) ifax>uay, (4.58)

and o.(1) is asymptotically determined by (4.16). For the viscous Cahn-Hilliard equation
with 0 < o < 1, let n > 3 and assume that there is some J with 1 < .J < n —1 such
that v;d < l/]‘d? forall y =0,...,n and 7 # J. Then, the dominant H;’s can be found

from (4.17a) to be
Hy_y ~2d30% e "% =1 and  Hy~—H. (4.59)
Thus, using (4.25b), we can estimate o, as

o.~28n sy —s ) H.
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For x < xq, it is obvious from (4.57) and (4.58) that o ~ o.. For @ > x¢, we calculate

o(x,t), using (4.41), (4.57) and (4.58), to obtain
o=o0.[l4+ (1 —a)O(e)] .

Therefore, for the constrained Allen-Cahn equation (o = 1), 0 = o.(t) is constant and
its sign depends only on &;. If £; < 0, then the non-collapse “islands” and “valleys”
will shift up, and otherwise, they will shift down. For the viscous Cahn-Hilliard equation
with 0 < a < 1, o(a,t) differs from o.(¢) by only a relative error O(¢) and thus, the
movement of these “islands” and “valleys” are the same as for the constrained Allen-
Cahn equation. This analysis agrees with the numerical results shown in Figures 4.4-4.8.
For example, in Figures 4.4 and 4.5, we have that £; =1 with J =3 and o, is positive.
Thus, the metastable pattern on the non-collapse intervals seems to be lifted up during
the coarsening process.

For the Cahn-Hilliard equation, let n > 4 and assume that for some J with 2 < .J <
n — 2, we have v;d5 < l/]‘d? forall j =0,...,n and j # J. Then, the dominant H,’s are
also Hy_1 and Hj satisfying (4.59). From (4.35), we have

1 J—2

J-1 .
7&)(8—'_ _ 3_)6 H(l €/LJ_1) ll;[o Hi - (460)

Te ™~ —

For ap_1 < & < a2 with 0 < k < J —1, we can derive from (4.38a), (4.57) and (4.58)

that
E—1 J—2

73 s — s ) — ) T o
7=0

=5

which gives

o~ —EHETFLO (4.61)

where ' > 0 is a constant. For x;_1 < x < xp with J —1 < k& < J+ 1, it can be

similarly obtained that ¢ ~ ¢; H C', for some C' > 0, which yields that the sign of o
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determined only by £ is the same on the collapse interval and its two nearest neighbors.
By symmetry, when z;,_1 < o < 2, J+1 < k < n, o can be naturally expected to
satisfy

o~ —&HET O (4.62)

where C' > 0. We notice from (4.61) and (4.62) that the sign of o changes when = crosses
the interface @), (k # J—1,.J). More specifically, if & = 1 (—1) with & # J , which means
that u ~ s_ (s4) in the k-th interval (z_1, 1), then since o is negative (positive) on
this interval, the bottom (top) of the corresponding “valley” (“island”) will move towards
v = 0 during the metastable phase and then move back to its original position at the end
of the collapse phase. Therefore, the metastable pattern will contract vertically and will
not go beyond v = —1 and v = 1. In addition, from (4.61) and (4.62), we believe that
during the collapse phase, o will be O(1) only on the collapse interval and its left and
right nearest neighbors, but will be at most O(s/=*=1) (O(e*771)) on the k-th interval
with & < J—1 (k> J+1). So we anticipate that the changes of these tops and bottoms
are virtually indistinguishable when they are far away from the collapse interval. The
full numerical results in Figures 4.3, 4.6 and 4.7 show that the solution u(x,?) to the
Cahn-Hilliard equation satisfies —1 < v < 1 and the local maximums or minimums on
all intervals except the collapse interval and its nearest neighbor(s) are almost unchanged

during both the metastable phase and the collapse phase.
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Figure 4.6: Plots of the full numerical solutions (using TMOL) to the viscous

Cahn-Hilliard equation (4.11) with Q(u) = 2(u — v?) and &

1 at different times

for various values of a and . Here the initial data u(x,0) = u*(x; 2°) with ° = (—0.8,

—0.5, —0.1, 0.2, 0.6, 0.8) and u* defined by (4.15).
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Figure 4.7: Plots of the full numerical solutions (using TMOL) to the viscous
Cahn-Hilliard equation (4.11) with Q(u) 2(u — u?) and & 1 at different times
for various values of a and . Here the initial data u(z,0) = v*(z;2%) with £° = (—0.8,

—0.5, —0.1, 0.2, 0.6, 0.9) and u* defined by (4.15).
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Figure 4.8: Plots of the full numerical solutions (using TMOL) to the viscous
Cahn-Hilliard equation (4.11) with Q(u) = 2(u — v®) and & = 1 at different times
for various values of a and . Here the initial data u(z,0) = v*(z;2%) with £° = (—0.8,

—0.4, —0.1, 0.15, 0.4, 0.7) and u* defined by (4.15).
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Chapter 5

Numerical Analysis of an Exponentially Ill-Conditioned BVP

In this chapter we give a preliminary approach for the numerical analysis of an expo-
nentially ill-conditioned boundary value problem. Although we do not study how to
overcome the difficulties in numerical computations of singularly perturbed problems
exhibiting dynamic metastability in a general setting, the detailed analysis of a particu-
lar example shows the numerical difficulties encountered in computing these metastable

problems.

5.1 Introduction

There have been numerous computational experiments of exponentially ill-conditioned
problems such as the viscous shock problem, the exit problem and various phase separa-
tion models (cf. [32], [33], [76], [62], [67], [9], [8], [86], [87], [88], etc.). However, little is
known of the rigorous nature concerning the convergence and stability of the numerical
schemes that compute metastable behavior. As shown in the previous sections, the solu-
tion u(x) of an exponentially ill-conditioned boundary value problem, say L.u = f, can
be exponentially sensitive to all the data in the equation; for example, to the right-hand
side f. Suppose L. is the linearization operator of L. and Ao is its principal eigenvalue
which is usually exponentially small. Then, a perturbation Af to f may cause an ex-
ponentially large change Awu in u, of the order O(A\;" A f). Since a good discretization
scheme often inherits the properties of the corresponding continuous problem such as the

sensitivity and stability, it is natural to expect that a truncation error which is usually
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much greater than the exponentially small eigenvalue A\g may result in such a large error
in the numerical solution u”(z) that renders u”"(z) to be highly inaccurate. To overcome
this obstacle, in consequence, one has to require that the truncation error be smaller than
the smallest eigenvalue Ao, which is exponentially small. Thus high-order or spectral-type
numerical methods are preferred for solving these problems. A high-order integral equa-
tion scheme was implemented to compute boundary value resonance solutions in [67] and
a Galerkin spectral method was employed to solve the Cahn-Hilliard equation in [9] and
the viscous Cahn-Hilliard equation in [8]. Another approach to overcome the difficulties
in solving exponentially ill-conditioned problems is preconditioning; for example, the vis-
cous shock problem and the (constrained) Allen-Cahn equation were successfully studied
numerically using a WKB formulation which leads to well-conditioned problems in [87]
and [86], respectively.

On the other hand, we notice that many conventional schemes have also been widely
used in computing solutions to exponentially ill-conditioned problems and they indeed
work rather successfully. Elliott and French [32] studied the metastable dynamics for
the Cahn-Hilliard Equation by applying the Galerkin finite element method; the classic
finite difference schemes were employed to compute the solutions of the Burgers’ equation
in [62] and the viscous Cahn-Hilliard equation in [88]; Carr and Pego [26] obtained
very nice pictures of the evolution of the solutions to the unconstrained Allen-Cahn
equation by using the subroutine LSODI with the methods of lines, taking 801 grid points.
The success of application of these traditional numerical methods with moderate mesh
sizes gives rise to some queries about the heuristic inference in the previous paragraph.
Specifically, is it a necessary condition for a numerical method when solving a very ill-
conditioned problem that the truncation error be less than the order of the principal
eigenvalue \g of the corresponding linearized elliptic operator? Can we apply the classic

finite difference schemes and other numerical methods with moderate mesh sizes to solve



Chapter 5. Numerical Analysis of an Exponentially IlI-Conditioned BVP 126

the ill-conditioned problems, instead of using high-order methods or preconditioning? If
so, what difficulties will possibly occur in our computations and which type of schemes
may be preferred for these problems? Moreover, can we give a rigorous proof of the
convergence of a numerical method for an exponentially ill-conditioned problem?

Our goal is to shed some light on the above questions and provide some general guid-
ance or principles in designing numerical schemes for metastable problems by studying
the following singularly perturbed boundary value resonance problem (cf. [1], [31], [60],
[67], [74], [113])

Lou = —cup +2"Mp(z)u, =0, —-1<z<l, (5.1a)

u(=1) = Ay, u(l)=A,. (5.1b)

Here ¢ > 0 is a small parameter, m > 0 is an integer and p(z) > 0 is an even smooth func-
tion. This equation corresponds to the equilibrium problem of the exit problem studied
in [79] and the references therein. One of the reasons to choose (5.1) as a model problem
is that it is linear and its solution can be explicitly written in terms of a quadrature.
This makes it easy to perform computations and comparisons. The second reason is that
without a stability estimate, this equation still satisfies a comparison principle which is
crucial for proving the convergence of a finite difference scheme. Despite its simplicity,
we hope that the qualitative results revealed from this model equation are also applica-
ble to other nonlinear metastable problems, for which a rigorous convergence analysis is
typically not easy.

Although there have been some error bounds for the finite element Galerkin method
for the Cahn-Hilliard equation in [33] and [32], they do not guarantee any accuracy unless
we use extremely small step size h. In fact, the constant €' in error bounds C'h” obtained
there, where r is the convergence order, is dependent on the small parameter ¢ and may

be very large. Another loss of accuracy comes from the regularity assumption on the



Chapter 5. Numerical Analysis of an Exponentially IlI-Conditioned BVP 127

solution u and its derivatives. However, the solutions u to the metastable problems are
often associated with sharp boundary layers and/or internal layers where u will possess
large derivatives in  as ¢ — 0. Therefore, in this section, we will give an analysis of
uniform convergence introduced below.

A discretization method is called uniformly convergent (with respect to ¢) of order r
in the norm || - ||, if there exists a constant C' that is independent of ¢ and &, such that

for all sufficiently small & (independent of ¢),
| u—u"|[<Ch" . (5.2)

Here u" denotes a numerical solution obtained using this method. For illustration, we

consider the singularly perturbed convection diffusion equation
eu'+u' =0, 0<z<l; w0)=0, u(l)=1, (5.3)

whose solution u = (1 — e™/%)/(1 — /%) has a boundary layer at = 0. The upwind
scheme (see (5.24) below) on an equidistant mesh [" = {z; = ¢h;s = 0,1,..., N, Nh =1}

yields the numerical solution u" = (u;) with

£
e+ h’

ui=(1=p)(1=p")7",  where p= (5.4)

If the solution of (5.3) had bounded derivatives independent of ¢, a classical convergence
theory for finite difference methods (i.e., consistency+stability = convergence) could

guarantee the first order convergence of the upwind scheme. However, this convergence

is not uniform in that (5.2) does not hold. In fact, when h = &, comparing u; =

and u(xq) = 1—e , we can find that u(ay) —uy — %— e £ 0 as h — 0, and

1—e &

consequently, the numerical solution u" does not converge to u(z) as A — 0 uniformly.
There are basically two approaches to construct uniformly convergent finite differ-

ence schemes for the following singularly perturbed convection diffusion equation with
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Dirichlet boundary conditions
—eUgy + b(2)uy + d(x)u = flz), 0<a<l, (5.5)

under the assumptions that b(x) > by > 0 (i.e., no turning points), and d(x) > 0. One
of the approaches is the exponentially fitting technique first introduced by Allen and
Southwell [5] and II'in [55], which yields the Il'in-type scheme. Through introducing an
artificial diffusion by means of a fitting factor that enforces the scheme to be exactly
satisfied by the boundary layer function in the leading order asymptotic expansion of the
solution, the nodal convergence that is uniform with respect to the small parameter ¢ was
proved in [55] and [58]. Since discretization methods on equidistant meshes may have
difficulties in representing the solutions that change abruptly in layers, an alternative
approach to yield uniform convergence is the use of highly non-equidistant meshes (see
[106], [107], [95] and [90] for details). One of the necessary steps in proving the uniform
convergence of the numerical approaches above is to establish a uniform stability estimate

for the discretization operator L", such as
lu;| < C(m]aX|Lhuj| + |uo| + |un|), fori=0,1,...,N, (5.6)

where (' is a constant independent of € and k. Unfortunately, this type of uniform stabil-
ity estimate obviously does not hold for any discretization of our model problem (5.1) due
to its exponential ill-conditioning. To our knowledge, no numerical analysis addressing
the uniform convergence of any finite difference scheme or finite element method for any
metastable problem has been performed, even for the “simplest” model (5.1).

In this chapter, we will study the uniform convergence of three finite difference
schemes for (5.1): the upwind scheme, the coupled scheme and the 11’in scheme . This
study is not only significant in understanding the finite difference schemes (and other nu-

merical methods) applied to metastable problems, but is also interesting from the point



Chapter 5. Numerical Analysis of an Exponentially IlI-Conditioned BVP 129

of numerical analysis: it provides an example showing that a uniform stability estimate is
not a necessary condition for uniform convergence. The chapter is organized as follows.
In the rest of this section, we estimate the derivatives of solutions u of (5.1) and we
decompose u into a singular part and a less singular part. Using these analytical results,
in §5.2, we construct an appropriate mesh generating function and three finite difference
schemes and analyze the uniform convergence of these schemes on the corresponding
meshes. Finally, in §5.3, we present some numerical results for (5.1) and discuss the

numerical computation of some related exponentially ill-conditioned problems.

5.1.1 The Analytical Behavior of Solutions

To study the uniform convergence of our difference approximations, it is necessary to
investigate the analytical behavior of the solution to (5.1). The problem (5.1) is expo-

nentially ill-conditioned, so it is obvious that the typical stability inequality
v |[C | Lv |, forall vwithov(—1)=v(1)=0

does not hold, where (' is a constant independent of ¢ . However, the comparison principle
is still valid (cf. [82]), and its counterparts for difference schemes play an indispensable

role in establishing uniform convergence.

Lemma 5.1 (Comparison principle) Suppose that v and w are functions in C*(—1,1)N
C[0,1] that satisfy
Lov(z) < Lew(x),  forallx € (—1,1)

and v(—1) <w(—1), v(1) < w(l). Then we have

v(x) <w(x), forall x €]0,1].



Chapter 5. Numerical Analysis of an Exponentially IlI-Conditioned BVP 130

Although (5.1) has a turning point at @ = 0, nothing special happens near this point.

For ¢ — 0, its leading order boundary layer approximation has the form (cf. [79])

u(x) ~u(x) =

1 14z 11—z
(Aot + A1) + (A = A) (7878 —e7857) (5.7)

DN | —

where ¢ = p(+1). To estimate the error in our discretization methods, we shall require
bounds for the derivatives of the solution u to (5.1) that are valid for all small positive
¢. To analyze the II'in scheme we need more precise information on the behavior of the

solution. These results are contained in Lemmas 5.2 and 5.3.
Lemma 5.2 Let u(x) be the solution of (5.1). Then we have
| u(z) [<max {| Ay |, A1 [} (5.8)

and

| u(l)(l') |§ M&":_i (6 ‘|‘ e—'y ) ) fO?“ 1= 1727 ceee (59)

Here ~y is any constant satisfying 0 < v < minele) o the constant M > 0 is independent

Im+2
of €.

Proof. The proof of (5.8) is obvious by applying Lemma 5.1 with v = +u and the barrier

function w = max{| A1 |,| 41 |}. Integrating (5.1) twice yields

()= LA 4 ALy 4 Ly - a e T (5.10)

e =T A-y T 5 ‘lfoes—lpss '
where p(s) = J5 *"T'p(t)dt . We can show that for 2*"+* > ¢

/0 es—lﬁ(s)ds ~ mes—lﬁ(w) 7 as & — 0. (511)

Since p(x) — p(1) = —%ﬂs—j_%(l — 2¥™+2) where sg € (z,1), the derivate of u satisfies

u(z) = (A1 (=) / ds < Me e P@)=3(D)

p(s0) —1

22 +2
Me e mezs (-2

IA

(5.12)
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It we assume v is a constant satisfying 0 < v < %, then (5.9) follows with ¢ = 1.

For ¢ > 1, the result is obtained by induction and repeated differentiation of (5.1). O

Lemma 5.3 Let u(x) be the solution of (5.1). Then it can be decomposed into u(x) =

u*(x) 4+ v(x), where a°(x) is given in (5.7) and v(x) satisfies

[0 O() | M7 (e +e75) L fori=0,1,... 4. (5.13)

Here the constant M > 0 is independent of ¢ and ~ is any constant satisfying 0 < v <

min p(z)
2m+2

Proof. Since (5.1) is symmetric about @ = 0, we prove (5.13) on 0 < « < 1 only. By
symmetry, we have u(0) = L(A_; 4+ A;). So from (5.1) and (5.7), we find that v = v —°

satisfies

Lov = —cvp+p(lv, =f, O<az<l, (5.14a)

(0) = v(l) =0, (5.14b)

14z

f= (p(l) - Q?QMHP(:")) u' = (Ar = A (p(1))7 e7tem DT (5.15)

Given constants k, ¢ and ¢; satistying £ > 0 and ¢ > ¢; > 0, we have the=t < Ce? for

all t > 0, where C is a constant. Thus, using Lemma 5.2, we can show that
| FO(2) |< Me™ie™ =, fori=0,1,...,4, (5.16)

where ~ is any constant satisfying 0 < v < %%l_ Since L. (exp (—ye™ (1 —x))) =

v(p(1) = v)e texp(—ve~ (1 — )), we may choose M large enough so that

b(x) = Mee=="0=5) 4,
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satisfies L.¢ > 0, ¢(0) > 0, &(1) > 0. From the comparison principle, the inequality
(5.13) holds for : = 0.
We now integrate (5.14) twice and obtain

1 1
o(z) = vy(2) + K1 + Ks / e~ P00 gy (5.17)

xr

where
o) =~ | L, 2(x) = / e e =) gy (5.18)

From (5.9) and (5.15),
| 2(z) |< Me™ve (172 (5.19)

Hence | v,(x) |< Me. The constants K; and Ky must satisfy

1 1
Ky =0, vp(0) + Kz/ em= PO — 0

0

Since [y exp(—e~'p(1)(1 —t))dt > Me, we have | K, |< M . Therefore, from (5.17) and

(5.19), we find that (5.13) holds with ¢ = 1. The proof of (5.13) for ¢ > 1 follows by
induction and repeated differentiation of (5.14). O

Note that throughout this chapter we use M to denote a generic positive constant

independent of ¢ and the mesh width 2 and it may take different values in different

formulas. Some of the constants will also be represented by My, My, C, Cy, ¢, co,

etc.

5.2 Difference Schemes and their Uniform Convergence

5.2.1 Difference Schemes and Some Preliminaries

Denote the mesh I* by I" = {z;: -1 = axy < 2_ny41 < ... < ay_1 < 2y = 1} with
mesh widths h; = z; — z;,_1 and A = max; ;. Two meshes will be used in our discussion:

(1). an equidistant mesh I* = {x; =ih:i=—N,...,N,Nh =1} ; and
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(2). a non-equidistant mesh I" = {x; : ¢ = —N,..., N}, where with » = 1/N and
t;=1h,

Mt;+1)—1, i=—=N,...,0,
1-A1—t), i=1,...,N.

Here the mesh generating function A(t) (see Figure 5.1) is defined by

t):=—acln(l —t/q), tel0,a,

o (1= t/g) 0,0 -
w(t) :==y(a) +¢'(a)(l —a), te(al],

where ¢ € (0,1) and a > 0 are constants, and o € (0,¢) is determined uniquely by

7(1) = 1. Furthermore, some computations yield
g—a=Me, ¢(a)=—asln(l— %) = —Melne, (5.22a)
<) < (1-g), 0< V() < (a), (a)= M (5.22h)
Using these estimates, we can easily show (cf. [104]) that
L hi— iy |[< Me™'R? ., fori=—N+2,...,N. (5.23)

This non-equidistant mesh I” is called Bakhvalov mesh [12]. If there were an ex-
ponentially boundary layer at # = 0, then the boundary layer function would be y =
exp(—px/e), for some fixed f > 0. Bakhvalov’s idea is to use an equidistant y-grid
near y = 1 (which corresponds to @ = 0), then to map this grid back to the z-axis by
means of the boundary layer function. That is, grid points near = = 0 are defined by

, which is equivalent to x; = —aclIn(l — %’) with @ = 37!, The

exp(—ﬁ:i) =1-— %’
definition (5.21) produces a condensed grid near # = —1 and = = 1, an equidistant grid

outside the boundary layers and a gradual transition from the fine to the coarse grids.

Using the usual notations for divided differences,

Dy = (wiy1 — i)/ hig1 D_w; = (u; —ui—1)/hi ,
Dou; = (wiyr — wic1)/(hi + hiza) , DyD_w; = 2(Dyu; — D_w;)/(hi 4+ hiya)
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Figure 5.1: The mesh generating function A(t) versus ¢ with a = 2, ¢ = 0.5 and ¢ = 0.03.
In this case, the tangent point of the curve ¢(¢) with the straight line #(¢) is o = 0.4618.. ..
we will consider the following three finite difference schemes.

(1). Upwind scheme on a non-equidistant mesh 1"

L;Luz = —€D_|_D_u2' + PZD/UZ =0 , —-N<i<N , U_N = A , UN = Ay , (524)
where P; = P(z;) = 2" 'p(z;), and

, D_|_u2', lfPZSO,
Dui:
D_u;, ifP,>0.

(2). Coupled scheme on a non-equidistant mesh 1"

Lyu; = — N <1< N, (5.25a)
Lgui:(), if p; > 1,

Uy = A_l 5 uN = Al 5 (525b)
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where with T = %(:1;2'_1 + ;) and PZ»_;_ = P(:L'Z»_%),
hi+1Pi/257 lfPZZO,
pi =
—hiPZ'/QaS, lfPZ<0,
qui = —eDyD_u; + P,Dou; , (central scheme [90]), (5.26)
LM, = —eDyD_u; + Pis1Diu; (Gushchin-Shchennikow scheme [47]). (5.27)

Here “£” corresponds to whether P; is negative or positive.

(3). Iin scheme on an equidistant mesh I

LQLUZ = —5@D+D_ui + P.Dou; =0 , —N<i<N , U_N = A , UN = Ay , (528)

where the fitting factor o; is defined by o; = ];"Eh coth ];"Eh . The basic idea in constructing
the II'in scheme (5.28) is to select a fitting factor o; such that (5.28) would be accurate if
the coefficient function P(x) were a constant P(x;). For the upwind and coupled schemes,
we use a non-equidistant mesh which is dense near the boundary layers at « = £1. For
such a mesh, we can show that | v/(x)-2/(t) |[< M. The coupled scheme is made up of a
central scheme and a Gushchin-Shchennikow (G-S) scheme. Although the central scheme
is usually unstable, the z-th row of its corresponding coefficient matrix is diagonally
dominant and has non-positive off-diagonal entries when p; < 1. On the other hand, in
spite of the first order consistency of the G-5 scheme, it becomes second order consistent
at © = x; if p; > 1. So the coupled scheme (5.25) is in fact stable and has second
order consistency. The details of the background concerning these difference schemes
and meshes can be found in [90], [98], [104], [106], [12], [55], [78] and the references
therein.

Here we give an explanation of why the schemes (1)-(3) are expected to be uniformly

convergent on the corresponding meshes. First, for the singular perturbation problem

(5.5) without turning points, the uniform convergence of these schemes has been proved in
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[55], [58], [98], [104], etc. We wish to extend the analysis of uniform convergence in these
studies to the exponentially ill-conditioned problem (5.1). Although (5.1) is a turning
point resonance problem, the singularity of its solution only occurs in the boundary layers,
which is similar to that of (5.5). Near the turning point @ = 0, the solution of (5.1) is
constant to within exponentially small terms and the derivatives are exponentially small
for ¢ < 1. In addition, although the (numerical) solution apparently does not satisfy the
(discrete) stability estimate for (5.1), the (discrete) comparison principle is still valid for
the turning point problem. Therefore, we anticipate that schemes (1)—(3) are uniformly
convergent for (5.5) as well as for (5.1).

To provide a rigorous analysis of the convergence of the difference schemes (1)-(3),

we require some elementary facts about the difference operators Ly, k= 1,2,3.

Lemma 5.4 (Discrete Comparison Principle) For k = 1,2,3, the scheme Liu; = 0,
—N <1 < N, with u_y = A_1 and uy = Ay, has a unique solution. If LZui <

LZUZ', —N<it< N, and ifu_y <v_n, uy <oy, then u; <v; for =N <1 < N.

Proof. 1t is easy to show that the coefficient matrix of the scheme Liu; =0, —N <
1t < N, with u_y and uy specified, is diagonally dominant and has non-positive off-
diagonal entries. In addition, its rows corresponding to: = —N 4+ 1 and ¢+ = N — 1 are
strictly diagonally dominant. Hence, this matrix is an irreducible M-matrix and so has
a positive inverse. Therefore, the solution uv;, —N < ¢ < N, exists and if the v; are as
specified in the lemma, then we have u; < v; for =N <: < N. O

From Lemmas 5.1 and 5.4 and the symmetry of the continuous problem (5.1) and the

difference schemes (1)—(3), we get

up = u(0) = Ag = =(A_1 + Ay). (5.29)

[N

Thus the proof of the convergence of the difference schemes (1)—(3) can be simplified to
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studying the convergence of the following schemes
Lhw; =0, i=1,....N—=1, wuy=A, un=4,, k=123, (5.30)

for the continuous problem (5.1) on the interval 0 < & < 1. In a similar way as in

establishing Lemma 5.4, we can show the following lemma.

Lemma 5.5 For k = 1,2,3, the scheme Liu; = 0, 0 < 1 < N, with ug = Ao and
uy = Ay, has a unique solution. If Ltu; < Ltv;, 0 < i< N, and if up < vo, uy < vy,

then u; <v; for0<:<N.

The next lemma, with Lemma 5.5, will enable us to convert bounds for the truncation

error into bounds for the discretization error.

Lemma 5.6 There exist positive constants 3, Cy and Cy depending only on x*"'p(x)
such that, for k =1,2,3,
o .
Lhpgy > § oG ki fort= Mo (5.31)
—Cyel, for 1 < Ny,
where No = min{i : ; > 2} and | and ry; with i =0,1,..., N are defined by
N 3

I=1, rk’i:jgleirﬁhj , for k=12, (5.32)
and

[ =2, Thi = PN with = e , fork=3. (5.33)

Proof. A computation shows that
s 203
Ly = ———|P— —— i 5.34
T e B\ it i) 231

If we select 3 satisfying 0 < 3 < %mim%gSl P(z), then for i = Ny,..., N — 1, we have

C
'7“1,2' > !

Ly ;> —— —— T
e = + Bhy T maX(e,hi)rl’
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Fore=1,..., Ny — 1, since Zé‘v:i-u h; > 1 and Z;V:H_l hi < eN~', we have

N 6h 62 N 62 N 2 N
-1 2
= Moe2=0 v an=2{( s ) - X
j=it1 Jk=it1,j<k j=it1 j=it1
> —.
= 2

So | Liry; |< M(e + Bh;)~tr1; < Cye and we obtain (5.31) for 7 < Np.

Next, since

Lfm = L?Tz,i + Arg; > L?Tz,z’ )
p 2hif3
Lhry; = P_1—
ST e B U it )

where A = P,3*h;hipi/e(e + Bhi)(h; + hiy1) > 0, a similar argument can be used to
obtain (5.31) when k = 2.

For k=3, a computation gives

P

by T 1)2 :
LSTS,Z Ihr (T 1) Ar?’vZ ’ (535)
where
A=" L coth Fih = coth bh _ coth Fih = sinh M/ sinh bh sinh Fih :
F—1 2 2 2 2 2o %

For ¢ > Ny, (5.31) can be proved in the same way as Lemma 4.2 in [538]. For ¢ < N,
since ¢t < sinht < ¢t for 0 <t < ¢, we have | A |< % if h < e. In this case, using
r~ir — 1) < Me™2h? and r3; < Me® | we obtain (5.31) from (5.35). If ¢ < h, then

since (r +1) <e¢(r—1) and tcotht < ¢(1 +1) for ¢t > 0, from (5.35), we have

coth
h 2e

h -1 2
| L37“3,z' | < r3; < Me 341 < Cae”.

The proof is completed. O
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5.2.2 Convergence Analysis

In this section, we derive error bounds for our difference schemes (1)-(3). Let u(x) be
the solution of (5.1) and u¥ the solution of the system Liuf =0, 1 <7i < N —1, with

ug = Ay and ufv = A;. Our first result is

Theorem 5.1 Let v be given in Lemma 5.2 and the non-equidistant mesh 1" be de-
fined by (5.20) with ay > 4. Then the coupled scheme on I" is second order uniformly
convergent, t.e.,

| u(w;) —ui |< MR, 1=10,...,N. (5.36)

Proof. We first consider the truncation error associated with the coupled scheme. A

computation in [104] has showed that 72 = L(u(x;) — u?) satisfies
| 771 M ((hiss = hi)e 7 Valws) + he™*Vili)) (5.37)

where V.(z) = exp(—~(1 — x)/¢). Lemma 5.2 gives that the solution u(x) to (5.1) on
[0,1] has the same differentiability properties as the problem (5.5), which does not have
any turning points. So the same argument as that in [104] can be used to derive a bound

for 7'2»2 as follows

77 1< ca 1+ P= N (539

max(e, h;) 7“2,2') ’
if ay > 4. Furthermore, this bound can be improved when ¢ < Ny. Since e™?V.(z) <

Me=/% for a < 1, with some 0 < ¥ < /2, from (5.23) and (5.37), we have

| 72 |< Cyh2e™V/ . fori < Np. (5.39)

h

Thus to estimate the discretization error e = u

~~

T;) — u?, we define w; = Mh%¢; +

709

Myh*ry; + efb, where ¢; = 4x; — 2% . Since Ti1 > %J}Z for ¢ > 1, it is clear that

Llg; > min{L"¢;, L'¢;} > Cp(e 4 23mF1), (5.40)
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where quﬁZ =2e+ P(4— 21— x41) and LZqﬁZ = 2+ PZ»_%(ZL —x;—x,-1). Using (5.38),
(5.39), (5.40) and Lemma 5.6, we have

Mlco(a’f + l’?m-l_l) + Mzmrzi - 03 (1 + mrli) ) ? Z N07

h_Zngi Z ~
Mlco(a’f + l’?m-l_l) — MQCQ@ — C4h2€_’y/6, 1 < Np.
(5.41)

Noting that Cy,...,Cy are fixed constants, we may first choose My = M>(Cy,Cs) large
enough such that the sum of the coefficients of ro; in (5.41) is positive. Then we choose
My = My(Ms, Cy, Cy, Cs,Cy) large enough such that the right hand sides of (5.41) are
positive. In addition, it is obvious that wy > 0 and wy > 0. Thus, Lemma 5.5 yields
w; > 0, 1.e.,

el |[< Myh2gs + Myh®ry; < MR?, fori=0,...,N. (5.42)

Similarly, we can prove, for the operator L,

Theorem 5.2 Let v be given in Lemma 5.2 and the non-equidistant mesh I be defined
by (5.20) with ay > 2. Then the upwind scheme on I! is first order uniformly convergent,
i€

Y

| u(z;) —ul |< Mh, 1=10,...,N. (5.43)
We now give an error bound for the II'in scheme.

Theorem 5.3 The solution u? to the Il'in scheme on the equidistant mesh 1" satisfies

h?
h+e

| u(a;) —ui |< M ., i=0,...,N. (5.44)

Proof. Again, since the solutions to (5.1) on [0, 1] and (5.5) have the same differentiability
properties and both can be decomposed into a singular part ¢ exp(—p(1)e™*(1 — x)) (¢

is some constant) and a less singular part as in Lemma 5.3, we can use the reasoning in
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[58] to obtain the following bound for the truncation error 72 = Li(u(x;) — u?) of the

II'in scheme
| 73 |< Cs(c + h)Lh2 (1 + 5—17«372») . i=1,...,N—1. (5.45)

For ¢ < Ny, this estimate can be refined. In fact, since | o; — 1 |< Me™2h?, using a

Taylor expansion, it is easy to show that if z; < % ,

. 1
| 72 |< MA*e™?Vo(wip) < C4h26_7/5, with some 0 < 4 < 37 (5.46)
where V.(z) = exp(—~(1 — x)/e). Let ¢(x) = 4o — 2*. Then, noting that o; > 1, we
have
Lhé: = 2e0; 4 P4 — 2x;) > Cole + 2™y, i=1,...,N —1. (5.47)
If h < e, then we define w; = e 'h*(My¢; + Myrs;) + (u(x;) — u?). Using (5.45),

K3

(5.46), (5.47) and Lemma 5.6, we obtain

My Cole + 22" 4 MyCre'ra s — Co(1 4+ e rg,), 13> N,
eh™2Lhw; >{ ole + i)+ MaGheT, ?j( ra), 12 Mo (5.48)
Mlco({f + $?m+1) — M202€2 — C4€€_W/E, 1 < No.

Since we can choose suitable positive constants M; and M, such that the right hand sides

of (5.48) are positive, Lemma 5.5 yields w; > 0, i.e.,
| u(z;) —ud |< e P h3(Mygi + Myra;) < Me™'h?, ifh<e. (5.49)

If e <h,let w; = h(My¢; + Mae™ hrs ;) + (u(z;) — u?), which satisfies

(5.50)

B L > My Co(e + 2™ + Mye 2Chrs; — Cs(1 +e7trs,), > Ny,
3W; = ~
MICO(5 + x?m-l—l) — Mza’thQ — C’4h€_’y/57 1 < Ny.

Again, there exist constants M; > 0 and M, > 0 such that ngi > 0. So, since

wo >0, wy >0 and e7thry; < e thexp(—Fe™'h) < M fori < N —1, Lemma 5.5 gives
| u(es) — ul |< h (Mygy + Mae ™ hrs;) < Mh, ife < h. (5.51)

This completes the proof of the theorem. O
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5.3 Numerical Experiments and Discussions

The convergence analysis in the previous section indicates that the exponential ill-
conditioning of the singularly perturbed resonance problem (5.1) does not cause any
special difficulties in its numerical computation different from the non-turning point
problem (5.5). Thus the discretization techniques used to construct uniform convergence
schemes for (5.5) can lead to uniform difference approximations for (5.1) as well. We now

present a few numerical results to examine our analysis.

5.3.1 A Model Problem of (5.1)

To verify the uniform convergence of our schemes (5.24), (5.25) and (5.28) numerically,

we consider a specific problem of the form (5.1)
—eu" +au' =0, —-l<z<l, u(—1) = -3, u(l)=1. (5.52)

We solve this problem for various values of ¢ and h. In Tables 5.1, 5.2 and 5.3, we
list the maximum error £” and the numerical convergence order r of our schemes
L, k=1,2,3 respectively, for e = 0.01,0.02 and 0.03, where " = max; | u(z;) —ul |
and r = (log B, — log E"/2)/log 2. Here u(z) is the analytical solution of (5.52) and u”
the solution of one of our schemes with mesh size h = 1/N . For A(#) defined in (5.21),
we use ¢ = % and ¢« = 2. The computation here was performed in FORTRAN double
precision (approximately 15.95 significant decimal digits) on a HP735 at UBC. The solver
for computing the linear systems corresponding to our schemes is Gaussian elimination
and the exact solution u(x) is obtained by applying a numerical quadrature with suffi-
cient precision to (5.10). Note that the principal eigenvalue of the eigenvalue problem
associated with (5.52) satisfies Ao & 2.662 x 1077 for ¢ = 0.03, Ao &~ 7.835 x 107! for
e =0.02 and A\g ~ 1.539 x 107%! for e = 0.01 (cf. [79]).
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Let’s analyze Table 5.2 first. Table 5.2 shows that the coupled scheme is uniformly
second order convergent only when the number N of mesh points is not too large. For
large N, on the contrary, the convergence of the scheme deteriorates, which contradicts
the classical convergence theory that the discretization error of a convergent scheme will
tend to zero as the mesh size goes to zero. In addition, the smaller ¢ is, the sooner
this deterioration happens as N increases. Since the uniform convergence of the coupled
scheme has been established analytically in §5.2, the only explanation of this paradox
is that the Gaussian elimination does not give an accurate numerical approximation to
the difference scheme because of the round-off errors of a computer. Specifically, we
believe that our schemes do converge uniformly in ¢ as A — 0, and the degeneration
of the discretization errors for large N is caused by the round-off errors in computation
due to the severe ill-conditioning of the finite difference operators. We partially verity
this explanation by calculating and presenting the condition numbers of the coefficient
matrices of our schemes in Table 5.4 for different values of ¢ and h. Note that since
these condition numbers are calculated by MATLAB which uses double precision, they
may be NOT accurate especially when they are greater than about 10'°. Comparing
Table 5.4 with Table 5.2, we notice that the numerical convergence order r for the coupled
scheme, roughly speaking, begins to deviate from the analytical value of 2 when the
condition number is close to 10*®, which is approximately the reciprocal of the (double)
machine precision. Thus, we believe that this degeneration of the convergence can be
avoided if we can calculate a difference scheme more precisely. Based on this explanation,
it is anticipated that the numerical computations with quadruple precision arithmetic
will yield better results than those with double precision. This is verified in Table 5.5,
where the second order convergence for the coupled scheme is obviously obtained using
quadruple precision arithmetic even for much larger N than those in Table.5.2 and ¢ =

0.01. On the other hand, we expect that single precision arithmetic will not give good
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numerical results in solving our difference schemes. This is also verified numerically in
Table 5.6, where we get only very few significant digits of accuracy even for ¢ = 0.03 and
when h is large.

From Tables 5.1 to 5.6, we can notice that our previous observations about the coupled
scheme are also applicable to the upwind scheme and the II'in scheme. Here we give a
further discussion of these schemes. It is clear for each scheme that for a fixed A, the
condition of a difference scheme becomes worse if ¢ is smaller. Thus, for a larger value of
¢, 1t is natural that we can solve our schemes accurately over a wider range of values of & .
For fixed values of ¢ and h, we notice that the condition number of the coupled scheme
is greater than that of the upwind scheme. That means a higher order scheme can only
be solved accurately for a larger h. However, since a higher order scheme with a larger
h may give a better result than a lower order scheme with a smaller &, we find from
Tables 5.1 and 5.2 that the coupled scheme resolves the exponentially ill-conditioning
problem better than does the upwind scheme.

In summary, although the discrete stability estimate is not valid for a numerical

" may not result

scheme of an exponentially ill-conditioned problem, a truncation error 7
in very large errors in the numerical solution «”" and a scheme may still be uniformly
convergent with respect to €. However, a numerical method will usually inherit the
ill-conditioning associated with the continuous problem. This causes the peculiar phe-
nomenon we observed in the computations that a small number of meshpoints N may
give better numerical results than does a large value of N. To minimize the effects of
round-off errors that may pollute the accuracy of a scheme, higher (such as quadruple)
precision arithmetic is preferred in solving the discrete linear systems. Furthermore, our
numerical experiments suggest that higher order difference schemes (or other numerical

methods) are usually more efficient in computing the numerical solutions of exponentially

ill-conditioning problems.
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N e =0.03 g =0.02 e =0.01
Efo T Efo T Efo T

24 1491e0 | 0.93 | .1532e0 | 0.93 | .1585e0 | 0.95
48 7840e-1 | 0.97 | .8020e-1 | 0.97 | .8211e-1 | -1.21
96 4010e-1 | 0.99 | .4086e-1 | 0.99 | .1897e0 -
192 | .2026e-1 | 0.99 | .2060e-1 | 0.99 - -
384 | .1018e-1 | 1.00 | .1039e-1 | 0.89 - -
768 | .5105e-2 | 1.00 | .5616e-2 | 0.80 - -
1536 | .2556e-2 | 1.00 | .3227e-2 | -3.29 - -
3072 | .1282e-2 - .3150e-1 - - -

Table 5.1: Numerical results of the upwind scheme for (5.52) using double precision.

5.3.2 A Nonlinear Problem and a Time-dependent Problem

Our purpose in carrying out the next two numerical experiments is to illustrate that
our preceding analysis regarding the numerical computation of the model problem (5.1)
might also be applicable to other types of exponentially ill-conditioned boundary value
problems and their corresponding time-dependent equations.

The first test problem is the steady state Ginzburg-Landau equation
U + Qu) =0, —l<az<l, Uy (—1) =u,(1) =0, (5.53)

with Q(u) = 2(u — v?). For this nonlinear BVP, one of its solutions that can be asymp-
totically approximated by u ~ @°(x) = tanh(x/e) has one internal layer at + = 0. So,
to compute this solution, we use a non-equidistant mesh I = {x; : ¢« = —N,... N},
which is dense near + = 0 and equidistant outside the internal layer, where with the

same notations as in (5.20),

(5.54)
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N e =0.03 e =0.02 e =0.01
Efo T Efo T Efo T

12 2545e-1 | 2.41 | .2184e-1 | 1.89 | .1900e-1 | 2.04
24 A789e-2 | 2.00 | .B58T2e-2 | 2.15 | .461de-2 | -7.77
48 1199e-2 | 1.99 | .1319e-2 | 1.87 1.01 -
96 3017e-3 | 1.98 | .3598e-3 | 0.22 - -
192 | .7659e-4 | 1.99 | .3088e-3 | -0.25 - -
384 | .1925e-4 | 1.79 | .1466e-2 | -1.10 - -
768 | .5558e-5 | -0.76 | .3136e-2 | -0.97 - -
1536 | .9406e-5 - .6162e-2 -

Table 5.2: Numerical results of the coupled scheme for (5.52) using double precision.

Here A(t) is defined by

. { B(t) == —acl /(g — 1), 1eo,a], )
7(t) == Y(a)+ ()t —a), tE (1],

where ¢ = 5, a=1.5, and a € (0, ¢) is determined uniquely by x(1) = 1. This mesh is
similar to (5.20) except that a can be calculated explicitly now. On this mesh, we apply

the following finite difference scheme
eDyD_u;+ Qu;) =0, —N<i<N, Dyunx=D_uy=0 (5.56)

to solve (5.53). Since the exact solution of (5.53) we are seeking is constant near the end
points = +1 to within exponentially small terms, first order precision in the difference
approximations of the boundary conditions will not ruin the second order accuracy of
the difference operator on the interior points when ¢ is small. In addition, it is clear
that | d'u®/dz’ |< Me~'exp(—~|z|/e) with some constant v > 0, which is similar to
the differential properties of the solution of (5.1). So we expect that the scheme (5.56)
on the Bakhvalov type mesh (5.54) is second order uniformly convergent with respect

to ¢ as h — 0. In our computations, the nonlinear discrete system corresponding to
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Table 5.3: Numerical results of the II'in scheme for (5.52) using double precision.

N e =0.03 e=0.02 e =0.01
E r E r E r
12 [71158e-2 | 1.06 | .3890e-2 | 0.05 | 0.100el | 0.00
24 3424e-2 | 1.97 | .3766e-2 | 1.49 | 0.100el | -
48 8765e-3 | 1.93 | .1337e-2 | 1.88 - -
96 .2296e-3 | 2.00 | .3633e-3 | 1.99 - -
192 | .5755e-4 | 1.99 | .9157e-4 | -1.33 - -
384 | .1447e-4 | 1.87 | .2309e-3 | -4.08 - -
768 | .3945e-5 | 0.90 | .3899e-2 | -0.94 - -
1536 | .2116e-5 | - | .7459e-2 - - -
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N Upwind scheme (5.24) Coupled scheme (5.25) [I’in scheme (5.28)
e=031e=.02 =01 |e=.03] e=.02|e=.01]|e=.03]e=.02] ¢=.01
12 4.17e6 | 5.64e7 | 6.39¢9 | 8.67eT | 4.87e9 7.31e9 | 1.14e8 | 2.66ell | 1.81el7
24 1.75e8 | 7.44e9 | 1.07el3 | 2.30ell | 3.20el3 | 2.60el4 | 4.74e8 | 1.21el2 | 8.00el6
48 4.94e9 | 7.98ell | 3.46elb | 1.64ell | 6.31el4d | 4.04el7 | 1.89¢9 | 4.77el2 | 3.07el6
96 | 8.02el0 | 4.50el3 | 1.52e19 | 5.38ell | 4.48el5 | 1.33el7 | 7.56e9 | 1.89el3 | 4.86el6
192 | 7.79ell | 1.13el5 | 1.40el7 | 2.15el2 | 1.16el16 | 2.12e17 | 3.02¢10 | 7.52e13 | 6.41el6
384 | 5.20e12 | 1.46el6 - 8.80e12 | 5.00el16 - 1.21el1 | 3.03el14 -

Table 5.4: Numerical results (using Matlab) of the condition numbers || A |5 || A7 ||2

of the coefficient matrices A of schemes (5.24), (5.25) and (5.28).

(5.56) is solved by Newton’s method with @°(x) as the initial guess. The iterations are

stopped when the maximum pointwise absolute difference between successive iterations

becomes smaller than ,, which equals 107!° for double precision arithmetic and 107%°

for quadruple precision arithmetic.

The numerical results are compared to the numerical solution obtained by the same

method with a sufficiently large N = N,. The corresponding maximum pointwise abso-

ih
lute errors FZ |

as well as the numerical rate r; and anticipated rate ry, are presented

in Tables 5.7 and 5.8, for & = 0.05, 0.1 and 0.15, where r; = £ /E"? and ry is defined
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N Upwind scheme (5.24) | Coupled scheme (5.25) | IIin scheme (5.28)
E r E r E r
48 .8204e-1 0.98 1225e-2 1.89 1815e-2 1.45
96 A4153e-1 0.99 .3310e-3 2.00 .6603e-3 1.97
192 | .2084e-1 1.00 .8265e-4 2.00 .1675e-3 1.99
384 | .1044e-1 1.00 .2064e-4 2.00 A221e-4 1.97
768 | .5222e-2 1.00 .5154e-5 2.00 1075e-4 1.90
1536 | .2611e-2 - .1286e-5 - .287he-5 -

Table 5.5: Numerical results of schemes (5.24), (5.25) and (5.28) using quadruple precision
arithmetic. Here ¢ = 0.01.

N | Upwind scheme (5.24) | Coupled scheme (5.25) | II'in scheme (5.28)
E r E r E r

12 ] .2699 0.81 .0289 -7.28 3584 -0.48

241 .1540 0.63 4.492 4.33 4987 -0.42

48 | .0998 -2.01 2234 -2.32 6670 -0.37

96 | .4016 - 1.113 - 8627 -

Table 5.6: Numerical results of schemes (5.24), (5.25) and (5.28) using

arithmetic. Here ¢ = 0.03.

single precision

below. Note that, from (3.23), the principal eigenvalue of the eigenvalue problem associ-

ated with the linearized equation about the one layer solution satisfies Ay &~ 2.518 x 1071°

for e = 0.15, A\~ 4.078 x 10716 for ¢ = 0.1 and Ao ~ 1.733 x 1072 for ¢ = 0.05. Let

us estimate what the values of ry should be. Let hg = 1/Ny and suppose h = 2kho with

some integer k& > 1. If our scheme is second order uniformly convergent, then we have,

by assuming that u”(x;) ~ u(z;) + c(x;)h?,

2

u — w0~ (22— 1)hE, uM? — o~ (221 )p2

So we set the anticipated rate

4 —1
TS

o =

(5.57)
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From Table 5.7, where double precision arithmetic is used, we notice that the values of
r1 and r9 agree with each other when the number N of the mesh points is not large.
However, it is true for all values of ¢ listed that the numerical rate ry begins to diverge
from the anticipate rate ry when N is greater than about 1024 and Newton’s method
does not converge when N > 1024 . Although we can’t explain exactly what causes this
value of 1024, which should depend on the value of ¢, to be independent of ¢, from our
experience in computing the solution to (5.1), we speculate that the disagreement in
Table 5.7 stems from the round-off errors in computation. This is verified by Table 5.8,
where we use quadruple precision arithmetic. Surprisingly, in Table 5.8, ry agrees with

ro to more than five significant digits when N > 2048.

e =10.15 e=0.1 ¢ =0.05
Nk Ty Ego T Ego T Ego T
16:9 | 4.0000 | .4110e-4 | 3.8297 | .1094e-3 | 4.0286 | .1478e-3 | 4.0767
32:8 1 4.0002 | .1073e-4 | 4.0662 | .2715e-4 | 4.0008 | .3625e-4 | 3.9745
64:7 | 4.0007 | .2639e-5 | 3.9700 | .6785e-5 | 3.9999 | .9120e-5 | 4.0044
128:6 | 4.0029 | .6648e-6 | 4.0087 | .1696e-5 | 4.0024 | .2277e-5 | 3.9984
256:5 | 4.0118 | .1658e-6 | 4.0131 | .4238e-6 | 4.0116 | .5696e-6 | 4.0117
512:4 | 4.0476 | .4132e-T7 | 4.0177 | .1057e-6 | 4.0463 | .1420e-6 | 4.0457
1024:3 | 4.2000 | .1029e-7" | 3.5997 | .2611e-7" | 3.9447 | .3509e-7" | 3.8957
2048:2 | 5.0000 | .2857e-8 | 0.5854 | .6619e-8 | 1.5100 | .9008e-8" | 0.8692
4096:1 - 4881e-8" - .4384e-8" - .1036e-7" -

Table 5.7: Numerical results of the scheme (5.56) using double precision. Here Ng = 8192,
£, = 1071 For those E" ending with “~”, Newton’s method does not converge within
20 iterations.

For our second test problem, we consider the time-dependent problem corresponding

to (5.1) from [79]

Up = ElUpy — TU, , —-l<z<l, t>0, (5.58a)

u(—1,t) = 2, u(l,t):%, u(:zﬁ,()):%—l—i%(x—l)z/& (5.58b)
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e=20.15 e=0.1 e =0.05
Nk Ty Efo T Efo T Efo T
32:9 | 4.0000 | .1073e-4 | 4.0660 | .2715e-4 | 4.0007 | .3625e-4 | 3.9744
64:8 | 4.0002 | .2639e-5 | 3.9694 | .6786e-5 | 3.9994 | .9120e-5 | 4.0038
128:7 | 4.0007 | .6649e-6 | 4.0065 | .1697e-5 | 4.0002 | .2278e-5 | 3.9962
256:6 | 4.0029 | .1660e-6 | 4.0043 | .4241e-6 | 4.0028 | .5700e-6 | 4.0032
512:5 | 4.0118 | .4144e-7 | 4.0121 | .1060e-6 | 4.0117 | .1424e-6 | 4.0118
1024:4 | 4.0476 | .1033e-T7 | 4.0477 | .2641e-T | 4.0475 | .3549e-7 | 4.0476
2048:3 | 4.2000 | .2552e-8 | 4.2000 | .6526e-8 | 4.2000 | .8769e-8 | 4.2000
4096:2 | 5.0000 | .6076e-9 | 5.0000 | .1554e-8 | 5.0000 | .2088e-8 | 5.0000
8192:1 - 1215e-9 - .3107e-9 - 4176e-9 -

Table 5.8: Numerical results of the scheme (5.56) using quadruple precision. Here
Ny = 16384, ¢, = 107",

It is shown in [79] that the metastable dynamics for (5.58), valid away from an initial

time layer, can be asymptotically described by

(e, t) ~ i@ [as Al 2)] = Al e) + (2 — A(t,e)) e 4+ (% - A(t,e)) =L (5.59)

where with Ay = \/g(l — e+ 0(e?)) e~ 3e ,
At e) ~ = — =(1 —g)e™ !, (5.60)

To compute u(x,t) numerically, we apply the TMOL in §1.3 to (5.58) except that the
BVP solver COLSYS is replaced by our difference scheme (5.24), (5.25) or (5.28), where
the mesh generating function A(?) is given in (5.55) instead of (5.21). From our numerical
results, we output the value of u(0,1), which gives the numerical prediction for A(t,¢).
In Figure 5.2, 5.3 and 5.4, we plot ¢t versus A for the asymptotic result (5.60) (dotted
lines) and the numerical results (solid lines) corresponding to the upwind scheme, the
coupled scheme and the II'in scheme, respectively, for various values of h. Here the
computation was performed in double precision arithmetic. The figures indicate that two

curves representing the asymptotic and numerical results of {(A) converge as h decreases.
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For the center scheme with N = 400 and the II'in scheme with N > 100, the two curves
are virtually indistinguishable. These phenomena suggest that our numerical methods
are convergent and can be used to give a numerical verification of the validity of the
asymptotic metastable dynamics.

Based on our convergence analysis and numerical experiments, we believe that classic
finite difference schemes and other numerical methods may be applied to compute the
singularly perturbed problems exhibiting dynamic metastability as long as the mesh
size h 1s suitably selected and ¢ is not too small. In such cases, the exponentially
ill-conditioned singularly perturbed problems do not cause more troubles in numerical

computations than other “standard” singular perturbation problems such as (5.5) do.

1.05 11 115 12 1.25 13

a: N =400 b: N = 1000

c: N =2000 d: N =4000

Figure 5.2: Plot of ¢ versus A for (5.58) from the asymptotic approximation (dotted line)
and from the full numerical approximation (solid line) using the upwind scheme when

¢ =0.025.
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c: N =300 d: N =400

Figure 5.3: Plot of ¢ versus A for (5.58) from the asymptotic approximation (dotted line)
and from the full numerical approximation (solid line) using the coupled scheme when

e =0.025.
5.3.3 A Spectral Method

According to our observations in §5.3.1, we believe that higher order numerical methods,
which can lead to small discretization errors with a moderate number of mesh points, are
usually more effective to compute the numerical solutions of exponentially ill-conditioned
problems. Since the spectral methods are known to be able to offer exponential accuracy
meaning that the error between the numerical solution and exact solution decays expo-
nentially versus N, we now introduce a new procedure based on coordinate stretching
and the Chebyshev pseudo-spectral (PS) method to solve (5.1). Our aim is to see with
this procedure if and then how significantly we can improve the numerical results in

§5.3.1.
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L L . L L L L L ° L L . L L L L L
0.85 1 1.05 11 115 12 1.25 13

c: N =200 d: N =300

Figure 5.4: Plot of ¢ versus A for (5.58) from the asymptotic approximation (dotted
line) and from the full numerical approximation (solid line) using the Il’in scheme when

¢ =0.025.

It has been found (see [25], [42]) that the PS method is attractive in solving singular
perturbation problems having boundary layers by clustering the mesh points toward
the boundaries, for example, as in the Chebyshev method (x; = cos %,i =0,...,N).
However, to obtain an accurate solution with a very small parameter ¢, a large N is
required to guarantee that at least one of the collocation points lies in the boundary
layer. To avoid this difficulty, Tang and Trummer [105] introduced a sequence of SINE
transformations of the computational domain so that some collocation points are within
a distance ¢ from the boundaries + = 41 for ¢ < 1. Indeed these transformations
together with the Chebyshev PS method can deal well with very small boundary layers

with a fairly small number of collocation points. However, we notice that since the SINE

transformation does not make use of the properties of a boundary layer such as (5.9),
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it does not ensure that at least one collocation point lies in the boundary layer for all
¢ > 0. Thus, with a fixed number of the SINE transformations, the number of collocation
points required to resolve a boundary layer is still dependent on ¢. Instead of the SINE
transformation, therefore, we consider the following coordinate transformation, which
yields O(N) collocation points, independent of ¢, in both the boundary layers and the

interior domain:

o) = At+1) =1,  te[-1,0], (5:61)
LML —1), te(0.1],
where
(1) == —Acln [1 = 2(1 — e7o)t] 0<t<?l,

M) = , (5.62)
m(1) = Thoo WG - 5F + Bt - PITT, g <<

IA
—

Here A > 0is a constant, K’ > 01is an integer and B = B(t,¢) is determined such that ()
is a strictly increasingly function connecting (—1, —1) and (1, 1) on the a-¢ plane and
has certain required smoothness. Another advantage of the coordinate transformation
(5.61) over the SINE transformation is that the solution in the computational coordinate
t can be as smooth as needed by selecting the integer K (see (5.65) below). This is
rather important to the convergence of the spectral methods, since lack of smoothness
of a continuous solution is the main source of degradation of the expected infinity-order
accuracy for a spectral method due to the Gibbs phenomenon.

The transformed form of (5.1) can be written as

—ev"(t)+ P(t)o'(t) =0, —1<t<1l, vo(=1)=A4_, v(l)= A4, (5.63)

where v is the transplant of u, v(¢) = u(x(t)), and p(t) = 5%}% + () Hp(x(t))2'(1).
To ensure that this transformed equation is well defined, we require that x(¢) has at least

up to second order continuous derivatives and z'(¢) > 0. It is clear that A(¢) is K-th
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order continuously differentiable and if we let
(1) =1, (1) =0, (5.64)

then x(?) has up to third order continuous derivatives. In our computations, we let
B =by+ Wt — %), where by and by are determined by (5.64). Now let us show that
for this choice of B, (5.63) is well defined and its solution v(¢) has uniformly bounded

derivatives up to K-th order except at t =0 when Ay > K(K + 1), i.e.,
oWy <M for0< || <1 and k=0,.... K, (5.65)

where ~ is the constant given in (5.9) and M > 0 is a constant independent of ¢.
First, to show (5.63) is well defined, it suffices to prove A'(¢) > 0. From (5.62), we

have

Ak —1)l¢ke
(1—qt)t

for k=1,..., K, where ¢ = 2(1 — 51\1?) Since ;/)(k)(%) — 0 as ¢ — 0, from (5.64), we

B () = = A(k — 1)lgke! 7o | (5.66)

obtain

by ~ 28 (K +2), by ~ —K28H! as ¢ — 0. (5.67)

Y

It follows that on % <t<1,

15 .
(1) > bo(K + 1)t = )N +hi(K +2)(t - )"

- 1.4 1
= (K—|—2)21‘(t—§)1‘ (K—|—2—2K(t—§)) >0, ase—0.
The proof of N(t) > 0 on 0 < ¢ < 1 is apparent. Next, let’s consider (5.65). By

symmetry, we only show it on —1 < ¢ < 0. For —1 <t < —1 using (5.9) and (5.66), we

have

o e
dt de dt L—q(t+1)

< MI—qt+1)" <M, ifAy>1
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-

and similarly, for k =1,..., K,

dFv

IWISM(l—q(tH))AW"“gM, it Ay > k.

For —2 <t <0, since A(t + 1) > 9(3) = —Aelne/(K + 1), we have
d*v d*u

T < M2

| dt* - | dak

< Memsth< M, il Ay > k(K +1).

|§ M{_:—ke—'ys_lx\(t—l—l)

Thus, (5.65) holds when Ay > K(K+1). It is certain that we can find a mesh generating
function A(t) such that (5.65) is true on the whole region of ¢ i.e., including ¢t = 0. But
since the solution of (5.1) is constant to within exponentially small terms outside the
boundary layers, we do not expect doing so will make any significant improvements.
Our numerical procedure is to solve the transformed problem (5.63) using the standard
Chebyshev PS method (cf. [25], [42]). The resulting linear system is solved by Gauss
elimination in double precision. Our numerical experiments displayed in Table 5.9 show
that this procedure is indeed superior to our finite difference schemes in §5.3.1 for (5.1).
For example, for ¢ = 0.01, the least maximum error we can obtain in Table 5.9 is about
O(107°%) , whereas it is only at best O(107%) in Tables 5.1 to 5.3. In addition, we can
still obtain four significant digits of accuracy even for (5.52) with ¢ = 0.002, for which

the corresponding principal eigenvalue Ag ~ O(107'%%) .
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N 1e=003]e=0.02|e=0.01|¢ec=0.005]|ec=0.002
10 | .5635e-2 | .7848e-2 | .1753e-1 | .3859e-1 | .7900e-1
20 | .8912e-5 | .6488e-5 | .6045e-5 | .7T707e-4 | .1222e-3
40 | .3107e-6 | .6807e-6 | .2759e-6 | .1831e-5 | .2806e-4
80 | .2949e-7 | .7160e-7 | .2487e-6 | .1997e-5 | .2787e-4
120 | .7312e-8 | .5419e-7 | .8624e-6 | .1978e-5 | .2790e-4
160 | .8513e-8 | .6267e-7 | .2030e-3 | .5149e-5 | .2797e-4
200 | .9894e-8 | .7220e-7 | .1724e-1 | .6075e-5 | .2817e-4
240 | .9094e-8 | .4613e-7 | .1303e0 | .1725e-3 | .1428e-2!
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Table 5.9: Maximum errors for the spectral method applied to (5.52) using double pre-
cision. Here, K =3 and A = 8.

!For this entry, N=400



Chapter 6

Summary and Future Work

6.1 Summary

In this thesis we have applied asymptotic and numerical methods to investigate meta-
stable behavior associated with several time-dependent singular perturbation problems,
including the generalized Burgers equation modeling an upward flame front propagation
in a vertical channel, the viscous Cahn-Hilliard equation modeling the phase separation
of a binary mixture and two problems related to exponentially slowly varying geometries.
Specifically, we employed the projection method to derive ordinary differential equations
(ODEs) or differential algebraic equations (DAEs) for the undetermined constants in the
conventional MM AE solutions to the equilibrium problems. From these ODEs/DAFEs, the
metastable behavior was then studied quantitatively and in detail, and the equilibrium
solutions and their stability were also obtained. In addition, the principal eigenvalues
of the linearized operators were estimated asymptotically for the flame front problem
and the slowly varying geometry problems. Most of our crucial asymptotic results were
verified by the full numerical results computed using the TMOL. Another role of our
numerical method TMOL is to provide useful information about the metastable solutions
in their transient phases and collapse phases during which our asymptotic analysis fails.

For the flame front problem, it was suggested by Berestycki, et al. [16] that the

parabolic flame front may be dynamically metastable in the sense that its tip location

158
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remains near its initial location for an exponentially long time. However, to our knowl-
edge, no rigorous proof has been given yet and little is known of its detailed dynamics. In
this thesis, we considered a generalized form of the Burgers type equation. It was shown
that the principal eigenvalue associated with the linearization around the equilibrium is
exponentially small. In addition, the metastable behavior was studied quantitatively by
deriving an asymptotic ODE characterizing the slow motion of the tip of a parabolic-
shaped interface. Our asymptotic results were shown to compare very favorably with
full numerical computations and give a first detailed and quantitative description of the
metastable flame-front motion in a vertical channel.

For the Burgers-like convection-diffusion equation which describes one dimensional
transonic flow through a nozzle with a slowly varying cross-sectional area, we studied
the effect of an exponentially small change in the cross-sectional area upon the existence
and stability of the steady state shock layer solution. In particular, using the projection
method, we derived an asymptotic ODE characterizing the slow motion of a shock layer.
From this ODE, we designed a specific convergent-divergent nozzle where a stable steady
state shock layer occurs in the convergent part of the nozzle. This is interesting, because it
has been proved by Liu [71] and Embid, et al. [34] for the corresponding inviscid problem
that shock waves in the convergent part of the nozzle are not stable. We have found
that this discrepancy is due to some situations which were not included in [71] and [34]
where exponentially small terms, generated by the viscosity term, have to be resolved.
Another slowly varying geometry problem is a generalized Ginzburg-Landau equation
that can be employed to study the existence of non-constant stable steady solutions to
the Ginzburg-Landau equation in several space dimensions. By studying the metastable
dynamics in this equation using the projection method, we are able to construct non-
convex domains for which the Ginzburg-Landau equation are believed to admit stable

spatially-dependent steady state solutions.
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For the viscous Cahn-Hilliard equation, this thesis gives a detailed analysis of the
dynamics of an n-layer metastable pattern and uses a hybrid approach to describe the
coarsening process until the final stable configuration is reached. From the DAFE system
derived from applying the projection method, we can trace the metastable dynamics
very accurately. For the Cahn-Hilliard equation (o = 0), using this DAE system, we
found the “missing” small terms which are significant for non-collapse interfaces in the
ODE system obtained by Bates, et al. [15]. We also showed that the viscous Cahn-
Hilliard equation (0 < o < 1) and the constrained Allen-Cahn equation (o = 1) have
the same metastable dynamics except in the collapse time scale, while the Cahn-Hilliard
equation is quite different. During the layer collapse, a hybrid algorithm based on our
asymptotic information and the conservation of mass condition is provided to characterize
the whole coarsening process. This thesis has revealed the similarities and differences of
the dynamics of an n-layer metastable pattern associated with the three phase separation
models in one spatial dimension and showed several interesting phenomena associated
with the coarsening process for the first time.

The above discussion indicates that our approach based on asymptotic and numerical
methods is a powerful and general tool to quantitatively study the metastable behavior
associated with various physical problems.

Another topic of the thesis is the numerical analysis of a linear boundary layer res-
onance problem which is one of the “simplest” metastable models. Our convergence
analysis and numerical experiments have shown that several classical finite difference
schemes are uniformly convergent with respect to ¢, but their coefficient matrices inherit
the extreme ill-conditioning from the continuous problem. In particular, the exponen-
tially small principal eigenvalue does not affect the uniform convergence of these schemes.

Thus, the exponentially ill-conditioned singularly perturbed problems would not cause
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more troubles in numerical computations than other (not metastable) singular perturba-
tion problems provided that we could use sufficiently high (such as quadruple) precision
arithmetic. Our observations revealed from this model problem were shown numerically
to be also valid for some other types of exponentially ill-conditioned boundary value prob-
lems and their corresponding time-dependent equations. Thus, these observations might

be used as some guidelines in designing numerical schemes for metastable problems.

6.2 Future Research

In spite of numerous efforts devoted to study metastable dynamics in various physical
problems in the past decade, there still remain many interesting unexplored problems,
especially in multi-dimensional domains, and for systems of reaction-diffusion equations.

Some of these problems I plan to work on are:

1. Kolmogorov’s backward equation in two dimensions, which is related to the exit
problem of a Brownian particle confined by a finite potential well. We wish to use
the projection method to study the exponential ill-conditioning and metastable dy-
namics in this equation and show that the equilibrium solution is extremely sensitive
to small perturbations in the coefficients of the equation due to its exponentially
small principal eigenvalue. This supersensitivity might be used to give a linearized
sensitivity analysis of a model equation that arises from a diffusive regularization

of the shape from shading problem. Parts of this work have been done in [103].

2. Two dimensional flame front problem, modeled by the Mikishev-Rakib-Sivashinsky
equation. The goal is to characterize the metastable behavior of a flame front in an
axially symmetric vertical channel and to explain experimental evidence showing
the slow motion of the flame-front interface. We have noticed an inherent connec-

tion between the one-dimensional and multi-dimensional flame front problems, and
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thus it is hopeful that we will be able to characterize the metastable dynamics by

applying the projection method.

3. Two dimensional bubble problem, modeled by the constrained Allen-Cahn equation
with a mixed boundary condition. Cahn [23] observed experimentally that a sur-
face layer — bubble of the wetting phase continues to exist under certain conditions
when this phase is no longer stable as a bulk. This observation does not agree with
the simulation of the constrained Allen-Cahn equation with a Neumann boundary
condition, since with this boundary condition the bubble is unstable and drifts
towards the boundary of the domain. We believe that the resolution of this para-
dox is that the boundary condition corresponding to a surface layer perturbs the

exponentially small eigenvalue and allows for the stability of the bubble solution.

4. Bubble problem for the Cahn-Hilliard equation. The goal is to characterize the dy-
namics of metastable bubble solutions for the fourth order Cahn-Hilliard equation.
This would extend previous work which was focused on the dynamics of bubble

solutions for the second order constrained Allen-Cahn equation.

In addition, it would be of interest to develop an efficient and robust numerical method

to treat problems exhibiting metastable dynamics in two spatial dimensions.
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Appendix A

Estimating the weight function w

For ¢ — 0, we now calculate the weight function w(x), defined in (2.26), in both the
outer and the boundary layer regions. In the outer region we use 4 = x — x¢ + t.s.t. to

obtain

w(x) =exp[—f(x —x0)/e] (1 + t.s.t.) . (A.1)
In the left boundary layer near @ = 0 we first integrate (2.13a) to get

up (y) exp (— /Oy =20 + u(2)] dz) = uy,(0), for 0<y<oo. (A.2)

Then, we re-write w(z) exactly as
() = w(0) exp (—5—1 / " (2] dz) . (A.3)

Let y = x/¢ and use @°(x) ~ —xg + ug(¢7'2) in (A.3) to get
w(zy) ~ w(0) exp (_ /0 ’ o 4wy (2)] dz) . (A4)

Comparing (A.4) with (A.2) we observe that w(ey)u}o(y) is asymptotically constant and,

hence,
w(ey)ug,(y) ~ w(0)u, (0) (A.5)
To calculate w(0)uj (0) we evaluate the left side of (A.5) as y — oo using (A.1) and the

decay behavior (2.13b) for w;,. This yields the key identity
w(0)uz, (0) ~ —agvrexp (—f(—xo)/e) , (A.6)
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where a;, and v, are defined in (2.15).
A similar analysis, which we shall omit, can be done in the right boundary layer
region near x = 0 to show that the product w(1 — ey)u. (y) is asymptotically constant

in this region. The key identity, analogous to (A.6), is that

(1= ey (y) ~ (D), (0) ~ aryrs exp (—F(1 - 20)/2) | (AT)

where a,, and v, are defined in (2.19).



Appendix B

Derivation of Equation (3.1)

Consider the Ginzburg-Landau equation (3.3) with Neumann boundary condition in

a cylinder of revolution with cross-section described in dimensional variables by R =
RoF (X/L) (see Figure 3.1):
Up =D (Upr+ R™'Ur + Uxx) + QoQ(U) . (B.1a)
0<X <L O0<R<RF(X/L),
(U, Ux) - (1,=L7'RoF"(X/L) =0, on R=RyF(X/L), (B.1b)
Ux =0, on X =0,L. (B.1c)

Here D and )y are positive constants and Q(U) is described following (3.1). We assume
that the cylinder is long and thin so that Ry < L. In terms of the dimensionless variables
r=Ry'R, x=L7'X and 7 = DL7%*t, (B.1) becomes

Uy =60, + 77 U) + U +QQU), O<a <1, 0<r < F(a), (B.2a)
U, — 83U F'(z)=0, onr=F() (B.2b)
U,=0, onax=0,1 (B.2¢)

Here § = Ry/L < 1 and Q = D™'QoL?.

We now derive a partial differential equation that is valid for U in the limit 6 — 0.
We expand U away from the endpoints at = 0,1, as U = Uy + 82U, +. ... Substituting
this expansion into (B.2a) and (B.2b) and collecting powers of §?, we obtain

Uppr +770U, =0, in0<r< F(x); Uy, =0, on r=F(x), (B.3)
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and
Uirr + T_lUlT = Uy, — QQ(U@) — Upss , n 0<r< F(l‘), (B4a)
Uy, = F'(2)Up, on r=F(z). (B.4b)
The first equation gives Uy = Up(x,t). To determine an evolution equation for Uy we

write (B.4a) as (rUy,), = r(Us; — QQ(Up) — U,y - Integrating this equation with respect

to r from 0 to F(x) and applying the boundary condition (B.4b) we get
UOT — UOxac + 2F_1F/U01’ + QQ(UO) . (B5)

Let A denote the cross-sectional area of the domain, so that A = #F?. Then from (B.5)

and (B.2¢) we get the one-dimensional reaction-diffusion equation

1 _
UOT = Z(AUOx)x + QQ(UO) 9 0<a< 17 t> 07 (B6EL)

Uno(0,7) = Unu(1,7) = 0 . (B.6b)

To study the slow motion of internal layers under (B.6) , we suppose Q > 1 and so we

write Q = 7% for some ¢ < 1. Then, setting ¢ = ¢727, we find that (B.6) reduces to

(3.1) when the cross sectional area A = A(x,¢) is given by A(x,e) =1+ e“g(x)e_s_ld.



