
Localized Pattern Formation in
Continuum Models of Urban Crime

by

Wang Hung Tse

a thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

in

the faculty of graduate and postdoctoral studies
(Mathematics)

The University of British Columbia
(Vancouver)

April 2016

c© Wang Hung Tse, 2016



Abstract

In this thesis, the phenomenon of localized crime hotspots in models capturing

the features of repeat and near-repeat victimization of urban crime was studied.

Stability, insertion, slow movement of crime hotspots and the effect of police pa-

trol modelled by an extra equation derived from biased random walk were studied

by means of matched asymptotic expansions, nonlocal eigenvalue problem (NLEP)

stability analysis, and numerical computations.

In the absence of police, we confirmed the linear stability of the far-from equi-

librium steady-states with crime hotspots in the original parameters regimes as

observed in [47]. The results hold for both the supercritical and subcritical regimes

distinguished by a Turing bifurcation (cf. [48, 49]). Moreover, the phenomenon

of peak insertion was characterized by a simple nonlinear equation computable by

quadratures and a normal form equation identical to that of the self-replication of

Mesa patterns [28] was derived. Slow dynamics of unevenly-spaced configurations

of hotspots were described by a system of differential-algebraic systems (DAEs),

which was derived from resolving an intricate triple-deck structure of boundary

layers formed between the hotspots and their neighbouring regions.

In the presence of police, which was modelled by a simple interaction with crim-

inals, single and multiple hotspots patterns were constructed in a near-shadow limit

of criminal diffusivity. While a single hotspot was found to be unconditionally stable,

the linear stability behaviour of multiple-hotspot patterns was found to depend on

two thresholds, between which we also observe a novel Hopf bifurcation phenomenon

leading to asynchronous oscillations. For one particular, but representative, param-

eter value in the model, the determination of the spectrum of the NLEP was found

to reduce to the study of a quadratic equation for the eigenvalue. For more general

parameter values, where this reduction does not apply, a winding number analysis

on the NLEP was used to determine detailed stability properties associated with

multiple hotspot steady-state solutions.
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Chapter 1

Introduction to the Urban Crime

Model

1.1 A Brief History of the Urban Crime Model

There has been an increasing interest in recent years on developing mathematical tools to

understand and predict spatial patterns of urban crime (cf. [47, 48, 49] and the survey [17]).

One main impetus underlying this effort is the increased availability of residential burglary

data, partially due to improved mapping technology and digital record-keeping. Moreover, not

only are the authorities releasing more data to the public, but also some commercial and non-

profit organizations are starting to utilize such data to create publicly available visualizations

of crime patterns. For example, Fig. 1.1 shows two crime density maps that illustrate the

phenomenon of crime hotspots, where high levels of crime are often concentrated in certain

spatial regions that may evolve slowly over time (cf. [4]). Many studies have hypothesized that

such hotspots are due to a repeat or near-repeat victimization effect, which postulates that

crime in a certain region induces more crime in that and nearby regions (cf. [21, 55]). Such

theoretical descriptions of nonlinear feedback mechanisms that diffuses risk by proximity have

resulted in various modelling efforts, that aim to quantify such mechanisms of criminology to

provide an explanation for the emergence and persistence of crime hotspots.

In [47, 49], Short et al. introduced an agent-based model of urban crime that takes into
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Figure 1.1: Burglary hotspots in West Vancouver, B.C., Canada (left) and Santa Clara-
Sunnyville, California, US (right). Generated by raidsonline.com [44] using publicly available
crime data for residential and commercial burglaries. Shown pictures are for a full year begin-
ning August 2014.

account the features of repeat or near-repeat victimization of urban crime, and derived a con-

tinuum limit using methods similar to those used in analyzing biased random walk models in

mathematical biology. In dimensionless form, the continuum limit of this agent-based model is

the two-component reaction-diffusion (RD) system

At = ε24A−A+ ρA+ α , ρt = D∇ ·
(
∇ρ− 2ρ

A
∇A

)
− ρA+ γ − α , (1.1)

with no-flux boundary conditions.

Here, ρ represents the density of criminals, A measures the “attractiveness” of the environ-

ment to burglary, and the term −D∇ · (2ρ∇A/A) models the tendency of criminals to move

towards sites with a higher attractiveness. In addition, α > 0 is the constant baseline attrac-

tiveness, while γ − α, with γ > α, models a constant rate of background re-introduction of

criminals. The constant 0 < ε � 1 models the small diffusive spread of the attractiveness,

which is relatively much slower compared to the movements of criminals, while the constant D,

which represents the diffusivity of criminals, was not present in the form of the model originally

proposed in [47]. It is added here for uniformity in the subsequent presentations of results of

this dissertation, and the choice of the form presented in (1.1) will be justified in due course of

our analysis. Further details of the model are given in [47] and in Section 1.4 as well, where

we describe an agent-based model whose continuum limit is a three-component PDE extending

(1.1).
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We now turn to review briefly the history of the development of the model and the surround-

ing literature. In [47], the authors performed numerical simulations of the discrete agent-based

model, and crime hotspots were clearly observed for some parameter choices. To study the range

of parameters that would give rise to crime hotspots, they deduced the two-component PDE

system (1.1) from the formal continuum limit of the agent-based model and performed Turing

stability analysis from the constant equilibrium state. They were able to produce numerical

simulations of the full deterministic PDE system to exhibit crime hotspots when the parameters

predicts Turing instability. Furthermore, they observed that hotspots are formed only if areas

of high criminal activity are separated far enough, and only when attractiveness diffuses over

shorter distances. Otherwise, hotspots cannot be numerically observed. In other words, the

diffusivity of the attractiveness, the parameter ε2, is necessarily small for crime hotspot to exist

numerically. This suggests that the system (1.1) possesses hotspots in the steady state only

when it is singularly perturbed.

An admitted insufficiency in the initial work [47] was the lack of consideration of the impact

of law enforcement on crime patterns. Thus, in a subsequent work [48], Short et al. stud-

ied the effect of suppression and investigated the conditions for dissipation of crime hotspots.

Expounding on the finding that their model predicts hotspots only when the diffusion rate of

risk is small, they performed weakly nonlinear analysis to determine that Turing bifurcation

was subcritical and classified hotspots in the full numerics as being either subcritical or su-

percritical. By manually introducing large perturbations at the hotspots in their numerical

simulations, they found that suppression of supercritical hotspots will cause risk to diffuse ra-

dially, forming a transient “ring-like structure”, which subsequently disintegrated into multiple

hotspots (see Fig. 10 of [48]). This phenomenon was referred to as “hotspot displacements”. In

contrast, when suppressing a subcritical hotspot, no such transient states were formed and the

suppression effect was observed to persist without causing displacement or production of new

hotspots. The intention of this numerical experiment was to distinguish the qualitative features

of supercritical and subcritical hotspots, which have apparently similar localized structures in

the solution profile, but differ markedly in their response to hotspot suppression. This is an

interesting observation especially for criminologists, among which contains disagreeing groups,

some doubting and some affirming the virtue of hotspot policing.
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Shortly afterwards, Jones, Brantingham and Chayes, the latter two being co-authors of the

initial work [47], published another work [22] which augments the initial work by consider-

ing possible models of police deployment strategies by means of introducing an extra compo-

nent to the two-component PDE. They modelled it in two ways: firstly, by modifying crime-

attractiveness perception by criminals when police are present; secondly, by the deterrent effect

acting on the criminals directly when the police are located at the same place (they assumed

the amount of immediate apprehension of lawbreakers was negligible). They focused more on

discussing what deployment strategy could maximize the deterrent effect on the criminals, and

they proposed three variants of police patrolling strategies: “random walkers”, “cops on the

dots” and “peripheral interdiction”. By considering the continuum limits, both the former two

models resulted in an extra PDE modelling the police movements, while the same effort proved

difficult for the last model. This work has a strong influence on our work when we developed

the form of our model (1.20) in the presence of police.

Meanwhile, the mathematical modelling of crime is gaining momentum in terms of public

interest and recognition (cf. [11]). From within the mathematical community, an increasing

amount of effort was invested to establish the theoretical validity of the models, and to extend

the original model, or even to consider alternative mathematical basis of crime hotspots (cf.

[17]).

For the continuous Short’s model (1.1), there have been a few other previous studies, in

addition to [47, 48, 49], on its pattern formation properties. For the parameter regime D � 1,

hotspot equilibria and their stability properties were analyzed in [29] by a combination of

formal asymptotic methods and results from the spectral theory of nonlocal eigenvalue problems

(NLEP). In [2] the existence of these hotspot equilibria for the regime D � 1 was established

rigorously using a Lyapunov-Schmidt reduction. In [46] the local existence of solutions to the

crime model in multidimensional domains was established. In [7], the branching behaviour near

the Turing point associated with the spatially homogeneous steady-state was characterized

rigorously. Similar bifurcation theoretic results characterizing branching behaviour from the

spatially homogeneous steady-state for some extensions of the basic crime model (1.1) are

given in [18]. There are also new mathematical models that attempt to extend Short’s model

(1.1) by incorporating the action of the police (see [22, 41, 45] for such PDE models). Other
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types of non-PDE mathematical models that attempt to reformulate the mathematical basis

of crime hotspots, or introducing police deterrence in a different way also exist (cf. [1, 17, 56]

and the references therein). In this dissertation, we introduce a three-component PDE model

(3.3) that extends (1.1). The model is heavily influenced by the work in [22] and [45], where

the police interaction introduced is a variant of hotspot policing that was discussed in [56].

As mentioned above, the key question that [49] attempts to address is whether crime

hotspots can be eradicated by one-time suppression. They conclude that whether hotspot polic-

ing will be a successful strategy or not depends on the system parameters, and they classify

crime hotspots as either supercritical or subcritical by the parameter regime that such solutions

reside in. This will become one of the key themes in our analysis presented in Chapter 2 in that

we work towards a more complete description of crime hotspots in both the supercritical and

subcritical regimes, and at the same time shed light on the issue of crime hotspot displacement

and annihilation. In Chapter 3, we use a continuous parameter that spans the spectrum be-

tween purely random policing to focused hotspot policing to seek an optimal policing strategy.

The optimal policing strategy was measured by its efficacy in destabilizing preexisting crime

hotspots. However, compared to Chapter 2, the results in this chapter are, in comparison, more

preliminary in terms of application, and the central focus is to examine how much we could

extend the tool-set used in the study of other reaction-diffusion (RD) system by dint of their

structural similarities. For example, while the hotspot solution profile construction by means

of matched asymptotic expansions are quite similar, the associated NLEP stability analysis is

now rather intricate except for a particular parameter choice where it simplifies considerably.

For the methodology of this dissertation, the closest predecessor is the article by Kolokol-

nikov et al. in [29], which contains the first attempt of studying the stability of crime hotspots

for the model by Short et al. in [47] in the far-from equilibrium regime. Realizing that the PDE

system is fundamentally singularly perturbed, they constructed steady-states with hotspots di-

rectly using matched asymptotic expansions and then studied their stability with respect to

key model parameters. Their far-from equilibrium results also connect with those found by lin-

earity stability and weakly nonlinear analysis in [47, 48], by means of a numerically computed

bifurcation diagram (cf. Fig. 7 of [29]). Our new work follows the approach in [29] and extends

the analysis by solving the conjectures concerning the dynamics of hotspots, and augmenting
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the equations by deriving a police PDE equation from scratch, and then studying the equi-

librium and stability problems. As a result of the research in the course of the development

of this dissertation, a large portion of Chapter 2 and the Section 3.6 of Chapter 3 have been

published respectively in [51] and [37], and with further work being organized into new papers

to be submitted in the future.

1.2 Comparisons to Other Systems of Reaction-Diffusion Type

The urban crime model with a new police component, given in (1.20), is also interesting math-

ematically because it possesses various properties that are not observed in similar systems of

reaction-diffusion (RD) type. There are sufficient similarities between (1.20) and the RD models

that exhibits localized patterns, for e.g. the Gierer-Meinhardt, Gray-Scott, Brusselator and the

Schnakenburg models, to name a few (cf. [36, 54] and the references therein), so that the tools

developed for such models are also applicable to a large extent. For example, in this disserta-

tion, the study of the existence and the linear stability (in O(1) time-scales) of multiple crime

hotspots has drawn much influence from the corresponding study of multiple-spike solutions

(cf. [13], [20], [24], [52], [53], [54] and also the references therein), and the methodology extends

quite naturally from previous work. However, there are various novelties both in terms of the

mathematical techniques developed and the results, which we describe briefly in this section.

Firstly, in terms of the asymptotic construction of a steady state pattern with localized

structures of high amplitude, which are usually located in an “inner region” in a matched

asymptotic expansion procedure, the interaction with the corresponding “outer region” is crucial

in determining various properties of the localized structure, and notably the amplitude of the

structure. In the references cited above, the background states in the “outer region” are usually

quite simple, e.g. constant or solutions of a linear differential equation. However, in Chapter

2, we see that the background state is highly nonlinear and such a nonlinearity in the “outer

region” lends to the possibility of “peak insertion” governed by thresholds, which explains

the emergence to further localized crime hotspots. Such a threshold phenomenon cannot be

described by elementary functions, which was the case when the shadow limit or a weaker

coupling (cf. [29]) is considered.
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Secondly, the interaction between the inner and outer regions is also considerably more

complex in technical terms. In particular, to construct an approximation of a quasi-steady

state that evolves slowly in time, new nested boundary layers in between the inner and outer

regions are required and switchback terms were necessary to complete the matching procedure.

The use of switchback terms also arise in the singular perturbation analysis of some other

problems, including model problems of low Reynolds number flows (cf. [31], [32], [42]), and

the analysis in [33] of singular solutions to a PDE model for the deflection of a micro-plate

capacitor. The increasing technical effort that is required to produce a satisfactory correction to

the leading order theory also prompted us to consider alternatives. In particular, we devised an

algebraically simpler procedure, which was somewhat inspired by the renormalization approach

in [8]. This approach is presented in this dissertation in Section 2.5 and the result was that the

key effects from the switchback correction terms could be effectively incorporated in a relatively

simple way.

The resolution of the nested boundary layers between the inner and outer regions also led

to a novel form of equations governing slow dynamics of crime hotspots. For the dynamics

of a single spike in standard singularly perturbed RD systems, such as the Gierer-Meinhardt,

Schnakenberg, and Gray-Scott systems, studied in [9], [14], [15], [19], [43], [50] (see also the

references therein), the governing equations were ODEs. In contrast, for the slow movement of

crime hotspots studied in Section 2.7, the dynamics of a single hotspot is found to be governed by

a system of differential algebraic equations (DAEs). For the case of multiple hotspots, a coupled

system of DAEs was derived, and these asymptotic results were found to agree favourably with

full numerical simulations of the PDEs.

With regards to the problem of studying the linear stability on O(1) time scales of a multi-

hotspot steady-state, the results in both Chapter 2 and 3 are also quite novel. In Section 2.3

for the D = O(1) regime for the basic crime model with no police, we found unconditional

stability for any number of crime hotpots (as long as they exist as steady states). This stands

in sharp contrast to many other RD systems defined on a finite domain, and also with regards

to the stability analysis of [29] for the near-shadow (large diffusivity) regime D � 1, where

explicit stability thresholds in D were obtained. In terms of instability, the results in Chapter

3 for the urban crime model with police intervention also point to new possibilities not seen, to
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the best of our knowledge, in other RD systems. For instance, in Section 3.4, at a particular

choice of system parameter for the three-component system with the police component, a novel

oscillatory instability that is asynchronous was found and characterized explicitly. We believe

asynchronous oscillatory instability is a general trait exhibited by this system, though a full

characterization is currently lacking due to the complexity of the NLEP in the general case. In

contrast, for the case of Gray-Scott and Gierer-Meinhardt model studied in [9, 52, 50], where

a similar analysis was performed, the dominant oscillatory instabilities of the spike amplitudes

were all found to be synchronous.

The difficulty of the stability problem for the urban crime model with police is also exem-

plified by the fact that the NLEP studied in Section 3.2 has two nonlocal terms, while most of

the RD systems studied in the past have only one nonlocal term. The novelty in the structure

of the NLEP problem requests that new techniques be developed to analyze them, and also

points to potentially richer behaviours that were not observed in previous studies of other RD

systems.

Another feature of the rich structure of the systems studied in this dissertation is their

rather intricate bifurcation diagrams of steady-state solutions. By using well established nu-

merical continuation and evolution software (cf. [12, 3]), we were able to compute global

bifurcation diagrams for the “far-from equilibrium” steady states and determine their stabil-

ity. The structure we observed is rather intricate, yet possessing symmetry. In particular, we

performed path-following numerical study of the steady states, similar to what is done in [35],

but for a finite domain instead of a (truncated) infinite domain. Our conclusions were quite

different from that in [35], which we believe to be caused by the nature of the domain topology.

In an infinite domain, the phenomenon of homoclinic snaking is well-studied in many other RD

systems, such as the Swift-Hohenberg model (see [5] and the references therein). In [35], the

authors demonstrated numerically the existence of wave-packet type localized solutions which

leads to a pattern of well-separated hotspots. However, in a finite domain with other parame-

ters in the same regime as in [35], we observed a closed homotopy of localized equilibria with

a single hotspot bifurcating out of a subcritical Turing point. We remark that it has been

shown recently in [6] that homoclinic snaking behavior is a rather generic feature of solutions

to certain types of RD systems near a subcritical Turing bifurcation point.
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1.3 The Structure of This Dissertation

To provide a more thorough introduction to the model we study in this dissertation, in Section

1.4, we relate principles in criminology to the definition of a new agent-based model which

extends that of [47] to include police interactions with the criminals. A key feature of this

section is the idea to use a new form of biased random walk to model police patrol with different

degrees of focus, modelled by a parameter k, to sites attractive to criminals. Then, in Section

1.5, we derive the continuum limit of this agent-based model to arrive at a three-component

system which will become the centre of the study of this dissertation.

The remainder of the dissertation is divided into two chapters.

In Chapter 2, we study the case when police are absent, i.e. the same PDE that is derived

in [47] but defined on a bounded 1-D domain. Unlike the analysis in [29], we study the regime

ε � 1, D = O(1) where there is stronger interaction between the two components in the RD

system. The key results are that the far-from equilibrium existence and stability theory do

not depend on whether the criminal reintroduction rate is in the Turing stable or unstable

regime. However, a peak insertion phenomenon was found to occur precisely when the crime

reintroduction rate is higher than half the baseline attractiveness (which is the Turing unstable

regime). Moreover, applicable to both regimes, we derived an asymptotic description of the

slow dynamics of crime hotspots where the hotspots undergo mutual repulsion.

In Chapter 3, we study the case when policemen are present, who interact with the criminals

via a simple interaction dynamics. We also study the problem on a bounded 1-D domain but

in the weaker interaction asymptotic regime ε � 1 and D = O(ε−2) as considered in [29] for

the basic urban crime model. The key results are the construction of multiple crime hotspots

using matched asymptotic expansions, the unconditional linear stability of a single hotspot,

lower and upper thresholds for stability and instability, respectively, of multiple hotspots, and

finally the existence of a Hopf bifurcation for multiple hotspots for parameters between the

lower and upper thresholds. This instability is shown to lead to asynchronous oscillations in

the amplitudes of the hotspots.

In both chapters, the key results from, for instance, formal asymptotic expansions, were

also stated as propositions. However, the results may be formal and we do not imply a level

9



of mathematical rigour usually expected for proofs from a careful consideration of function

spaces. Instead, we give evidence to the validity of our principal results by performing numerical

simulations at appropriately chosen model parameters.

1.4 An Agent-Based Model of Urban Crime with Police Patrol

This section follows the approach in the original work in by Short et al. in [47], a result of the

UC MaSC Project group located at University of California, Los Angeles, which includes both

mathematicians and criminologists. Following [47], we will also formally derive the continuum

limit of the discrete model, which leads to a coupled PDE system of reaction-diffusion type.

In [47], the authors drew support from both evidence from field data and well-established

criminological theories of urban crimes to devise a model that aimed at reproducing the emer-

gence, dynamics and steady-state properties of spatio-temporal clusters of crime, which is known

as crime hotspots.

They chose household burglary as the prototypical crime to model due to the relative sim-

plicity arising from the fact that sites of criminal activity are basically immobile. Their discrete

model was based on three key ideas:

Firstly, two agents were assumed on a lattice which represents possible sites of burglary. The

first “agent” was an intangible one called the attractiveness, measuring the crime susceptibility

of each site, and it is perceptible by the second agent, the criminals, who were assumed to be

random walkers, but with bias in that they are more likely to burglarize and roam towards sites

with higher attractiveness. This results in a nonlinear drift term in the diffusion of criminals.

Secondly, a burglary event triggers a positive feedback via the increase of attractiveness of

the same site or nearby-sites which is to model the criminological theory of repeat or near-repeat

victimization. This results in a nonlinear coupled dynamics between the attractiveness and

criminals. Moreover, criminals were assumed to be removed from the system after a successful

burglary, but a constant background rate of introduction replenishes the number of criminal

agents that roam on the lattice.

Lastly, corresponding to the observation of a slow proliferation of illegal activities towards

neighbourhoods of crime hotspots, possibly due to various environmental cues and known pop-
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ularly as the “broken windows” effect, the attractiveness agent is also assumed to diffuse, but

in a much slower rate compared to the criminals. It is by this assumption that the eventual

continuum model is naturally singularly perturbed by the diffusivity of attractiveness (ε2 � 1

in our subsequent model parameters).

Our work begins with a similar agent-based model which extends Short’s model in [47] de-

scribed above by incorporating a police agent. The model was modified from previous attempts

to model police influence to criminal behaviours by deterrence but not direct apprehension. The

closest model is particular case by Jones et al. in [22], where they model the criminal-police

interaction by “behaviour modification”, while the police movement was modelled to be of the

“cops on the dot” type. The “cops on the dot” terminology also appeared in [56] where instead

of deriving a PDE as a continuum limit, they assumed the police effect to be centred at the lo-

cations of crime hotspots, and look for solutions to a constrained minimization problem defined

on an appropriately chosen function space. See also [41] for another method of incorporating

police by means of an extra PDE.

The model in [22] is a natural extension of the initial model by Short et al., and the key

idea that we are interested in this work is that we can consider patrolling policemen as random

walkers biased towards sites with higher attractiveness, like criminals, for which Jones et al.

termed “cops on the dot” in [22]. We attempt to generalize this idea to accommodate different

degrees of focused patrolling strategy using a degree parameter k on top of the attractiveness

field, which we found flexible to accommodate the whole spectrum of police patrolling behaviour

from pure random walk, to a more containment approach, and to very focused patrolling that

deploys most of the policemen towards the centres of vulnerable sites.

Similar to [22], we will derive in Section 1.5 a continuum limit of the agent-based model

we define in this section. The result will be an extra PDE for the police term coupled to the

original continuous Short’s model (1.1) by the PDE for the criminals only. It is the subject

of the subsequent chapters by which we answer questions concerning the emergence, dynamics

and stability of crime hotspots and the effects of police patrol.

Finally, we make a few remarks that compares our model to other related models in the

literature. Our model and the variants in [22], do not make the assumption that the presence

of police would alter the movements of criminals, in contrast to the models presented in [41].
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Moreover, we also take a more conservative approach in the efficacy of police deployment. Unlike

the identically named, but mathematically different version of “cops on the dots” by Zipkin in

[55], who emphasized the advantage of police over criminals due to a more centralized planning

and higher degree of collaboration, we do not envision the action of the police to be necessarily

minimizing the the crime at each crime hotspots. Instead, we begin with the assumption that

police agents are essentially a type of biased random walkers not unlike the criminals in their

movement, both of which may bias their movements due to the perception of attractiveness

(or, “risk”, in police’s perspective). Moreover, we mention in passing that according to our

leading order steady-state theory in Section 3.1, such a conservative model can already predict

a critical value of police deployment that would preclude the existence of steady-state crime

hotspots.

We now give the details of our agent-based model by both summarizing the work in [47, 22]

and augmenting it with our new modelling efforts for the police term.

1.4.1 A City with a Boundary Modelled by a Lattice

We describe the targets of burglary in an urban area using a square lattice x = (i, j), where

0 ≤ i ≤ M and 0 ≤ j ≤ N , upon which we define moving “agents” with numerical values

evolving with a discrete time variable t. The distance between two lattice point is fixed to

be l and the time-step of the simulation is fixed to be δt. Note that by nature of this spatial

configuration, no agent can leave or enter the lattice. This will be connected to the type of

boundary condition we assume for the final PDE that we derive as a continuum limit of the

following model.

At each point x and time instant t we associate four discretely evolving values: attractiveness

A(x, t), number of crimes E(x, t), criminals N(x, t) and policemen R(x, t). Here, we begin by

a overall sketch of the ideas that define our understanding of the relationships between these

four numbers.

The attractiveness at the site is defined as the sum of a static term A0 and a dynamic term

B, i.e.

A(x, t) = A0(x) +B(x, t).
12



The static term can represent the sum of a variety of factors including the security design of

urban homes etc., while the dynamic term refers to how the average burglar perceives of the

desirability of the site. This dynamic term can change over time and is significantly affected

by the number of crimes that occur close in time and space.

The number of crimes E(x, t) is incremented when the criminals, with number recorded by

N(x, t), decide to burglarize. This is assumed to happen with higher probability depending on

the attractiveness A(x, t) at the same site. The increase in the number of crimes E(x, t) will in

turn contribute to the increase of the dynamic portion of attractiveness, i.e. B(x, t).

After committing a burglary, the criminals involved will return home, leading to a decrease

of the number N(x, t). Unlike the discrete model in [47], this is not the only mechanism through

which the number of criminals is decreased in our model. Instead, we introduce the new agent

R(x, t), which records the number of policemen located at a particular site. The number of

criminal N(x, t) will be decreased at a rate that increase with the number of police R(x, t) that

is present at the same site.

While the number of criminals N(x, t) will be replenished uniformly on the lattice at a

constant rate, we do not assume any mechanisms for either the increase or decrease of policemen

R(x, t), i.e. the total number of policemen is conserved throughout.

In the next subsections, we describe in more detail the working mechanisms of this agent-

based model and relate them to the criminology being modelled.

1.4.2 Key Probabilities that Determines the Actions of the Criminals and

the Policemen

There are two key human agents: the criminal and the policeman. The probabilities that govern

their actions is central to the formulation of this agent-based model.

We describe first the probabilities that determine the actions of the criminal which we call

“windows-breaking” and “roaming”. More precisely, each criminal is allowed to actively perform

one of these two actions at every time step, i.e. burglarize the site or leave for a neighbouring

site.
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Windows-breaking

The probability for which a certain criminal located at x will burglarize the site is defined by

the Poisson process

pv(x, t) = 1− e−A(x,t)δt. (1.2)

Note that as A and δt vanish, pv vanish as well. Also, as A→∞, we have pv → 1− as stipulated

by the meaning of attractiveness. Moreover, after each burglary, we assume that the burglar

does not commit another crime, but instead return home so we increase the count of crimes

E(x, t) by 1 but reduce the count of criminal N(x, t) by 1. Finally, the number of burglars are

maintained by a uniform background re-introduction rate Γ.

Roaming

Since the lattice is square, there are four neighbouring sites for the criminal to move to. We

define the probability of moving to one of the neighbouring sites x′ from x at discrete time

instant t by

pm(x′, t; x) = A(x′, t)∑
x′′∼xA(x′′, t) , (1.3)

where x′′ ∼ x denotes the four neighbouring sites to x and includes x′. The form above means

that the random movement towards the four immediate neighbours is biased in favour of higher

attractiveness A. More precisely, for a particular neighbour x′, pm(x′, t; x) is larger when A(x′, t)

is larger.

Next, we describe the probabilities that determine the actions of the policemen, which we

call “deterring” and “patrolling”. The reason for modeling deterrence as the only positive effect

of police presence is that, according to [22] and the references there-in, it is documented that the

vast majority of residential burglaries go unsolved. Therefore, we make the same assumption

as in [22] that the main effect of police modelled is not intercepting but deterring crime. In

terms of our variables, that means we do not assume any direct effect on the number of crimes,

E(x, t). It is reasonable to posit that the presence of policemen may decrease the attractiveness

of the site, and in particular the dynamic component B(x, t). However, as in [22], we focus

our modelling effort on the deterrence effect and the way policemen patrol on the grid, which
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effectively means we disregard any coupling effect that could exist between the attractiveness

A(x, t) and police presence R(x, t), but focus on the coupling between the criminals N(x, t) and

the policemen R(x, t).

In conclusion, we will only consider the effect of the number of policemen present, R(x, t),

on the number of criminals present, N(x, t). Together with a biased random walk of the police

that mimics the mentality of the criminals, the two major actions of the police term R(x, t) are

summarized as follows.

Deterring

There are many possible ways to model the interaction of the policemen R(x, t) and criminals

N(x, t). We present two of the most intuitive and simple interaction mechanisms.

The arguably simplest way is to assume that the deterrence effect is directly proportional

to the number of policemen present, with no stochastic elements. This implies the number of

criminals N(x, t) is decremented by a term proportional to R(x, t) at every time instant, which

we simply express as

− νR(x, t), (1.4)

where ν is the constant of proportionality describing the deterrent effect of the policemen.

Another possibly more realistic way to model the deterrence effect is to imitate the classical

predator-prey dynamics of Lotka–Volterra type and to regard the police as the “predator” and

criminals as the “prey”. Therefore, the deterrence effect is assumed to be directly proportional

to the product of the number of criminals and the number of policemen. However, we would

like to draw a key distinction here that we do not assume the totality of criminals either at a

particular site or on the whole lattice to be actually visible to policemen. Instead, potential

criminals (who have yet to commit a burglary), at their random encounter with policemen at the

same site will return home by the deterrence effect of the police, which is directly proportional

to the number of policemen present. However, we assume that the policemen can perceive the

same environmental cues of crime attractiveness as the criminals do. In other words, whilst the

criminals (predator) are foraging for vulnerable sites and moving towards attractive sites (prey),

the police (predator) also moves towards attractive sites (but not the criminals themselves) to
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deter away criminals (prey).

Therefore, we model the probability that criminals will decide to go home upon contact

with police also as a Poisson process with probability

pu(x, t) = 1− e−µR(x,t), (1.5)

where µ is measures the strength of the deterrence in such close contact events. We remark here

that in both events if a criminal burglarizes, i.e. “meets its prey”, or encounters a policeman,

i.e. “meet its predator”, the criminal is removed from the system.

Patrolling

Here, we model another significant action of the police, which draws inspiration from former

models, and in particular, we consider the following as a generalization of the “cops on the

dots” policing strategy devised by Jones et al. in [22].

Since policemen are assumed to detect the attractiveness of the sites in the same way as

criminals, we assume that their patrolling behaviour is also directed towards neighbouring sites

in favour of sites with higher risk of crime. However, the police may act in a more (or less)

aggressive manner in focusing their patrolling efforts to more vulnerable sites. In the two

extreme ends, a policeman can wander aimlessly like a random walker, or move always to the

most vulnerable site in the neighbourhood.

To model this variation of patrolling behaviour, we introduce a simple degree parameter k

on top of A to define the probability that the police will move from x to a neighbouring site x′

by

pk(x′, t; x) = Ak(x′, t)∑
x′′∼xAk(x′′, t)

(1.6)

(cf. the paragraph immediately above formula (2.7) in [22]).

When k = 1, this coincide exactly with the “cops on the dots” strategy, which we also call

mimicry patrolling, and the police is roaming in a biased random walk in the exact same fashion

as criminals. Next, we observe that, in particular, as k → 0+, the probabilities will result in a

pure random walk, which was mentioned as the less favourable strategy in [22]. On the other
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hand, if k →∞, clearly we have

pk(x′, t; x) =


1 if x′ = max{A(x′′, t) : x′′ ∼ x}

0 otherwise .

This means that the policeman has both the perfect competence to understand the attractive-

ness of the neighbourhood and the total willingness to patrol there.

We will not study both of these extreme cases in isolation, but instead allow the parameter

k to range from 0 to ∞, so that we may study how the degree of focus may affect both police

movement and the resulting deterring effect on the criminals, and ultimately the existence and

stability of crime hotspots. We also remark that this is rather different from the assumptions

made by Zipkin et al. concerning their version of “cops on the dot” strategy in [56]. The authors’

main assumption about the policemen is that they are able to move in a highly coordinated way

to actively suppress crime hotspots. In contrast, we do not assume any coordination among the

members of the police force, but instead consider them as completely independent individuals.

Finally, note that if neighbouring sites are burglarized, thus raising the dynamic attractive-

ness, the possibility that nearby police agents also move towards those sites is increased in a

manner similar to criminals. In other words, the “broken windows effect” also acts upon the

police.

1.4.3 Discrete Evolution of Agents’ State and the Localized Spread of the

Risk of Crime

Having defined the key probabilities that determine the active and passive actions of the crimi-

nals and police, we turn to calculate the values of each of the agents at the next time step. Most

importantly, the criminological theory of repeat or near-repeat victimization is introduced in

this subsection.

Fading memory of criminal events

As in [47], we assume that the dynamic attractiveness decays with time exponentially as memory

of crime fades, which is a feature of many social and ecological phenomena. Thus, for a site
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without crime for a long time the dynamic attractiveness B should decay to zero as well, and

the total attractiveness A should return to the baseline value A0. This is modelled by

B(x, t+ δ) = B(x, t)(1− ωδt), (1.7)

where ω > 0 controls the rate of memory fade.

Repeat and near-repeat victimization

Another crucial feature of the discrete model by Short et al. in [47] is that the burglary event

raises the perception of all criminals in terms of the dynamic attractiveness of the very same

site. Moreover, it is theorized that the increased risk also diffuses to the neighborhood as well.

This is modelled by the update

B(x, t+ δt) =

(1− η)B(x, t) + η

4
∑
x′′∼x

B(x′′, t)

 (1− ωδt) + θE(x, t). (1.8)

The parameter θ > 0 measures the effect of each crime on the dynamic attractiveness of the

very site. In other words, the θE(x, t) term models the repeat victimization effect resulting from

each burglary. On the other hand, the parameter 0 ≤ η ≤ 1 measures the amount of perceived

attractiveness that is transferred to the immediate neighbours. This models the near-repeat

victimization phenomenon, where a site with high attractiveness is thought to also cause more

crimes in the neighbourhood.

We believe that very often a small η > 0 is reasonable, which will subsequently lead to

our PDE in the continuum limit to be singularly perturbed. In particular, a value higher than

η = 1
2 is rather counter-intuitive because location drifts of crime hotspots were documented to

be rather slow in time, which effectively means the diffusivity-like constant η should also be

low. In [47, 48], the authors also used a relatively small value of η.

Biased random walk and the dynamics of criminal movement

Since at each site, we assumed that the criminals would either burglarize or roam to a nearby

site, the new criminal count N(x, t+δt) is the sum of criminals coming in from all the neighbour-
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ing site x′ ∼ x. These criminals are those who did not commit a burglary (with the probability

1 − pv) and have chosen to move to this site x from their original site x′ by a biased random

walk (with probability pm(x; t, x′)). In this way, we get

N(x, t+ δt) =
∑
x′∼x

N(x′, t)
(
1− pv(x′, t)

)
pm(x; t, x′) + Γδt .

Deterrent effect and mimicry movement of police agents

In Short et al’s discrete model in [47], they stopped at the formula above for N(x, t). Now, we

must include the presence of the police agents R(x, t). As mentioned in the previous subsection,

we will discuss two cases of the effect of police.

For the simple interaction case (1.4), we assume that the number of criminals that go home

is directly proportional to the number of police present at the same site, and thus the number

of criminals at the next time-step is given by:

N(x, t+ δt) =
∑
x′∼x

N(x′, t)
(
1− pv(x′, t)

)
pm(x; t, x′)− νR(x′, t) + Γδt . (1.9)

For the predator-prey type interaction (1.5), we assume that each criminal located at x will

go home with the probability pu(x, t) upon encountering each patrolling police officers, and so

we arrive at

N(x, t+ δt) =
∑
x′∼x

[
N(x′, t)

(
1− pv(x′, t)

)
pm(x; t, x′)

]
(1− pu(x, t)) + Γδt, (1.10)

where we note that the number of police R(x′, t) is implicit in the definition of pu(x, t).

As for police officers, since they are patrolling, we also assume that each officer at site x will

proceed to patrol the neighbouring site, while the police at any neighbouring site x′ will come

to the site x also by the focused patrolling mechanism described above. Therefore, we deduce

that

R(x, t+ τδt) =
∑
x′∼x

R(x′, t)pk(x; t, x′), (1.11)

where we also multiplied δt by τ to reflect the relative speed of police to the criminals. Recall
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also that we do not assume any mechanisms for removing and introducing police so that the

total number of police should be conserved.

1.5 Deriving the Continuum Limit as a System of PDEs

In what follows, we formally derive a continuum limit of this agent-based model to motivate

the form of the specific PDEs considered in this work. We remark that the derivation is

formal (referred to as “naÃ¯ve continuum limit” in [22]) and we will assume certain correlations

between certain terms to be negligible, as mentioned in Remark (1.1) below.

Before we proceed, let us define the “discrete Laplacian”, which we will need to apply several

times to simplify algebra and the presentation:

4F (x, t) = 1
l2

∑
x′∼x

(
F (x′, t)− F (x, t)

)
= 1
l2

∑
x′∼x

F (x′, t)− 4F (x, t)

 ,

where F (x, t) is some agent that evolves on the grid. Therefore, we have

∑
x′∼x

F (x′, t) = l24F (x, t) + 4F (x, t) . (1.12)

This will allow us to write our formulas entirely in terms of the variables x and t.

We will derive a formal continuum limit from the discrete model, with attractiveness given

by (1.8), the criminals given by (1.9) or (1.10) (simple interaction and predator-prey type

interaction respectively), and the police given by (1.11).

1.5.1 Derivation of the Individual PDEs

For (1.8), we apply (1.12) to B(x′, t) and replace E(x, t) = N(x, t)pv(x, t) to get

B(x, t+ δt) =
(
B(x, t) + ηl2

4 4B(x, t)
)

(1− ωδt) + θN(x, t)pv(x, t) .

Remark 1.1. As pointed in [22], and also quoted in [56], the assumption that the random

variables N and pv are independent may not hold. However, as in [22], we assume that the

correlation does not contribute a leading-order effect on the total number of crimes, which is
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eventually represented by ρA in the continuum limit. The same point is also relevant to our

subsequent derivation of the police deterrent effect in the predator-prey type interaction case.

We also assume that the random variables N and pu are essentially independent, so that the

effect of criminal deterrence is represented eventually by ρU .

Note that the argument of each function is (x, t), so we now subtract B(x, t) from both sides

and divide by δt to find, (dropping the arguments for notational simplicity)

∂B

∂t
∼ η

4
l2

δt
4B − ωB + l2

δt

(
N

l2

)
θAδt ,

using pv = 1− e−Aδt ∼ Aδt.

Since δt→ 0, we maintain the the ratios of parameters that depend on the length and time

scales of the model to be constants and make the following replacement:

l2

δt
→ D, θδt→ e,

N

l2
→ ρ .

In this way, we arrive at the following PDE:

Bt = η
D

4 4B − ωB + eρA .

In terms of the total attractiveness A = A0 + B, and assuming A0 to be uniform in space

also, then we can write

At = η
D

4 4A− ωA+ eρA+ ωA0

For the probability pm associated with the biased random walk of criminals, which appears

in both (1.9) and (1.10), we obtain that

pm
(
x, t; x′

)
= A(x, t)∑

x′′∼x′ A(x′′, t) = A(x, t)
l24A(x′, t) + 4A(x′, t) , (1.13)

upon using the discrete Laplacian formula (1.12).

For the simple interaction case (1.9), we then have
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N(x′, t+ δt) = A(x, t)
∑
x′∼x

N(x′, t) (1− pv(x′, t))
l24A(x′, t) + 4A(x′, t) − νR(x′, t) + Γδt. (1.14)

In contrast, for the predator-prey interaction case (1.10), we have instead that

N(x′, t+ δt) = A(x, t)
∑
x′∼x

N(x′, t) (1− pv(x′, t)) (1− pu(x, t))
l24A(x′, t) + 4A(x′, t) + Γδt ,

, A(x, t)
∑
x′∼x

S(x′, t) + Γδt ,

where we defined S(x, t) in the second equality.

Therefore, we have

A(x, t)
(
l24S(x, t) + 4S(x, t)

)
+ Γδt . (1.15)

We first focus on the more complicated case (1.15). We subtract N(x, t) from both sides

of (1.15), and divide by l2, applying N
l2 → ρ, and then by δt to find that (dropping common

arguments again):
∂ρ

∂t
∼ 1
δt

(
A4S + 4A

l2
S − ρ

)
+ γ . (1.16)

Here we made the replacement Γ/l2 → γ for the parameter Γ which depends on the length-scale.

Now recall that pv ∼ Aδt as well as for pu = 1 − e−µR, since R is small when l → 0. We

then apply the replacement R
l2 → U to find

pu ∼ µR = µUl2 .

By using this relation, we can simply the key term S in (1.16) as follows:

S = N (1− pv) (1− pu)
l24A+ 4A ,

∼ l2

4A
ρ (1−Aδt)

(
1− µUl2

)
1 + l2

4A4A
,

∼ l2

4Aρ (1−Aδt)
(
1− µUl2

)(
1− l2

4A4A
)
.

This yields that
S

δt
∼ l2

4δt
ρ

A
= D

4
ρ

A
,

22



and consequently
A4S
δt
∼ D

4 A4
(
ρ

A

)
,

which gives the first term in (1.16).

Next, observe that

4AS
l2
− ρ ∼ ρ (1−Aδt)

(
1− µUl2

)(
1− l2

4A4A
)
− ρ ,

∼ −ρAδt− l2µρU − l2

4
ρ

A
4A,

which implies to
1
δt

(4AS
l2
− ρ

)
∼ −ρA−DµρU − D

4
ρ

A
4A.

Thus, by combining with the previous term, we arrive at the PDE

∂ρ

∂t
= D

4 A4
(
ρ

A

)
− ρA−DµρU − D

4
ρ

A
4A

= D

4

(
A4

(
ρ

A

)
− ρ

A
4A

)
− ρA−DµρU. (1.17)

Similarly, for the easier case (1.9) when simple interaction is assumed, we have instead that

∂ρ

∂t
= D

4

(
A4

(
ρ

A

)
− ρ

A
4A

)
− ρA−DνU. (1.18)

We pause to remark that there is an applicable identity A4
( ρ
A

)
− ρ
A4A = ∇·

(
∇ρ− 2ρ

A∇A
)
,

for which a more general case that also applies to an analogous term in the police equation will

be derived in the next subsection.

Next, we turn to (1.11), where we rewrite the expression as

pk(x; t, x′) = Ak(x′, t)∑
x′′∼xAk(x′′, t)

= Ak(x, t)
l24Ak(x′, t) + 4Ak(x′, t) ,
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upon using the discrete Laplacian (1.12). Then, we calculate that

R(x, t+ τδt) = Ak(x, t)
∑
x′∼x

R(x′, t)
l24Ak(x′, t) + 4Ak(x′, t) ,

, Ak(x, t)
∑
x′∼x

T (x′, t) ,

= Ak(x, t)
(
l24T (x, t) + 4T (x, t)

)
.

Similar to the criminal equation, after subtracting both sides by R(x, t), dividing by l2δt

and replacing R
l2 → U , we find

τ
∂U

∂t
∼ 1
δt

(
Ak4T + 4Ak

l2
T − U

)
,

where there is an extra τ on the time derivative due to chain rule.

Next, we observe that

T = R

l24Ak + 4Ak = l2

4Ak
U

1 + l2

4Ak4Ak
∼ l2

4AkU
(

1− l2

4Ak4A
k

)
,

which gives T
δt ∼

D
4
U
Ak

. In this way, we get

Ak4T
δt

∼ D

4

(
Ak4

(
U

Ak

))
.

Next, observe that

1
δt

(
4Ak

l2
T − U

)
∼ 1
δt

[
U

(
1− l2

4Ak4A
k

)
− U

]
∼ −D4

U

Ak
4Ak.

This leads to the PDE for the police

τ
∂U

∂t
= D

4

(
Ak4

(
U

Ak

)
− U

Ak
4Ak

)
.
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1.5.2 The Final Form of the PDE system and a Special Identity for the

Nonlinear Diffusion

Having converted the discrete models to their corresponding continuum limits, we now establish

the following identity that converts the PDEs to our final form:

Ak4
(
U

Ak

)
− U

Ak
4Ak ≡ ∇ ·

(
∇U − 2kU

A
∇A

)
. (1.19)

To derive this identity, we proceed directly by using the Leibniz rule: ∇2 (fg) = f∇2g +

2∇f · ∇g + g∇2f . We obtain that

Ak4
(
U

Ak

)
= Ak

(4U
Ak

+ 2∇U · ∇
( 1
Ak

)
+ U4

( 1
Ak

))
,

= Ak
(4U
Ak
− 2k
Ak+1∇U · ∇A+ k(k + 1)

Ak+2 U |∇A|2 − k

Ak+1U4A
)

= 4U − 2k
A
∇U · ∇A+ k(k + 1)

A2 |∇A|2 − k

A
4A ,

U

Ak
4Ak = U

Ak
∇ ·

(
kAk−1∇A

)
,

= U

Ak

(
Ak−2|∇A|2 + kAk−14A

)
,

= k(k − 1)
A2 U |∇A|2 + k

A
4A .

By combining these results together we obtain that

Ak4
(
U

Ak

)
− U

Ak
4Ak = 4U − 2k

A
∇U · ∇A+ 2k

A2U |∇A|
2 − 2k

A
U4A ,

= 4U − 2k
(
∇
(
U

A

)
· ∇A+ U

A
4A

)
,

= 4U − 2k∇ ·
(
U

A
∇A

)
= ∇ ·

(
∇U − 2kU

A
∇A

)
,

as desired.

Finally, for notational convenience, we let q = 2k and after nondimensionalization and
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renaming of constants, we arrive at the following three-component RD system:

At = ε2Axx −A+ ρA+ α, (1.20a)

ρt = D (ρx − 2ρAx/A)x − ρA+ γ − α− I(ρ, U), (1.20b)

τuUt = = D (Ux − qUAx/A)x , (1.20c)

where two cases of I(ρ, U) were given by:

(i) Simple interaction case (corresponding to (1.18))

I(ρ, U) = U, and

(ii) Predator-prey type interaction case (corresponding to (1.17))

I(ρ, U) = ρU.

There are two further remarks concerning the form of (1.20) before we present various results

about (1.20).

Firstly, we remark that due to a slightly different way of nondimensionalization, we obtained

a model with an extra parameter D as compared to the model in [22, 47], where D = 1. A

non-unit value of D can also be derived from the case D = 1 using a simple domain scaling

argument. We will retain the diffusivity parameter D for ease in our subsequent analysis.

Concerning the criminal-police interaction term I(ρ, U), we also remark that the predator-prey

type interaction is to be preferred over the simple interaction case for purposes of application.

However, due to the difficulty in the NLEP stability analysis with multiple nonlocal terms (see

the introductory paragraphs to Chapter 3 on page 95). The simple interaction case is favoured

for mathematical feasibility to begin our research in our study of police-criminal interaction

and its effect on crime hotspots.
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Chapter 2

Crime Hotspot Formation and

Long-time Behaviours

In this chapter, we consider (1.20) when U ≡ 0, i.e. with no police involvement in the crime

dynamics and consider the finite one-dimensional domain −` < x < `. This reduces to the

two-component reaction-diffusion (RD) system originally introduced by Short et al. in [47],

which we express in the following form

At = ε2Axx −A+ ρA+ α , ρt = D

(
ρx −

2ρ
A
Ax

)
x
− ρA+ γ − α , (2.1)

with no-flux boundary conditions ρx = Ax = 0 at x = ±`. Note that ε2 � 1 is a singular

perturbation parameter, and we assume D = O(1).

We remark that by the simple rescaling x̃ = x/
√
D, (2.1) can be recast to the interval

(−`/
√
D, `/

√
D), with the new diffusivities ε̃ = ε/

√
D and D̃ = 1. This recovers the exact

same form given in [47] and at (1.1) without the factor D. However, in our analysis, rather

than using the domain length as a bifurcation parameter, we will consider (2.1) on a fixed

domain, but allow the criminal diffusivity D = O(1) to vary while treating the diffusivity ε2

of the attractiveness field as an asymptotically small quantity. This has an advantage both in

the notational simplicity in the asymptotic analysis of multiple crime hotspots, and also the

numerical computations, where our formulation avoids problems arising out of domain rescaling

in scenarios where the numerically computable range in terms of ε is too restrictive.
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The study of (2.1) in this chapter is directly related to that of [29], where D = O(ε−2) was

assumed and a similar tool-set of matched asymptotic expansions, supplemented by numerical

computations were used in [29] as well. The work in this chapter is a variation of what is studied

in [29] when the coupling of the two PDEs in (2.1) is stronger, which will lead to a couple of

novel phenomena.

In addition to [29], the previous work that is most relevant to our study is that of [35]. For

D = 1, in [35] the bifurcation software AUTO-07p (cf. [12]) was used to numerically show that

there is an intricate homoclinic snaking bifurcation structure for the steady-states of (2.1) on

the infinite line when the parameter γ is below the Turing bifurcation threshold γc, for which

γc ∼ 3α/2 as ε→ 0. At finite ε, the localized states for A that were computed in [35] are wave-

packet type solutions consisting of closely spaced pulses. In the singular limit ε→ 0, and with

α < γ < γc ∼ 3α/2, these wave-packet localized solutions were found in [35] to lead to a pattern

of well-separated hotspots. An asymptotic analysis, based on geometric singular perturbation

theory, was given in [35] for the construction of a solitary hotspot solution on the infinite line

in the subcritical case α < γ < 3α/2. However, as remarked in [35], there were some issues in

the asymptotic matching procedure in this construction that were left unresolved. Homoclinic

snaking behaviour has been well-studied in other systems, such as the Swift-Hohenberg model

(see [5] and the references therein). Moreover, it has been shown recently in [6] that homoclinic

snaking behaviour is a rather generic feature of solutions to certain types of RD systems near

a subcritical Turing bifurcation point.

In contrast to [35], our study of hotspot equilibria and the stability in the singular limit ε→ 0

will focus on the finite domain problem, and our method of matched asymptotic expansion and

NLEP stability analysis work equally well for both the supercritical regime γ > 3α/2 and the

subcritical regime, for which the spatially homogeneous steady-state is linearly unstable and

stable respectively. Moreover, our numerical studies in Section (2.4.2), which is an extension

of Fig. 7 in [29], show that the crime hotspot solutions follow a closed-loop which both begins

and ends at the Turing bifurcation point from the subcritical side, instead of a snaking path in

the infinite domain case of [35].

The outline of this chapter is as follows. In §2.2, we provide a leading-order construction of

a single hotspot steady-state solution in the limit ε→ 0 for D = O(1). By reflecting and gluing
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this single hotspot solution, equilibria with multiple hotspots are obtained. We emphasize a

distinction between the supercritical and subcritical regime by a formula of the outer problem

(2.23). In §2.3 we show that steady-state patterns with K interior hotspots are linearly stable

on an O(1) time-scale regardless of D = O(1). In §2.4 we present numerical bifurcation results

for hotspot equilibria computed using the bifurcation software AUTO-07p (cf. [12]). For the su-

percritical regime, we present results that exhibit a saddle-node bifurcation structure of hotspot

equilibria and a peak insertion behaviour near the saddle-node bifurcation point. For the sub-

critical regime, we present a closed homotopy of homoclinic in a three-dimensional diagram

and show the existence of a new type of unstable hotspot that connects the weakly nonlinear

regime to the far-from equilibrium regime through a saddle-node bifurcation. In §2.5 we present

a higher-order asymptotic theory to construct a steady-state hotspot solution, and in §2.6 we

study analytically the onset of peak insertion behaviour near the saddle-node bifurcation point.

In §2.7 we derive a system of differential-algebraic equations (DAE) characterizing the slow

dynamics of a collection of hotspots for (2.10). Finally, in §2.8, we briefly discuss a few open

problems that warrant further study.

2.1 Linear, Weakly Nonlinear and Far-from Equilibrium Regimes

In this section, we review results from linear stability analysis of [49, 29] and recall conclusions

from the weakly nonlinear analysis in [48] that lead to the classification of the parameter

regime into supercritical (γ > 3α/2) and subcritical (γ < 3α/2) regimes. Finally, we motivate

our study in the far-from equilibrium regime by a few numerical computations to highlight the

existence of crime hotspots away from the Turing bifurcation point. This will be the subject of

the remainder of this chapter.

The system (2.1) has the unique spatially homogeneous steady-state solution given by

Ae = γ and ρe = 1− α/γ > 0. (2.2)

The linear stability analysis of [49] showed that this solution is linearly unstable in the limit
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ε→ 0 when

γ >
3
2α , (2.3)

and that a spatially heterogeneous solution bifurcates from the spatially homogeneous steady-

state at the bifurcation point γ ∼ 3
2α when ε→ 0.

Here, reproduce some details about the Turing bifurcation that has been done in [49, 29].

First, we linearizing (2.1) around the steady-state by introducing the perturbation

A = Ae + a0e
imx+λt, ρ = ρe + ρ0e

imx+λt .

This leads to the dispersion relation

(
λ+Ae +Dm2

) (
λ+ ε2m2 + (1− ρe)

)
+Ae

(
ρe −

2D
Ae

ρem
2
)

= 0 . (2.4)

To calculate the instability band, we set λ = 0 to (2.4) and let ε� 1, with m = O(1), which

yields the lower threshold

Dm2
lower = Ae

3ρe − 1 , mlower = γ√
D
√

2γ − 3α
. (2.5)

To obtain the upper edge of the band we let m� 1 with ε2m2 = O(1) to find

ε2m2
upper + (1− ρe) = 2ρe, mupper = 1

ε

√
2γ − 3α
√
γ

. (2.6)

To find the most unstable mode, we differentiate (2.4) with respect to m and set dλ/dm = 0

to find

λ

(
1 + ε2

D

)
= 3ρe −

Ae
D
ε2 − 2ε2m2 .

In this way, we obtain that the dominant growth rate

λdom ∼ 3ρe − 1 = 2− 3α/γ , (2.7)
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and that the most unstable mode is

mdom ∼ ε−1/2
[(2ρe

D

)(3
2Ae + λdom

)]1/4
= ε−1/2

[
2
(1− α/γ

D

)(3
2γ + λdom

)]1/4
. (2.8)

In other words, for an initial condition condition consisting of a random perturbation of

a spatially uniform steady-state, we can calculate the characteristic half length of the pattern

from the Turing instability to be

`Turing ∼
π

mdom
= ε1/2π

[
2
(1− α/γ

D

)(3
2γ + λdom

)]−1/4
.

For α = 1, γ = 2, D = 2, ε = 0.05, we calculate `Turing ≈ 0.59. We observe from the full

numerical results computed from the PDE shown in Fig. 2.1 and 2.2 that this Turing instability

can lead to the creation of either a single or a double hotspot pattern on the domain (−1, 1).

Moreover, the weakly nonlinear analysis of [48] showed that this Turing bifurcation is sub-

critical when ε� 1 (see also Fig. 7 of [29]). The theory in [48], based on a normal form equation

derived from a multiple-scales approximation, is able to characterize the development of spatial

patterns near the Turing bifurcation point. However, it is not capable of describing the highly

localized spatial patterns observed in full numerical simulations of (2.1) when the parameter

values are not near the Turing point. More specifically, an initial random perturbation close

to an unstable spatially homogeneous steady-state typically leads to highly localized spatial

patterns, consisting of the concentration of criminal activity in localized spatial regions. We

refer to such patterns as hotspot patterns. A localized hotspot solution, not amenable to an

analytical description by a weakly nonlinear analysis, was observed in the numerical solutions

of [48].

To illustrate these hotspot patterns, we perform full numerical simulations of (2.1) using the

software PDEPE in MATLAB R2013b. For ε = 0.05, D = 2, γ = 2, and α = 1, in the right panel

of Fig. 2.1 we plot A and ρ at some large time when the initial condition is a small random

perturbation of the unstable spatially uniform state as shown in the left panel of Fig. 2.1. In the

supercritical regime, γ > 3α/2, the spatially uniform state is unstable and we observe, for large

time, that the solution approaches a steady-state pattern with one interior hotspot. For the
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same parameter set, but where the initial condition for A has two localized bumps, in Fig. 2.2

we show the initial formation of a two-hotpot pattern on an O(1) time-scale, followed by a very

slow dynamics of the two-hotspot pattern towards its steady-state limit. One of the main goals

of this chapter is to give an explicit analytical characterization of the slow dynamics of such

quasi-steady state hotspot patterns.

For the subcritical regime α < γ < 3α/2, we also observe from (2.7) that a crime hotspot

born in the supercritical regime persists into subcritical regime without dissipating, even though

the spatially homogeneous equilibrium (2.2) is stable in this regime. The leading order theory in

the next section will show that asymptotic structures of crime hotspot in both the supercritical

and subcritical regimes are largely rather similar, which also lead to identical linear stability

predictions.
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Figure 2.1: A Turing instability leading to a localized steady-state solution. Parameter values
are ε = 0.05, D = 2, ` = 1, γ = 2, α = 1, so that γ > 3α/2. The initial condition (left panel)
for the numerical solution of (2.1) is a small random perturbation of the spatially uniform state
given by A(x, 0) = Ae + rand ∗ 0.1, ρ(x, 0) = ρe, where Ae = γ = 2 and ρe = 1 − α/γ = 0.5.
The right panel shows the hotspot solution at the final time t = 105 with A (solid curve) and
ρ (dotted curve). Notice that the range of A and ρ are on different scales.

2.2 Super- and Sub-critical Crime Hotspots: Leading-Order

Steady-State Theory

In our analysis of (2.1) it is convenient to introduce the new variable V , as first introduced in

[29], defined by

V ≡ ρ/A2 . (2.9)
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Figure 2.2: Small initial bumps in A quickly evolve into hotspots, which then move slowly
to their steady-state locations. Parameter values are ε = 0.05, D = 2, ` = 1, γ = 2, α = 1,
so that γ > 3α/2. The initial condition (left panel) for the numerical solution of (2.1) is
A(x, 0) = Ae+ ε

∑2
i=1 sech(x−x0,i

ε ) and ρ(x, 0) = ρe, where x0,1 = −0.7, x0,2 = −.7, Ae = γ = 2,
and ρe = 1− α/γ = 0.5. We only plot A.

In terms of A and V , (2.1) transforms to the PDE system

At = ε2Axx −A+ V A3 + α ,
(
A2V

)
t

= D
(
A2Vx

)
x
− V A3 + γ − α , (2.10)

on −` < x < `, with Ax = Vx = 0 at x = ±`. The corresponding steady-state problem for

(2.10) is

ε2Axx −A+ V A3 + α = 0 , D
(
A2Vx

)
x
− V A3 + γ − α = 0 . (2.11)

We use the method of matched asymptotic expansions in the limit ε → 0 to construct

a leading-order approximation of a steady-state solution with a single hotspot, or spike, for

(2.11) on a domain of length 2`. For a fixed D, we will show that such a solution exists for

any ` regardless of whether α < γ < 3α/2 (subcritical) or γ > 3α/2. We emphasize that the

construction does not depend on whether γ is in the subcritical or supercritical case, but only

on the positivity of γ − α, i.e. nonzero crime reintroduction rate.

Moreover, we characterize a threshold phenomenon that occurs if and only if γ > 3α/2,

so that a critical length `max exists so that ` < `max is required for a solution to exist. The

hotspot solution for (2.11) is an even solution with a spike in the profile of A centred at the
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midpoint of the interval −` < x < `, and the solution satisfies the no-flux boundary condition:

Ax = Vx = 0 at x = ±`.

By reflecting and gluing copies of this single hotspot solution defined on (−˜̀, ˜̀) and ˜̀= `/K,

we can readily obtain a Khotspot solution on the original interval (−`, `). The key difference

between our analysis and that in [29] is that here we consider the D = O(1) regime, which

leads below to a nonlinear ODE characterizing the outer solution. In [29], the limit D � O(1)

was considered, which leads to a linear outer problem and, consequently, a more elementary

construction of the hotspot solution than for the case D = O(1).

As in [29], a hotspot is characterized by a localized region of width O(ε) near x = 0 where

A � 1 and V � 1. In the outer region, where |x| � O(ε), we have from (2.11) that both A

and V are O(1) when D = O(1).

To determine the scaling for the inner region, we introduce the inner variable y = ε−1x so

that (2.11) becomes

Ayy −A+ V A3 − α = 0 , Dε−2
(
A2Vy

)
y
− V A3 + γ − α = 0 . (2.12)

In this inner region, we pose A = O(ε−p), with p > 0, and V = O(εq). In order to obtain a

homoclinic solution solution characterizing the hotspot core, we must balance O(A) = O(V A3)

in the first equation of (2.12), which yields q = 2p. To determine the second scaling relation, we

integrate the second equation in (2.11) over |x| ≤ ` to obtain that
´ `
−` V A

3 dx = O(1). In order

that the inner region makes an O(1) contribution to this integral, we require that 1+q−3p = 0.

With q = 2p, this yields that p = 1 and q = 2.

One of the key differences between the analysis for our D = O(1) regime and that in [29]

for D � O(1), is that here V is characterized by a rapid transition of scale from V = O(ε2) in

the inner region to V = O(1) in the outer region. In the analysis of [29] for the D � 1 case, it

was found that V � 1 uniformly across −` < x < `. A detailed analysis of this rapid transition

of scale for V , which requires introducing an intermediate layer between the inner and outer

scales, is essential for characterizing the slow dynamics of a collection of hotspots. This more

refined analysis is given below in §2.5. In the remainder of this section we only construct a

leading-order hotspot solution.
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The simple scaling analysis above motivates the following inner expansion for (2.12):

A ∼ ε−1A0 +A1 + . . . , V ∼ ε2V0 + ε3V1 + . . . .

Upon substituting this expansion into (2.12) we obtain that V0 is a constant independent of y

and that A0 satisfies A0yy −A0 + V0A
3
0 = 0. This yields that

A0 = w(y)√
V0

, (2.13)

where w(y) =
√

2 sech y is the unique homoclinic solution to

wyy − w + w3 = 0 , −∞ < y <∞ ; w(0) > 0 , wy(0) = 0 , w → 0 as y → ±∞ .

(2.14)

A remarkable fact is that the crime density ρ is a constant independent of all model parameters

at the hotspot, and is given to leading order by

ρ = A2V ∼
(
A0
ε

)2 (
ε2V0

)
= w2(x/ε) . (2.15)

Moreover, the maximum crime density is at the centre of the hotspot

max ρ ∼ w2(0) = 2 . (2.16)

To determine V0, we first need to construct an outer solution on the intervals 0+ < x < ` and

−` < x < 0−. Since the hotspot solution is even, we need only consider the range 0+ < x < `.

On this range, we expand A ∼ a0 + o(1) and V ∼ v0 + o(1). Upon substituting this expansion

into (2.11) we obtain

D
(
a2

0v0x
)
x
− v0a

3
0 + γ − α = 0 , v0 = g(a0) ≡ (a0 − α)

a3
0

. (2.17)

In order that v0 can match to the inner solution, we require that v0(0+) = 0, so that a0(0+) = α.

Then, upon combining the two equations in (2.17), it follows that in the outer region a0 satisfies
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the nonlinear BVP

D (f(a0)a0x)x = a0 − γ , 0+ < x < ` ; a0(0+) = α , a0x(`) = 0 , (2.18a)

where we have defined f(a0) by

f(a0) ≡ (3α− 2a0)
a2

0
= a2

0g
′(a0) . (2.18b)

2.2.1 Monotonicity of the Outer Problem

For the well-posedness of this outer problem (2.18a) we require that f(a0) is non-vanishing on

0+ < x < `. Since the only zero of f(a0) is at 3α/2 and f(α) = α−1 > 0, we shall consider

the range α < a0 < 3α/2. If one assumes γ > 3α/2, which implies that we are in the Turing-

unstable regime, it follows that the right-hand side of the differential equation in (2.18a) is

always negative on the range α < a0 < 3α/2. This yields that a0x > 0 on 0+ < x < ` when

α < a0 < 3α/2. However this is not a necessary condition and we will show that γ > α

is sufficient to guarantee that a0x > 0 whenever a solution exists to (2.18a). This is a crucial

property of the solution a0(x) that will enable us to reduce the problem (2.18a) to a quadrature.

Before solving the ODE, we first illustrate the structure of the leading-order outer solution

from a phase plane viewpoint, which will lead naturally to an argument showing that a0x > 0

whenever γ > α. To do so, we introduce the temporary notation u ≡ a0 and v ≡ f(a0)a0x =

f(u)u′ to rewrite (2.18a) in the following usual form of a dynamical system:

u′ = v

f(u) , v′ = (u− γ)
D

. (2.19)

We seek to identify trajectories in the u, v phase-plane that satisfy u(0) = α and v(`) = 0,

corresponding to the boundary conditions of (2.18a). From the two phase portraits shown in

Fig. 2.3, corresponding to the supercritical case where γ > 3α/2 and subcritical case where

α < γ < 3α/2 respectively, we clearly observe two types of trajectories and a critical threshold

vc for v(0). If v(0) < vc, then the trajectory converges to v(`) = 0 for some finite positive `.
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However, if v(0) > vc, then the solution develops a singularity as

u→
(3α

2

)−
where u′ → +∞ ,

according to (2.19).

For the supercritical case, near where this singularity occurs a new local boundary layer near

x = ` must be constructed. As motivated by the numerical bifurcation results in §2.4, in §2.6 we

analytically show that this singularity behaviour is associated with a fold-point bifurcation of

equilibrium hotspot solutions, and it characterizes the onset of a hotspot insertion phenomena

at x = ` when γ > 3α/2, i.e. when we are in the Turing-unstable regime.

On the other hand, for the subcritical case, we observe that admissible trajectories that

satisfies v(`) = 0 share a common characteristic that u(`) < γ, and so the values of u are away

from the line of singularity u = 3α/2. Therefore, for both cases, assuming only γ > α, we

see that the value of u never exceeds min{γ, 3α/2}. It turns out this can be proved rigorously

which we will present as a lemma. This important observation implies that in particular a0x

(i.e. u′) is always positive.

In other words, a nonzero crime reintroduction rate, i.e. γ > α, which is a rather minimal

assumption for the urban crime model, is sufficient to guarantee a monotonically increasing

behaviour in the attractiveness field A away from the crime hotspot, and regardless of whether

we are in the supercritical (γ > 3α/2) or subcritical regime (α < γ < 3α/2).

We now state and prove the claim.

Lemma 2.1. Any solution to (2.19) on the interval x ∈ [0, `] subject to the conditions u(0) = α

and v(`) = 0 must satisfy that u(x) < γ for all x ∈ [0, `).

We also state an obvious corollary about the monotonicity of the solution which is essential

for our subsequent calculations to reduce (2.18a) to a quadrature, which is valid for any γ > α.

Corollary 2.2. u(x) is monotonically increasing and α < u(x) < γ for all x ∈ (0, `).

Proof: First, we claim that if x0 ∈ (0, `) is a point such that u(x0) < γ, then we must also

have v(x0) > 0. We prove this by contradiction.
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(a) Supercritical case: γ > 3α/2 (b) Subcritical case: α < γ < 3α/2

Figure 2.3: Phase portraits of (2.19) with trajectories emanating from the line u = α. There
are two types of trajectories: (i) those that hit the u−axis are admissible solutions to (2.19)
satisfying v(`) = 0 for some ` > 0, (ii) those that do not, but goes to the line u = 1.5 develops
singularity for finite values of x. The model parameters chosen were D = 1, α = 1 for both
plots and γ = 2.0 and γ = 1.25 respectively for the left and right plots.

Recall that for well-posedness of (2.18a), we required f(u) > 0 which holds only if u(x) <

3α/2 for all x ∈ (0, `) because f(3α/2) = 0. Now, if a solution exists to (2.19), and u(x0) < γ,

then we must have u(x0) < min{γ, 3α/2} so that f(u(x0)) > 0.

Then, if to the contrary v(x0) ≤ 0, then u′(x0) = v(x0)/f(u(x0)) ≤ 0 as well. However,

since x0 was chosen to give u(x0) < γ, we have v′(x0) = (u(x0)−γ)/D < 0. Thus, by continuity,

there is a number x1 such that v′(x) < 0 for all x in [x0, x1). Moreover, we can choose x1 ≤ `

to be the maximal one, so that i.e. v′(x1) = 0.

If x1 < `, then note that v(x0) ≤ 0 and v′(x) < 0 for x ∈ [x0, x1) implies v(x) < 0 and thus

u′(x) < 0 throughout the interval [x0, x1). Therefore, u(x1) < u(x0) < γ. However, substituting

u(x1) < γ to (2.19) gives v′(x1) = (u(x1)− γ)/D < 0 contradicting v′(x1) = 0.

If x1 = `, then v′(x) < 0 for all x ∈ [x0, `). This statement with v(x0) ≤ 0 in turn implies

v(`) < 0 so that the shooting B.C. v(`) = 0 cannot be satisfied, another contradiction.

Therefore, such x1 does not exist and we must have v(x0) > 0 instead. In conclusion, for a

solution to (2.19) exists, we must have v(x0) > 0 whenever u(x0) < γ.

Next, we substantiate the claim that u(x) < γ for all x < `, which will imply v(x) > 0 as

well by the above argument. We again prove this claim by contradiction.
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Since u(0) = α < γ, so suppose, to the contrary that u(x) = γ does happen. Denote x2 ≤ `

to be the first such number so that u(x2) = γ, which means we have u(x) < γ for x ∈ [0, x2).

Then, v(x) > 0 for x < x2 by the previous claim. Moreover, v(x2) > 0 as well because otherwise

v(x2) = 0 together with u(x2) = γ will coincide with the stationary solution u(x) = γ, v(x) = 0

to (2.19), which satisfies an incompatible initial condition u(0) = γ and v(0) = 0. Therefore,

this is a contradiction to the uniqueness of solutions to ODEs.

Now, since v(x2) > 0 and v(`) = 0, we must have x2 < ` and there exists at least one root

to v(x) in the interval (x2, `]. Denote the first root a (if there is exactly one root, then a = `

obviously). Thus the number a ∈ (x2, `] satisfies this condition:

(∗) v(a) = 0, but v(x) > 0 for all x2 ≤ x < a .

Now v(x2) > 0 and v(a) = 0 implies that there exists another number b in (x2, a) such that

v′(b) < 0. But from the equation for v′(x) in (2.19), we observe that

u(b) = v′(b)D + γ < γ .

Here, the strict inequality is essential. Now, from the assumption that u(x2) = γ, this

implies there must exist yet another number c in (x2, b) such that u′(c) < 0. This in turn

means that v(c) < 0 from the equation for u′(x) in (2.19).

By arranging the new numbers in ascending order as x2 < c < b < a, it follows that we

have obtained a number c < a with v(c) < 0, and so contradicting (*).

Therefore, the initial assumption that u(x2) = γ for some x2 < ` must then be false, and

we have thus proved that u(x) < γ for all x < `. The first claim then implies v(x) > 0, and

substituting these results into (2.19), we immediately obtain that v′(x) < 0 and u′(x) > 0,

which proves Corollary (2.2) as well. �

The results above tell us, in particular, that the solution a0 to the nonlinear boundary value

problem (2.18a) must be strictly increasing, i.e. a0x > 0, and it never exceeds γ. Together with
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the solvability restriction that α < a0 < 3α/2, the solution to (2.18a) satisfies

a0(x) < min{γ, 3α/2} ,

which holds in the two cases α < γ < 3α/2 and γ > 3α/2, corresponding to where the spatially

uniform steady-state is Turing stable and unstable, respectively.

2.2.2 Reduction to a Quadrature and Existence of a Maximum Threshold

We may now proceed reduce to reduce the problem (2.18a) to a quadrature.

First, we multiply (2.18a) by f(a0)a0x and integrate the resulting expression using a0x(`) = 0

to get
D

2 (f(a0)a0x)2 =
ˆ x

`
f(a0)(a0 − γ)da0

dη
dη .

Since a0x > 0, we have upon labelling µ ≡ a0(`) that

D

2 (f(a0)a0x)2 =
ˆ a0

µ
f(w)(wγ) dw = G(µ)−G(a0) , (2.20a)

where G(u), satisfying G′(u) = f(u)(γ − u), is given explicitly by

G(u) ≡ 2u− (2γ + 3α) log u− 3αγ
u

. (2.20b)

Notice that G′(u) is also positive on α < u < min{γ, 3α/2} and so the right-hand side of (2.20a)

is positive for all x ∈ (0, `). We remark that in [35], similar integration procedures and phase

plane analysis were found for the slow system in the one-dimensional unbounded domain.

Next, we take the appropriate square root in (2.20a) and integrate from 0 to x to obtain

√
2
D
x =
ˆ a0

α

f(w) dw√
G(µ)−G(w)

, (2.21)

where we used a0(0) = α and the change of variable w = a0(x), which is valid because a′0(x) > 0.

Finally, upon setting x = ` and a0(`) = µ, we obtain an implicit equation for µ given by

√
2
D
` = χ(µ) , χ(µ) ≡

ˆ µ

α

f(w) dw√
G(µ)−G(w)

. (2.22)
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We now show that the function χ(µ) is well-defined for α < µ < min{γ, 3α/2}.

Using f(u) = G′(u)/(γ − u), together with integration by parts, we derive the key formula

χ(µ) =
ˆ µ

α

G′(w) dw
(γ − w)

√
G(µ)−G(w)

= 2
√
G(µ)−G(α)
γ − α

+ 2
ˆ µ

α

√
G(µ)−G(w)
(γ − w)2 dw . (2.23)

This expression shows that χ(µ) is a well-defined, positive and strictly increasing function on

the range (α,min{γ, 3α/2}). Remarkably, this last expression has important consequences that

distinguishes the subcritical regime γ < 3α/2 from the supercritical regime γ > 3α/2.

For the subcritical regime, γ < 3α/2, χ(µ) diverges to +∞ as µ → γ−. Recall that

α < u(x) < min{γ, 3α/2} = γ for this regime, the implicit relation (2.21) maps the range (α, µ)

back to a domain (0, `) of x with unbounded ` as µ→ γ−. Therefore, since the outer problem

is always solvable, a single hotspot solution can be constructed regardless of the half-domain

length ` > 0. In Fig. 2.4b, we plot χ(µ) on this range when α = 1 and γ = 1.25.

shite

In contrast, for the supercritical regime where γ > 3α/2, (2.23) shows that χ(µ) attains its

maximum value

χmax ≡ χ(3α/2) , (2.24)

as µ → (3α/2)−, where the upper bound of the range of u is min{γ, 3α/2} = 3α/2 < γ. In

view of (2.22), this translates to a maximum interval length

`max ≡

√
D

2 χmax , (2.25)

for the outer solution to exist. In Fig. 2.4a, we plot χ(µ) on this range when α = 1 and γ = 2.

2.2.3 Crime Hotspot Insertion - the One-Sixth Rule and Fold Bifurcation

We now proceed to investigate what is the significance of the following implicit relation in the

supercritical regime γ > 3α/2, especially near its criticality:

χ(µ) =
√

2
D
` . (2.26)
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(a) χ(µ) attains a maximum at µ = 3α/2 when γ > 3α/2,
γ = 2.

(b) χ(µ) is unbounded on (α, γ) when α < γ < 3α/2, γ =
1.25.

Figure 2.4: The function χ(µ), from (2.4a), that determines the outer solution for any µ ≡ a0(`)
on α < µ < min{γ, 3α/2}. Common parameter values are D = 1 and α = 1.

Figure 2.5: χmax against γ for five values of α (1.0, 1.25, 1.5, 1.75, 2.0), given by formulas
(2.26) and (2.28). The curves were evaluated on the respective ranges of γ satisfying ((3α/2) ·
1.01, (3α/2) · 2). It is evident from the plots that χmax → +∞ as γ → (3α/2)+.
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Notice that the left-hand side of this expression depends on γ and α, appearing implic-

itly through χ(µ), while the right-hand side depends on the ratio `/
√
D. Thus, this relation

compares the spatial parameters to those that concerns criminology in a nonlinear fashion.

Next, since χ(µ) is monotone, we can invert the one-to-one function χ(µ) to compute a0(`) =

µ = χ−1(
√

2
D `) for any ` ∈ (0, `max]. In this way, we identify v0(`) = g (a0(`)) from (2.17). In

particular, at ` = `max, this gives a maximal criminal density at the endpoint of the interval

(0, `) other than which the crime hotspot exists. The value is given simply by substituting

µ = 3α/2 for the values of a and v in ρ = a2v at x = `:

lim
x→`

ρ = µ2g(µ) = µ− α
µ

= 1
3 , (2.27)

which is a surprisingly simple number independent of all model parameters.

Combining (2.27) with (2.16), we observe that

ρ(`)
ρ(0) ∼

1/3
2 = 1

6 .

This simple observation gives an interesting one-sixth rule for determining whether a crime

hotspot is being born in supercritical regime:

One-sixth Rule The ratio of crime density at a nascent hotspot to a preexisting neighbouring

hotspot is approximately 1/6.

This is the level of criminal density where the outer problem begins to break down and a

possibly new boundary layer emerges at this end of the domain, as was suggested earlier by the

phase portrait description of the system (2.19).

To more accurately determine what actually happens when such a criminal density is reached

at edge of the outer region, we investigate how the solution depends on the parameter D. This

will turn out to be an equivalent but more convenient parameter for bifurcation analysis near

the vicinity where (2.26) begins to break down.

For γ = 2 and α = 1, we calculate numerically from (2.23) (see Fig. 2.4a) that

χmax ≡ χ
(3α

2

)
≈ 1.0561 . (2.28)
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Correspondingly, if we fix `, we can then use χmax to characterize the minimum value Dcrit

of D for which the outer solution exists as

Dcrit ≡
2`2

χ2
max

. (2.29)

In most of our numerical simulations below, we consider the domain (−1, 1) containing K

interior hot-spots. To determine the minimum value of D for this pattern, we simply put

` = 1/K to obtain the critical thresholds

Dcrit,K = 2
K2χ2

max

. (2.30)

To compare with our full numerical results in §2.4, we calculate for α = 1 and γ = 2 that

Dcrit,1 ≈ 1.7930 , Dcrit,2 ≈ 0.4483 , Dcrit,4 ≈ 0.1121 . (2.31)

2.2.4 Determination of Attractiveness Amplitude at the Hotspot

To complete the leading-order theory, we must determine the leading-order constant V0 in the

inner expansion. By using the outer expansion, we obtain the following limiting behaviour from

(2.17) and (2.21):

A ∼ a0(0+) = α , v0x(0+) ∼ g′(α)a0x(0+) = 1
α2

√
2
D

√
G(µ)−G(α) . (2.32)

To determine V0, we integrate the V -equation of (2.11) over an intermediate region (−δ, δ),

with ε� δ � 1, to obtain

D
(
A2Vx

) ∣∣x=δ
x=−δ =

ˆ δ

−δ
V A3 dx+O(δ) . (2.33)

Since δ � ε, the outer expansion (2.32) is used to evaluate the left-hand side of (2.33), upon

noting the symmetry condition v0x(0+) = −v0x(0−). In contrast, since V A3 = O(ε−1) in the

inner region, the integral in (2.33) is dominated by contributions from the inner region where
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A ∼ w/
√
V0 and V ∼ ε2V0. In this way, using δ � ε and w(y) =

√
2 sech y, we calculate that

Dα2
(
v0x(0+)− v0x(0−)

)
= 2Dα2v0x(0+) ∼ 1√

V0

ˆ ∞
−∞

w3 dy =
√

2π√
V0

. (2.34)

Finally, upon using (2.32) for v0x(0+), we obtain

V0 = π2

4D [G(µ)−G(α)]−1 . (2.35)

Here µ = a0(`) is a root of (2.26) and G(u) is defined in (2.20b).

As ε is decreased, and for α = 1, γ = 2 and D = 2, in Fig. 2.6 we compare our leading-order

asymptotic results for εA(0) (left panel) and for ε−2V (0) (right panel) with corresponding full

numerical results computed from (2.11) using the continuation software AUTO-07p (cf. [12]). The

leading-order asymptotic results are εA(0) ∼
√

2/
√
V0 and ε−2V (0) ∼ V0, where V0 is defined in

(2.35). These comparisons show that the leading-order asymptotic theory only agrees well with

the full numerical results when ε is very small. As such, in order to obtain decent agreement

between the asymptotic theory and full numerical results when ε is only moderately small, we

must provide a higher-order asymptotic theory. This more refined asymptotic theory, done in

§2.5, shows that the error in the leading-order prediction is in fact O(−ε log ε), which explains

why the leading-order theory is rather inaccurate unless ε is very small. The asymptotic results

from this improved theory are shown by the thin dotted curves in Fig. 2.6.

2.3 NLEP Stability Analysis

In this section we analyze the stability of steady-state hotspot solutions to (2.10) in the regime

where D = O(1). We show that all eigenvalues λ, with λ = O(1), of the militarization satisfy

Re(λ) < 0 so that steady-state hotspot solutions are stable on an O(1) time-scale.

We let ae(x), ve(x) be a hotspot solution to the steady-state problem (2.11). Recall that in

the inner region near the core of the hotspot, we have ae = O(ε−1) and ve = O(ε2), while both

ae and ve are O(1) in the outer region. Upon introducing the perturbation

A = ae + eλtφ , V = ve + eλtε3ψ ,
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Figure 2.6: Comparison of numerical and asymptotic results for εA(0) (left panel) and for
ε−2V (0) (right panel) as ε is decreased for a single hotspot centred at the origin. The parameter
values are α = 1, γ = 2, ` = 1, and D = 2. The dashed horizontal lines are the leading-order
prediction of εA(0) ≈

√
2/
√
V0 and ε−2V (0) ≈ V0, where V0 is given in (2.35). The thin dotted

curves are from the improved asymptotic theory with V0 now given by (2.81).

into (2.10), we obtain the following singularly perturbed eigenvalue problem on |x| < `:

ε2φxx − φ+ 3vea2
eφ+ ε3a3

eψ = λφ , (2.36a)

D
(
a2
eε

3ψx + 2aevexφ
)
x

= 3a2
eveφ+ ε3a3

eψ + λ
(
ε3a2

eψ + 2aeveφ
)
. (2.36b)

We remark that our choice of O(1) and O(ε3) perturbations for A and V produce a distinguished

balance for all terms in the equation for φ in the inner region, where the length scale is O(ε).

To examine the stability of a single hotspot solution or a multiple hotspot solution we impose

either homogeneous Neumann or Floquet-type boundary conditions, respectively, on x = ±`,

as was done in [29]. However, as we show below, in the regime ε � 1 and D = O(1), the

leading-order stability problem is independent of the specific choice of boundary condition, and

this leading-order problem predicts that hotspot equilibria are unconditionally linearly stable

to O(1) time-scale perturbations.

We begin by deriving the leading-order stability problem for a hotspot solution centred at

the origin in the domain |x| ≤ `. The eigenfunction component φ is singularly perturbed. It

has rapid spatial variation near x = 0, but varies on an O(1) scale away from the hotspot core.

The leading-order stability problem will consist of a nonlocal eigenvalue problem (NLEP) for

φ on the inner-scale centred at x = 0. Alternatively, the eigenfunction component ψ is not

singularly perturbed and varies on an O(1) scale across the entire domain |x| ≤ `.
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In the inner region near the core of the hotspot at x = 0 we introduce the local variables

y = x/ε, φ = Φ(y), and ψ = Ψ(y). Then, from (2.36b), we observe that the leading-order

equation is
(
w2Ψy

)
y = 0. The bounded solution to this equation is the constant solution

Ψ = ψ(0), which must be determined in the ensuing analysis. With regards to Φ, we recall

from §2.2 that ae ∼ ε−1w/
√
V0 and ve ∼ ε2V0. Upon substituting these expressions into (2.36a),

we obtain the leading-order inner problem for Φ(y) on −∞ < y <∞, given by

L0Φ + 1
V

3/2
0

w3ψ(0) = λΦ , L0Φ ≡ Φyy − Φ + 3w2Φ , (2.37)

where Φ→ 0 as |y| → ∞.

2.3.1 Derivation of Jump Conditions

Next, we integrate (2.36b) over −δ < x < δ to derive a “jump condition” for ψ, valid as ε→ 0.

Here we let δ denote any intermediate scale satisfying ε� δ � 1. This integration yields

ε3D
[
a2
eψx

]
0

+ 2D [aevexφ]0 ∼ 3ε
ˆ δ/ε

−δ/ε
w2Φ dy + εψ(0)

V
3/2

0

ˆ δ/ε

−δ/ε
w3 dy

+ λ

[
2ε2
√
V0

ˆ δ/ε

−δ/ε
wΦ dy + ε2ψ(0)

V0

ˆ δ/ε

−δ/ε
w2 dy

]
.

Here we have defined [f ]0 ≡ limx→0+ f(x)− limx→0− f(x). For ε→ 0, we can then neglect the

terms in the square brackets in the expression above, let δ/ε→ +∞, and use ae ∼ α as x→ 0±

from the outer solution. In this way, we obtain the following asymptotic approximation of the

jump condition:

ε3Dα2 [ψx]0 + 2Dα [vexφ]0 ∼ 3ε
ˆ ∞
−∞

w2Φ dy + εψ(0)
V

3/2
0

ˆ ∞
−∞

w3 dy . (2.38)

Next, we examine the outer expansion for φ and ψ in order to estimate the left-hand side

of (2.38). From the outer approximation of (2.36a), we use vε ∼ v0 and aε ∼ a0 to obtain that

(
3v0a

2
0 − 1

)
φ+ ε3a3

0ψ ∼ λφ .
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Then, since v0 = g(a0), where g(a0) is defined in (2.17), we solve for φ0 to obtain

φ = ε3φ̃ , φ̃ ≡
(

a3
0

λ− 2 + 3α/a0

)
ψ . (2.39)

Since α ≤ a0 < min{γ, 3α/2} for |x| ≤ `, we conclude by examining the denominator in (2.39)

that φ̃ is analytic in Re(λ) ≥ 0. We then let x→ 0± in (2.39) to get

φ(0±) = ε3
(

α3

λ+ 1

)
ψ(0) . (2.40)

We then use (2.40), together with vex(0±) ∼ g′(α)a0x(0±) and g′(α) = 1/α3, to estimate

the second term on the left-hand side of (2.38) as

2Dα [vexφ]0 ∼
( 2Dα
λ+ 1

)
ε3ψ(0) [a0x]0 .

In this way, we obtain that the asymptotic jump condition (2.38) for ψ(x) becomes

ε2D

(
α2 [ψx]0 + 2α

λ+ 1ψ(0) [a0x]0
)
∼ 3
ˆ ∞
−∞

w2Φ dy + ψ(0)
V

3/2
0

ˆ ∞
−∞

w3 dy , (2.41)

where a0(x) satisfies the nonlinear BVP (2.18a) in the outer region.

2.3.2 The Outer Problem and Analyticity of Coefficients

Next, we derive the outer problem for ψ(x) on −` < x < 0− and on 0+ < x < ` by considering

the outer limit for (2.36b), where we have aε ∼ a0, vε ∼ v0, and φ ∼ ε3φ̃. This outer problem is

D
(
a2

0ψx + 2a0v0xφ̃
)
x

= 3a2
0v0φ̃+ a3

0ψ + λ
(
2a0v0φ̃+ a2

0ψ
)
, (2.42)

where φ̃ depends linearly on ψ from (2.39). We then substitute (2.39), v0 = g(a0), and v0x =

g′(a0)a0x into (2.42), where g(a0) is defined in (2.17). After some algebra, we obtain that (2.42)

reduces on 0 < |x| < ` to

(
a2

0ψx +
( 3α− 2a0

3α+ a0(λ− 2)

)(
a2

0

)
x
ψ

)
x

=
(

(λ+ 1)a3
0 + λa0(α+ a0λ)

λ− 2 + 3α/a0

)
ψ . (2.43)
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The problem for ψ is to solve (2.43) on the intervals 0 < x < ` and −` < x < 0, together with

the continuity of ψ across x = 0, the jump condition (2.41), and subject to either homogeneous

Neumann or Floquet-type boundary conditions imposed at x = ±` depending on whether we

are considering single or multiple hotspot solutions, respectively. From the solution to this

problem we can determine ψ(0), which is needed for the inner problem (2.37).

The differential equation (2.43) can be written in the general form

(b(x)ψx + b1(x, λ)ψ)x = b2(x, λ)ψ . (2.44)

where b(x) > 0 on 0 < |x| ≤ `. Since α ≤ a0 < min{γ, 3α/2} for |x| ≤ `, we conclude from

(2.43) that b1(x, λ) and b2(x, λ) are analytic in Re(λ) ≥ 0. Since ψ satisfies a linear ODE with

analytic coefficients in Re(λ) ≥ 0, any solution to (2.43) must be analytic in Re(λ) ≥ 0 by

classical ODE theory.

Although it is intractable to determine a closed-form for ψ(x), what is essential in this

context is that we are still able to determine ψ(0) as ε → 0 simply from the leading-order

approximation (2.41) of the jump condition. Since the outer solution satisfying (2.43) is smooth,

we have that ψx(0±) is finite and independent of ε. Letting ε→ 0 in the jump condition (2.41)

we identify that

ψ(0) ∼ −3V 3/2
0

(´∞
−∞w

2Φ dy´∞
−∞w

3 dy

)
. (2.45)

Finally, upon substituting (2.45) into (2.37), we obtain the nonlocal eigenvalue problem

(NLEP)

L0Φ− 3w3
(´∞
−∞w

2Φ dy´∞
−∞w

3 dy

)
= λΦ , −∞ < y <∞ ; Φ→ 0 as |y| → ∞ . (2.46)

As shown in Lemma 3.2 of [29], the NLEP (2.46) is explicitly solvable in the sense that its dis-

crete spectrum can be found analytically. Lemma 3.2 of [29] shows that any nonzero eigenvalue

of (2.46) must satisfy Re(λ) < 0.
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Figure 2.7: Stability of O(ε−1)-amplitude and O(1)-amplitude hotspots. Parameter values are
ε = 0.01, D = 1, α = 1, γ = 1.25. Left plot: the O(ε−1)-amplitude hotspot persists in this
subcritical regime. Right plot: the O(1)-amplitude hotspot is transient and dissipates into the
Turing-stable homogeneous state.

2.3.3 Conclusions on Stability for Various Patterns

Since this NLEP is independent of the boundary conditions for ψ on x = ±`, it applies to

both single and multiple hotspot solutions. It is also independent of whether γ > 3α/2 or

α < γ < 3α/2 because the outer solution and its derivatives are the same near x = 0. In other

words, crime hotspots in both supercritical and subcritical regimes are both stable to linear

perturbations.

In Fig. 2.7, we confirm numerically the stability of a single hotspot solution and plot the

profile of the attractiveness profile A. We also show a different type of hotspot that is found

from numerical computations of the bifurcation diagram. This kind of hotspot has an O(1)

amplitude for the attractiveness A, but is unstable. It is an open problem to both construct

and show analytically the instability of this kind of hotspot, which we do not consider in Section

2.2.

Finally, we recall for comparison that, for the regime D = O(ε−2) studied in [29], the NLEP

problem for O(1) eigenvalues of a K−hotspot solution on an interval of length S is given by:

L0Φ− χjw3
(´∞
−∞w

2Φ dy´∞
−∞w

3 dy

)
= λΦ , −∞ < y <∞ ; Φ→ 0 as |y| → ∞ . (2.47)
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The multiplier

χj = 3
[
1 + D0α

2π2K4

4(γ − α)3

( 2
S

)4
(1− cosπj/K)

]−1

, j = 0, . . . ,K − 1 ,

where D0 ≡ Dε2 corresponds to different “modes” of instability. For a single hotspot solution,

i.e. K = 1, we have χ0 = χ1 = 3 which gives exactly the same NLEP (2.46) and, thus, the

solution is stable for allD0. For a multiple hotspot solution, stability is governed by the smallest

multiplier χK−1. This gives a stability threshold

DL
0K ≡

2(γ − α)3(S/2)4

K4α2π2 [1 + cos(π/K)] , (2.48)

so that a K−hotspot pattern is stable only when D0 < DL
0K . In contrast, there is no such

thresholds when D = O(1) and multiple hotspot patterns are stable whenever they exist.

2.4 Bifurcation Diagrams of Hotspot Equilibria: Numerical Con-

tinuation Computations

2.4.1 Supercritical Regime - Fold Points for Spike Insertion

In this section we show full numerical bifurcation results for hotspot equilibria of (2.11) com-

puted using the continuation software AUTO-07p (cf. [12]). These computations show that new

hotspots are created near the endpoints x = ±l or at the midpoint between two hotspots when

D approaches a saddle-node bifurcation value, which we denote by Dfold. We call this phe-

nomena hotspot or spike insertion. Our numerical results show clearly that the fold-point value

Dfold tends, as ε → 0, to the critical value Dcrit, as derived from the leading-order asymptotic

theory of §2.2. However, unless ε is very small, our results show that the leading-order theory

for the critical value of D is quantitatively rather inaccurate. This motivates the need for a

higher-order asymptotic theory in §2.5.

By using AUTO-07p we compute from (2.11) the bifurcation diagrams of branches of steady-

state solutions starting with either K = 1, K = 2, or K = 4, interior hotspots. Instead of

using the L2 norm, it is more convenient to use the boundary value A(`) as the vertical axis on
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the bifurcation diagram, as this prevents the overlapping of solution branches with boundary

hotspots. The horizontal axis on the bifurcation diagram is D. Our computational results for

the parameter set γ = 2, α = 1, ` = 1, and ε = 0.01, displayed in Fig. 2.8(a) show that as D

is varied, the steady-state solution branch with one interior hotspot is connected to a solution

that has an interior hotspot together with a hotspot at each boundary. Boundary hotspots are

created at the endpoints x = ±` near the fold point associated with the small norm branch for

A(`) versus D.

Similar bifurcation results starting from either two or four interior hotspots on the small

norm A(`) versus D branch are shown in Fig. 2.8(b) and Fig. 2.8(c) to be path-connected

to solutions with mixed boundary and interior hotspots. We observe that new hotspots are

nucleated at the endpoints x = ±` and at the midpoint of the interval between adjacent

hotspots at the fold point associated with the small norm solution branch.

In each set of the four solution profiles in Fig. 2.8 we observe, as expected by symmetry, that

the right top and bottom figures have the same value of D at the two fold points where D is

smallest. In each case, as we follow the small norm solution branch of A(`) versus D towards the

fold-point value, we observe a decrease in the amplitude of the hotspot and a gradual bulging

up of the solution at the midpoint between hotspots or at the domain boundaries (i.e. at the

boundary of the outer regions). This leads to a large amplitude pattern of hotspots when the

boundary value A(`) exceeds a certain value close to 3α/2 = 1.5.

As compared to the large O(ε−1) scale of the hotspot amplitude, the nucleation or formation

of hotspots near the boundary, or at the midpoint between hotspots, is not so conspicuous in our

plots, especially when ε is small. However, the implication of hotspot nucleation is interesting

qualitatively. It predicts that a new crime hotspot can emerge from an essentially quiescent

background state when the parameters are close to a fold-point value in D.

Next, we show how the criminal density changes at the onset of spot insertion. In Fig. 2.10

we give various plots of ρ = A2V for values of D at and close to the fold point. We remark that

since ρ = O(1) in both the inner and outer regions, i.e. globally, the spot insertion phenomenon

can be observed quite clearly in these plots.

We now discuss whether the solution branches in Fig. 2.10 corresponding to parameter

values immediately above the fold point, consisting of “small” hotspots between the large am-
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Figure 2.8: The plots (a), (b) and (c) show the continuation of steady states starting with
either one, two, or four, interior hotspots, respectively, for ε = 0.01. The other parameters are
γ = 2, α = 1, and ` = 1. The solid and dashed curves in the subplots show the profiles of A
and V , respectively, at various values of D specified on top of the plots. These values of D
correspond to the marked points on the bifurcation diagram as shown on the left. Notice that
the range of A and V are on different scales.
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plitude hotspots, are linearly stable or not. An analytical stability theory of the solution branch

beyond the fold point would first require an asymptotic construction of such an alternating pat-

tern with new boundary layers for these “small” hotspots (since the previous outer solution is

no longer valid), and would be rather difficult to undertake. Some directions are outlined in

Section 2.8. Although we do not pursue the analysis here, we conjecture that all such patterns

are unstable. Indeed, from a number of numerical experiments, we observe that a solution on

the “upper” branch evolves quickly to its counterpart directly below on the lower branch, i.e.

with the same value of D in the bifurcation diagrams (and all other parameters as well) shown

in Fig. 2.9. In Fig. 2.11, we show the evolutionary dynamics computed by PDEPE using the

“upper” branch solutions computed in AUTO-07p as initial conditions. In all cases shown, the

dynamics stabilizes to exactly the pattern of the solution on the corresponding “lower” branch,

with no visible difference.

Our numerical bifurcation results for the fold-point bifurcation along the small norm solution

branch for γ = 2, α = 1, ` = 1, and ε = 0.01 are

Dfold,1 = 1.5600 , Dfold,2 = 0.3451 , Dfold,4 = 0.0677 . (2.49)

Observe, as expected by symmetry, that these values are quartered as the number of hotspots

doubles. However, we observe that the quantitative agreement of these fold-point values with

the critical values Dcrit,K of (2.31), as computed from the leading-order theory of Section 2.2,

is suggestive, but is not particularly close even when ε = 0.01.

As a result of this rather poor quantitative agreement at finite ε, we used AUTO-07p (cf. [12])

to perform a codimension-two path-following of the fold point as ε is decreased. The compu-

tations were done for the case of K = 1, K = 2, or K = 4, interior hotspots. The goal of

performing this codimension-two continuation to trace the curves Dfold,K(ε) was to establish

evidence for the conjecture that limε→0Dfold,K(ε) = Dcrit,K , and to find a range of small ε where

the agreement between Dfold,K and Dcrit,K is close.

The results of this codimension-two computation are shown in Fig. 2.9. From this figure,

we observe that the “almost” straight solid curves for the numerically computed values of

Dfold,K(ε) versus ε does seem to extrapolate as ε→ 0 to the leading-order limiting critical value
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Figure 2.9: For the parameter set γ = 2, α = 1, and ` = 1, the solid curves on the left of each
of (a), (b), and (c), for K = 1, K = 2, and K = 4, interior hotspots, respectively, show the fold
point values Dfold,K(ε) associated with the small norm solution branch of A(`) versus D. The
top tick-mark on the vertical axes in these plots are the approximate values Dcrit,1 ≈ 1.793,
Dcrit,2 ≈ 0.448, and Dcrit,4 ≈ 0.112 from the leading-order theory of §2.2. The dashed curves
in each of (a), (b), and (c), are the asymptotic results (2.82) for the fold point value for D,
as predicted by the higher-order asymptotic theory of §2.5. For each of the three sets, the
numerically computed A versus x is plotted on |x| ≤ 1 at four values of ε. At the larger values
of ε the pattern is essentially sinusoidal.
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Figure 2.10: Plots of criminal density ρ near the onset of spot insertion as indicated in Fig.
2.9. The parameter values are the same, i.e. ε = 0.01, γ = 2, α = 1, ` = 1. The purple
curves correspond to ρ at the numerically computed fold point, while the red and blue curves
correspond to the upper and lower branch solutions at some identical values of D close to, but
respectively above and below the fold points shown in Fig. 2.9. Such chosen values of D are
2.0, 0.5 and 0.1 respectively for one, two and four interior spikes (before the insertion event),
corresponding to the sub-figures on the left, centre, and right, respectively. The fold point
values of D are given in (2.49).
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Figure 2.11: Time evolution of criminal density ρ for spatial patterns found by continuation
beyond the fold point. Parameter values are the same as in Fig. (2.9), i.e. ε = 0.01, γ = 2, α =
1, ` = 1. Also, D = 2.0, 0.5, 0.1 for the left, centre and right sub-figures, respectively. The
dotted, dashed and solid blue curves shows the evolution of the upper solution at t = 0, 15, 100,
respectively, while the heavy solid red curves shows the lower branch solution. We find that
the plots at t = 100 all overlap exactly with those of the lower branch counterparts, which are
the linearly stable patterns proved in Section 2.3.

of §2.2. Due to numerical resolution difficulties, we were not able to perform computations

for smaller values of ε than shown in Fig. 2.9. However, these computational results do give

clear numerical evidence for the conjecture that limε→0Dfold,K(ε) = Dcrit,K for K = 1, 2, 4.

An analytical justification that Dcrit,K does in fact correspond to a fold point is given in the

analysis of hotspot insertion phenomena in § 2.6 below. In Fig. 2.9, we also plot the improved

approximation for Dcrit,K versus ε (dashed curves), as given in (2.82), that will be derived from

the higher-order asymptotic theory of §2.5.

Finally, from the plots of A versus x in Fig. 2.9 at selected values of ε, we observe that when

ε is only moderately small the steady-state solution more closely resembles a sinusoidal pattern
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than a pattern of localized hotspots.

2.4.2 Subcritical Regime - Fold Points for Spike Type Switching

Here, we present the results of analogous studies of the bifurcation diagrams for the case α < γ <

3α/2. As discussed previously, this is the subcritical regime studied in [35] on the infinite line

where homoclinic snaking behaviour observed. In Fig. 2.12, we instead observe an interesting

closed-loop structure, containing crime hotspots solutions of two different order of amplitude:

O(1) and O(ε−1), with the latter type comprehensively developed in this chapter. The fold

points II and III belong to the supercritical regime γ > 3α/2 and is in agreement with the Fig.

2.8 as a reduction in γ leads to an increase of χmax as shown in Fig. 2.5 in the supercritical

regime. Moreover, the same hotspot centre mirroring phenomenon is also observed as we follow

the path from point II to point III, analogous to the first plot in Fig. 2.8.

In contrast, the fold points I and IV are novel in that they occur for a solution branch with

A = O(1). We conjecture that this is the same fold point as shown in Fig. 7 of [29], and thus

they connect the weakly nonlinear regime born from the subcritical Turing bifurcation to the

far-from equilibrium theory in this chapter valid for the solution branch beyond fold points I

and IV. In Fig. 2.7, we took precisely a solution at γ = 1.25 in the branch before reaching point

I from the Turing bifurcation to perform the full numerics. The result was that this solution is

unstable as expected.

The development of an asymptotic theory for the solution branch with A = O(1) hotspots

is an interesting open problem. However, these solutions are likely all linearly unstable.

2.5 Refinements of the Steady State Solution: Higher-Order

Theory

In this section we present a more refined asymptotic theory than that given in §2.2 to construct a

steady-state hotspot solution centred at the origin on the interval |x| ≤ `. The results from this

higher-order theory provide a rather close asymptotic prediction of the saddle-node bifurcation

point observed in §2.4, as well as providing the error terms associated with the leading-order

theory. In addition, this more refined asymptotic analysis is essential for the analysis in §2.7,
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Figure 2.12: A closed homotopy of equilibria with a single hotspot (or two boundary hotspots)
from the continuation in γ from the subcritical Turing bifurcation. Model parameters are:
ε = 0.01, D = 1, α = 1. Observe that the amplitude of A at Point I and IV are O(1) and equal
but different to that of Point II and III, which are of O(ε−1).
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where a DAE system for the slow time evolution of a collection of hotspots is derived.

In the inner region, where y = ε−1x and y = O(1), we pose a two-term expansion for A as

A ∼ A0/ε+A1 + . . . , V ∼ ε2Vε .

Upon substituting this expansion into (2.11), and retaining the dominant correction terms we

obtain

(
A0yy −A0 + VεA

3
0

)
+ ε

(
A1yy −A1 + 3VεA2

0A1 + α
)

+ · · · = 0 , (2.50a)

D
[(
A2

0 + 2εA0A1
)
Vεy
]
y
− εVε

(
A3

0 + 3A2
0A1ε

)
+ ε2 (γ − α) + · · · = 0 . (2.50b)

This suggests that we expand Vε = V0 +εV1 + · · · . Upon substituting this expansion into (2.50),

and collecting powers of ε, we obtain our leading-order result that V0 is an unknown constant

and A0 = w/
√
V0, where w(y) =

√
2 sech y is the homoclinic solution of (2.14). At next order,

we obtain that A1(y) and V1(y) on −∞ < y <∞ satisfy

A1yy −A1 + 3A2
0A1V0 = −α− V1A

3
0 , D

[
A2

0V1y
]
y

= V0A
3
0 . (2.51)

Then, upon substituting A0 = w/
√
V0 into (2.51), we conclude that

L0A1 ≡ A1yy −A1 + 3w2A1 = −α− V1

V
3/2

0
w3 ,

[
w2V1y

]
y

=
√
V0
D

w3 . (2.52)

A key step in analyzing the inner region is to determine the far-field asymptotic behaviour

as y → +∞ for the solution to (2.52). Since w(y) ∼ 2
√

2e−y as y →∞, it readily follows upon

integrating the V1-equation that V1 = O(e2y) as y → ∞. Then, since w3V1 → 0 as y → ∞,

it follows from the A1-equation in (2.52) that A1 → α as y → ∞. These simple results show

that the Vε-expansion Vε = V0 + εV1 + · · · becomes disordered when y = O(−(1/2) log ε), while

the far-field as y → ∞ of the A-expansion A = w/
[
ε
√
V0
]

+ A1 ∼ ε−12
√

2e−y + α becomes

disordered when y = O(− log ε).

As a result, for y > 0, we will need to introduce two additional inner layers before we

are finally able to match to the outer solution. For ε → 0, we define the mid-inner layer by

59



y = −(1/2) log ε + O(1) and the knee layer by y = − log ε + O(1). The asymptotic solution in

the knee layer can then be matched to the outer solution valid on 0 < x < `. By symmetry, a

similar construction can be done for y < 0. In Fig. 2.13 we plot the full numerical steady-state

solution for V , as computed from (2.11), showing the knee behaviour of V for γ = 2, α = 1,

D = 2, ε = 0.01, and ` = 1.
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Figure 2.13: Plot of the full numerical solution to the steady-state problem (2.11) showing the
knee behaviour of V for γ = 2, α = 1, D = 2, ε = 0.01, and ` = 1. The figure on the right is a
zoom of the one on the left.

The asymptotic matching of the expansions of the solution across the mid-inner and knee

layers will specify the appropriate far field behaviour for the solution V1 to (2.52) in the form

V1 ∼ b+e2|y| , as |y| → ∞ , (2.53)

for a certain constant b+ that is, ultimately, determined by the outer solution. In this way, we

can decompose the inner correction term V1, satisfying (2.52), as V1(y) = V10 + V1p(y), where
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V10 is a constant to be determined and where V1p(y) satisfies

[
w2V1py

]
y

=
√
V0
D

w3 , −∞ < y <∞ ; V1p ∼ b+e2|y| as |y| → ∞ ; V1p(0) = 0 .

(2.54)

Upon integrating (2.54) on −∞ < y < ∞, we conclude that a solution to (2.54) exists if and

only if √
V0
D

ˆ ∞
−∞

w3 dy = lim
y→+∞

(
w2V1py

)
− lim
y→−∞

(
w2V1py

)
. (2.55)

By using the limiting behaviours of w and V1p as |y| → ∞, together with
´∞
−∞w

3 dy =
√

2π, we

obtain that √
V0
D

= 16
√

2
π

b+ . (2.56)

Thus, the value of V0 can be found when b+ is known, which is be determined by a far-field

matching with the outer solution.

Next, we show how to readily determine V1p explicitly. Upon integrating (2.54) from −∞

to y and using (2.56), we get

w2V1py =
√
V0
D

ˆ y

−∞
w3ds− 16b+ =

√
V0
D

(ˆ y

−∞
w3ds− π√

2

)
. (2.57)

Observe that

ˆ y

−∞
w3ds− π√

2
= 1

2

ˆ ∞
−∞

w3ds− π√
2

+
ˆ y

0
w3ds =

ˆ y

0
w3ds ,

while integrating (2.14) from 0 to y yields

ˆ y

0
w3 ds =

ˆ y

0
w ds− w′(y) .

Therefore, (2.57) implies that

V1py(y) =
√
V0
D

(´ y
0 w ds− w

′(y)
w2(y)

)
. (2.58)

Then, upon integrating (2.58) from 0 to y, and using V1p(0) = 0 from (2.54), we finally obtain
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that

V1p(y) =
√
V0
D

(ˆ y

0
w−2(s)W (s)ds+ 1

w(y) −
1

w(0)

)
, W (s) ≡

ˆ s

0
w(y) dy . (2.59)

Note that V1p(y), like w(y), is even in y as well. Also, one can use the explicit formula

w(y) =
√

2 sech y to compute

V1p =
√
V0
D

(√
2
ˆ y

0
cosh2(s) tan−1

[
tanh

(
s

2

)]
ds+ 1√

2
(cosh y − 1)

)
. (2.60)

To determine b+, we now proceed by analyzing the two additional inner layers. We begin

with the knee-layer, defined by y = − log ε + O(1), which can be matched to the limiting

behaviour as x → 0+ of the outer solution. In the knee-layer, we introduce the new variables

Â, V̂ , and z by

A = Â(z) , V = εV̂ (z) , y = − log ε+ z ,

with z = O(1), so that x = −ε log ε+ εz. In terms of these new variables, (2.11) becomes

Âzz − Â+ εV̂ Â3 + α = 0 , D
(
Â2V̂z

)
z
− ε2V̂ Â3 + ε(γ − α) = 0 . (2.61)

We substitute the expansion Â = Â0 + · · · and V̂ = V̂0 + · · · into (2.61) to obtain that

Â0zz − Â0 = −α. The solution for Â0 that agrees with the far-field behaviour of the inner

solution for A is

Â0 = ce−z + α , c ≡ 2
√

2√
V0
. (2.62)

In contrast, V̂0(z) satisfies

[
Â2

0V̂0z
]
z

= 0 , −∞ < z <∞ . (2.63)

To determine the appropriate far-field behaviour as z → +∞ for (2.63), we expand the leading-

order outer solution v0(x) of §2.2 as x → 0, and then rewrite the expression in terms of z to
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obtain the matching condition

εV̂ ∼ εv0x(0+)z + (−ε log ε)v0x(0+) + · · · . (2.64)

The dominant constant term of order O(−ε log ε) in (2.64) cannot be accounted for by the knee

solution. Instead, we must introduce a switchback term of order O(−ε log ε) into the outer

expansion. More specifically, the outer expansion on 0 < x < ` must have the form

A ∼ a0 + (−ε log ε) a1 + εa2 + · · · , V ∼ v0 + (−ε log ε) v1 + εv2 + · · · , (2.65)

with v1(0+) = −v0x(0+), chosen to eliminate the constant term in (2.64)

Therefore, to match the knee solution V̂0 to the near-field behaviour (2.64) of the outer

solution we require that V̂0z ∼ v0x(0+) as z → ∞. In contrast, to match the knee solution V̂0

to the mid-inner solution where V = O(ε2), we need that V̂0 → 0 as z → −∞. Thus, we must

solve (2.63) subject to

V̂0z ∼ v0x(0+) , as z → +∞ ; V̂0 → 0 , as z → −∞ . (2.66)

Given the decay as z → −∞ and linear ramp as z → +∞, it is now clear why we refer to

V̂0 as the knee solution. Upon using (2.62) for Â0, a first integral of (2.63), which satisfies

V̂0z ∼ v0x(0+) as z → +∞, is

V̂0z = α2v0x(0+)
(ce−z + α)2 . (2.67)

Integrating (2.67) and imposing the condition that V̂0 → 0 as z → −∞, we find

V̂0 = v0x(0+)F (z), F (z) ≡
ˆ z

−∞

(
1 + ce−s/α

)−2
ds (2.68)

This special nonlinear function F (z) furnishes the required knee-shape which allows the tran-

sition of scales from the outer to the inner region.
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Figure 2.14: The knee-shaped function F (z) defined at (2.68). Parameter choices are the same
as in Fig. 2.13 which showed the numerical solution of V .

Lemma 2.3. The knee-shaped function F (z) is given explicitly by

F (z) = log (c+ αez) + c

c+ αez
+ κ, κ = − log c− 1 , (2.69)

and it has the following asymptotic behaviours as z → ±∞:

F (z) ∼


α2

2c2 e
2z as z → −∞

z +
(
log α

c − 1
)

as z →∞ .

Proof: An indefinite integral to (1 + ce−z/α)−2 is given by

log (c+ αez) + c

c+ αez
+ κ ,

where κ is a constant to be determined.

Now, we let δ = αez/c and rewrite F (z) to

F (z) = log(c+ αez) + c

c+ αez
+ κ = log c+ log(1 + δ) + 1

1 + δ
+ κ .

As z → −∞, we observe δ → 0 and so we expand to estimate

F (z) ∼ log c+
(
δ − δ2

2 + . . .

)
+
(
1− δ + δ2 + . . .

)
+ κ ∼ log c+ 1 + κ+ δ2

2 + . . . ,
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thus we choose κ = − log c− 1 to satisfy limz→−∞ F (z) = 0.

As z →∞, we observe δ →∞, and we rewrite F (z) in terms of δ as

F (z) = log δ + log(1 + δ−1) + (1 + δ)−1 + log c+ κ ,

and then substitute in κ = − log c− 1, δ = αez/c to find the asymptotic behaviour

F (z) = log(αez/c)− 1 +O(e−z) ∼ z + log α
c
− 1 .

�

We conclude from Lemma 2.3 that the knee solution can be given explicitly as

V̂0 = v0x(0+)
(

log(c+ αez) + c

(c+ αez) − log c− 1
)
. (2.70)

and that, as z → +∞, we have the asymptotic behaviour

V̂0 ∼ v0x(0+)z +
[
log

(
α

c

)
− 1

]
v0x(0+) . (2.71)

This second term in (2.71) provides a matching condition for the outer correction v2 in (2.65)

of the form

v2(0+) =
[
log

(
α

c

)
− 1

]
v0x(0+) . (2.72)

Alternatively, as z → −∞, we conclude from Lemma 2.3 that

V̂0 ∼
α2v0x(0+)

2c2 e2z , as z → −∞ . (2.73)

Equation (2.73) yields the far-field behaviour of the mid-inner solution for V , which we now

construct.

To analyze the mid-inner layer, which is between the inner and knee-layer regions, we

introduce the new variables Ã, Ṽ , and η by

A = Ã(η) , V = ε2Ṽ (η) , y = −1
2 log ε+ η ,
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with η = O(1), so that x = −(ε/2) log ε + εη. In this layer, where V = O(ε2), the asymptotic

order of V is the same as that in the inner layer. Therefore, it is the knee layer that has allowed

for the fast transition in V from an O(ε2) scale to an O(ε) scale, which is then matchable to the

outer solution. Upon substituting these new variables into (2.11), we obtain to leading-order

that Ã ∼ Ã0 + · · · where

Ã0 = c√
ε
e−η + α , c ≡ 2

√
2√
V0
,

and that Ṽ = Ṽ0 + · · · , where Ṽ0 satisfies

[
e−2ηṼ0η

]
η

= 0 , −∞ < η <∞ . (2.74)

The solution to (2.74) that matches as η → +∞ to the asymptotics (2.73) of the knee solution,

and that satisfies Ṽ0 ∼ V0 as η → −∞ in order to match to inner layer solution, is simply

Ṽ0 = α2v0x(0+)
2c2 e2η + V0 . (2.75)

Finally, we write (2.75) in terms of the inner variable y as η = y + (1/2) log ε to obtain the

following matching condition as y → +∞ for the inner solution:

V ∼ ε2Ṽ0 ∼ ε2V0 + ε3
(
α2v0x(0+)

2c2

)
e2y .

In this way, we conclude that the solution V1p(y) to (2.54) must satisfy

V1p ∼ b+e2y , as y → +∞ , b+ ≡
α2v0x(0+)

2c2 , c ≡ 2
√

2√
V0
. (2.76)

This rather intricate asymptotic construction has served to identify the constant b+ in (2.54),

which can then be used in (2.56) to determine the leading-order constant V0. In fact, upon

substituting (2.76) into (2.56), and solving for V0, we obtain

√
V0 = π√

2α2Dv0x(0+)
. (2.77)

Then, by using (2.32) for v0x(0+) in (2.77), we recover the leading order result (2.35) for V0,
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as derived previously in §2.2. A higher order approximation for V (0), based on analyzing

correction terms to V0, is derived in (2.81) below.

We remark that although the leading-order theory of §2.2 was also able to determine V0

by simply integrating the V -equation in (2.11) over an intermediate, but otherwise unspecified,

length-scale δ with ε� δ � 1, as was done in (2.33), the more refined asymptotic approach in

this section provides the gradient information in V that is essential in §2.7 for deriving a DAE

system for the slow dynamics of a hotspot. Moreover, this asymptotic construction has shown

how the knee-layer solution allows V to make a fast transition between O(ε2) and O(ε) scales.

Next, we proceed to analyze the correction terms in the outer region of the form (2.65). Upon

substituting the A-expansion of (2.65) into (2.11), we obtain that V = g(A) to both O(−ε log ε)

and O(ε) terms, where g(A) is defined in (2.17). Therefore, vj = g′(a0)aj for j = 1, 2, and hence

the problems for a1 and a2 can be obtained by replacing a0 in (2.18a) with a0+(−ε log ε)a1+εa2,

and then performing a simple Taylor series expansion. To determine the boundary conditions

for a1 and a2, we use a0(0+) = α, g′(α) = α−3, and vj = g′(a0)aj for j = 1, 2, together with

the matching conditions v1(0+) = −v0x(0+) and v2(0+) =
[
log

(
α
c

)
− 1

]
v0x(0+), to identify

conditions for a1 and a2 at x = 0+. In this way, we obtain that a0(x) satisfies (2.18a), while

a1(x) and a2(x) satisfy

D [f(a0)a1]xx = a1 , 0 < x < ` ; a1(0+) = −a0x(0+) , a1x(`) = 0 , (2.78a)

D [f(a0)a2]xx = a2 , 0 < x < ` ; a2(0+) =
[
log

(
α

c

)
− 1

]
a0x(0+) , a2x(`) = 0 .

(2.78b)

Our key observation is that instead of solving (2.18a) and (2.78) recursively for a0, a1, and a2,

these outer approximations are contained in the solution to a renormalized outer problem for

aε(x), formulated as

D [f(aε)aεx]x = aε − γ , xε < x < ` ; aε(xε) = α , aεx(`) = 0 , (2.79a)
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where xε > 0 is defined by

xε = (−ε log ε)x1 + εx2 ; x1 = 1 , x2 ≡ 1− log
(
α

c

)
, c ≡ 2

√
2√
V0
. (2.79b)

The fact that the solutions to (2.79) corresponds correctly to those of (2.78) can be verified

easily.

First, observe the key nonlinear term in the equation can be formally expanded as follows:

D [f(aε)aεx]x = D
[(
f(a0) + (−ε log ε)f ′(a0)a1 + εf ′(a0)a2

)
· (a0x + (−ε log ε)a1x + εa2x)

]
x ,

so the O(1), O(−ε log ε) and O(ε) terms are respectively

D [f(a0)a0x]x

D
[
f ′(a0)a0xa1 + f(a0)a1x

]
x = D [f(a0)a1]xx

D
[
f ′(a0)a0xa2 + f(a0)a2x

]
x = D [f(a0)a2]xx

which gives the L.H.S. of equations in (2.18a) and (2.78).

Second, the nonzero matching condition aε(xε) = α can be formally expanded as:

α = aε(xε) = a0(0+) + a0x(0+) ((−ε log ε)x1 + εx2) + (−ε log ε)a1(0+) + εa2(0+) + . . . ,

so the O(1), O(−ε log ε) and O(ε) terms are respectively

α = a0(0+)

a1(0+) = −a0x(0+)

a2(0+) = a0x(0+)x2 =
(

log(α
c

)− 1
)
a0x(0+)

which recovers the matching conditions stated in (2.18a) and (2.78) for a0, a1, and a2.

Therefore, the effect on the outer solution of the knee layer is that one needs to account

for an inner region that is O(−ε log ε) thick. The expression (2.79b) also shows that the outer

solution has a weak dependence on the amplitude of the hotspot, mediated by V0. One key

advantage of using the renormalized problem (2.79) is that the leading-order theory of §2.2 can
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still be used provided that we simply replace ` with `−xε. This idea of renormalizing the outer

solution to account for the switchback term is vaguely similar to the renormalization method

proposed in [8] for analyzing weakly nonlinear oscillators.

Next, we use the renormalized problem (2.79) to determine an improved approximation

V0ε for ε−2V (0). This new approximation consists of two weakly coupled nonlinear algebraic

equations for µε ≡ aε(`) and V0ε. To determine the first relation between µε and V0ε we integrate

the V -equation in (2.11) from −xε < x < xε to obtain, in place of (2.33), that

2Dα2vεx(xε) = 2
√

2D
√
G(µε)−G(α) ∼ 1√

V0ε

ˆ ∞
−∞

w3 dy − 2xε(γ − α) . (2.80)

Here we have used vεx(xε) = g′(α)aεx(xε), where g′(α) = α−3 and aεx(xε) is obtained from a

first integral of the renormalized problem (2.79). By solving the expression above for V0ε, we

obtain our first relation

V0ε = π2

2
[√

2D
(√

G(µε)−G(α)
)

+ (γ − α)xε
]2 . (2.81a)

The second relation is obtained by replacing µ and ` in (2.26) with µε and `− xε, where xε is

defined in (2.79b). This yields

χ(µε) =
√

2
D

(`− xε) , xε = (−ε log ε) + ε

(
1 + log

(
2
√

2
α

)
− log

√
V0ε

)
, (2.81b)

where χ(µ) is defined in (2.23).

The system (2.81) is a weakly coupled nonlinear algebraic system for V0ε and µε ≡ aε(`),

where the coupling arises through the fact that xε depends weakly on V0ε. By solving this

weakly coupled system using Newton’s method for γ = 2, α = 1, D = 2, and ` = 1, in the

right panel of Fig. 2.6 (thin dotted curve) we showed that V0ε compares more favourably with

the full numerical result than does the leading-order result V0. Similarly, as was shown in the

left panel of Fig. 2.6, the renormalized approximation
√

2/
√
V0ε for εA(0) compares rather well

with full numerics when ε is small.
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2.5.1 Improved Approximation of the Fold Point for the Supercritical Regime

For the supercritical regime γ > 3α/2, (2.81b) implies same maximum threshold χmax =

limµε→(3α/2)− χ(µε) as in (2.24) which converges due to the formula (2.23) given in Section

2.2. However, the improvement of (2.81b) over (2.26) allows us to determine a more accurate

minimum value of D for which a steady-state hotspot solution on |x| ≤ ` exists, which we

denote as Dcrit,ε.

We simply set µε = 3α/2 in (2.81) and solve the resulting system for D = Dcrit,ε and V0ε.

In particular, for a single hotspot solution on |x| ≤ ` we have

Dcrit,ε ≡
2(`− xε)2

χ2
max

, (2.82a)

where χmax ≡ χ (3α/2), and χ(µ) is defined in (2.23). In addition, the minimum value of D for

a pattern of K interior hotspots on the domain |x| ≤ 1, is obtained by setting ` = 1/K into

(2.82a). This yields the critical thresholds

Dcrit,ε,K = 2(K−1 − xε)2

χ2
max

. (2.82b)

In Fig. 2.9 of §2.4 we showed that the improved approximation Dcrit,ε,K for the minimum

value of D for a steady-state pattern of K-interior hotspots on the domain |x| ≤ 1 com-

pares rather well with the full numerical results as ε is decreased. In comparison with the

ε-independent results of (2.31) of §2.2 for the minimum value of D as obtained from the leading-

order theory, our improved theory on |x| ≤ 1 when γ = 2, α = 1, and ε = 0.01, yields

Dcrit,ε,1 ≈ 1.5985 , Dcrit,ε,2 ≈ 0.3646 , Dcrit,ε,4 ≈ 0.0771 . (2.83)

As seen from Fig. 2.9 and (2.49), these improved approximations for the minimum value of

D compare rather favourably with full numerical results. Moreover, in comparing (2.83) with

the results (2.31) from the leading-order theory of §2.2, it is evident that the effect of the

ε-dependent correction terms is rather significant even at ε = 0.01.
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For a one-hotspot solution, in §2.6 below we construct a new boundary layer near x = `

when D ≈ Dcrit,ε. For this analysis, we need to determine the local behaviour near x = ` of the

solution to (2.79) when D = Dcrit,ε, corresponding to when aε(`) = a0c ≡ 3α/2. Near x = l, we

put aε = a0c + ā(x), where ā� 1 and ā(`) = 0. Upon substituting into (2.79), we obtain near

x = ` that [f ′(a0c)āāx]x ∼ (a0c − γ)/Dcrit,ε, where f ′(a0c) = −2/a2
0c. Therefore, near x = `, we

have

(āāx)x ∼
a2

0c(γ − a0c)
2Dcrit,ε

.

Upon integrating this equation and imposing ā(`) = 0, we get for x near ` that

(1
2 ā

2
)
x
∼ βa2

0c(x− `) , β ≡ (γ − a0c)
2Dcrit,ε

.

Integrating once more, and imposing ā(`) = 0, we obtain that ā ∼
√
βa0c(x− `) as x→ `−. We

conclude that as x→ `−, the local behaviour of the solution to (2.79) when D = Dcrit,ε is

aε(x) ∼ a0c + β1/2a0c(x− `) , as x→ `− , where a0c ≡
3α
2 , β ≡ (γ − a0c)

2Dcrit,ε
.

(2.84)

Since, when aε(`) = 3α/2, the solution aε(x) no longer satisfies the no-flux condition aε,x(`) = 0,

we need to construct a new boundary layer near x = `. This is done in the next section.

2.6 A Normal Form for Hotspot Insertion

The full numerical computations in §2.4.1 for the supercritical regime, and the local analysis

in (2.84) of §2.5, motivate the need for constructing a new boundary layer solution near the

endpoints x = ±` when D is near the critical value Dcrit,ε. This boundary layer analysis, which

is shown below to generate multiple solutions in the boundary layer region, characterizes the

onset of the peak insertion phenomena at the edges of the domain. We show that the overall

mechanism for the creation of new hotspots is markedly similar to the analysis of [28] for the

onset of self-replication behaviour of mesa patterns. Indeed, we derive a normal form equation,

characterizing the local behaviour of the peak insertion process, that has the same structure

as that derived in [28]. However, as an extension of the analysis of [28], we derive a formula,
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valid near the critical threshold Dcrit,ε, that shows analytically how the solution multiplicity

associated with the boundary layer solution near x = ` leads to a fold-point behaviour in the

bifurcation diagram of A(`) versus D.

Throughout this section, we assume γ > 3α/2 so that α < a0(x) < 3α/2 holds for all

xε < x < ` and the maximum value χmax = χ(3α/2) exists.

To analyze the onset of the peak insertion process, we first write the outer problem for the

steady-state problem (2.11) in the form

ε2Axx +A3 [V − g(A)] = 0 , D
[
A2Vx

]
x
−A+ γ −A3 [V − g(A)] = 0 , (2.85)

on xε < x < `, where g(A) is defined in (2.17). We let aε(x) and Dcrit,ε denote the solution

to the renormalized outer problem (2.79) at the critical value where aε(`) = 3α/2. In terms of

aε(x), vε(x) is given by vε(x) = g(aε(x)), where g(A) is defined in (2.17). In the outer region,

away from both the hotspot core and a thin boundary layer to be constructed near x = `, we

expand the outer solution to (2.85), together with Λ ≡ 1/D, as

A = aε + νaε,1 + · · · , V = vε + νvε,1 + · · · , Λ ≡ 1
D

= Λε + νΛε,1 + · · · , (2.86)

where the gauge function ν � 1 and the constant Λε,1 are to be determined. By expanding

D = Dcrit,ε + νDε,1 + · · · , and then comparing with the expansion of Λ in (2.86), we identify

that

Dcrit,ε = 1
Λε

, Dε,1 = −Λε,1
Λ2
ε

. (2.87)

We substitute (2.86) into (2.85) and collect powers of ν. Assuming that ν � O(ε2), we obtain

that aε satisfies the renormalized problem (2.79) with aε(`) = 3α/2, and that aε,1 satisfies

[f(aε)aε,1]xx − Λεaε,1 = Λε,1aε , xε < x < ` ; aε,1(xε) = 0 . (2.88)

The asymptotic boundary condition for aε,1 as x→ `− will be derived below upon matching to

the boundary layer solution to be constructed near x = `.

To construct the thin boundary layer near x = `, we begin by introducing the new variables
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A1, V1, and z, by

A = a0c + δA1(z) + · · · , V = v0c + δ2V1(z) + · · · , z ≡ σ−1[`− x] , (2.89)

where a0c ≡ 3α/2 and v0c ≡ g(a0c) = 4/(27α2). Here the gauge functions σ � 1 and δ � 1

are to be determined. The choice of different scales for A and V is motivated by the fact that

g′(a0c) = 0. We substitute (2.89) into (2.85), and after a Taylor expansion of g(A), we obtain

that

ε2δ

σ2 A1zz + δ2a3
0c

[
V1 −

1
2g
′′(a0c)A2

1

]
+ · · · = 0 , a2

0c
σ2 δ

2V1zz = Λε (a0c − γ) + · · · , (2.90)

where from (2.17) we calculate that

g′′(a0c) = −2a−4
0c , a0c ≡

3α
2 . (2.91)

To balance the terms in (2.90) we must relate σ and δ to ε by δ = σ and δσ2 = ε2, which

yields that

δ = ε2/3 , σ = ε2/3 . (2.92)

With this choice, (2.90) reduces to leading order on 0 < z <∞ to

A1zz + a3
0c

(
V1 + A

2
1

a4
0c

)
= 0 , V1zz = − 2β

a2
0c
, β ≡ ∆ε

2 (γ − a0c) > 0 . (2.93)

In order to satisfy the no-flux boundary conditions for A and V on x = ` we must impose that

A1z(0) = V1z(0) = 0.

Upon integrating the V1-equation, and imposing V1z(0) = 0, we get that V1 = V10−βz2/a2
0c.

Then, from the A1-equation in (2.93), we obtain

A1zz + a3
0c

(
− β

a2
0c
z2 + V10 + A

2
1

a4
0c

)
= 0 , 0 < z <∞ , (2.94)

where V10 is an arbitrary constant. To obtain our normal form equation we eliminate as many
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parameters as possible in (2.94) by rescaling z and A1 by

A1 = bU , z = ξy . (2.95a)

By choosing

ξ = β−1/6 , b = a0cβ
1/3 , (2.95b)

we obtain that (2.94) transforms to the normal form equation

Uyy + U2 − y2 + κ = 0 , 0 < y <∞ ; Uy(0) = 0 , (2.96a)

where the parameter κ is defined

κ ≡ a2
0cβ
−2/3V10 . (2.96b)

In order to match solutions to (2.96) with those in the outer region, we need that Uy → −1 as

y → +∞, which is consistent with the condition that Ax > 0 as x→ `−.

Finally, in terms of the original variables, we obtain from (2.89), (2.92), and (2.95), that

the boundary layer solution near x = ` is characterized by

A ∼ a0c + ε2/3a0cβ
1/3U (y) , V ∼ v0c + ε4/3

β2/3

a2
0c

(
κ− y2

)
, y ≡ β1/6ε−2/3 (`− x) ,

(2.97)

where a0c ≡ 3α/2, v0c ≡ g(a0c) = 4/(27α2), and β is defined in (2.93).

We observe that −U satisfies exactly the equation (2.26) in [28]. The properties of solutions

to (2.96) were established in Theorem 2 of [28], and we simply restate this result here for the

convenience of the reader.

Theorem 1 (From [28]). In the limit κ→ −∞, (2.96) admits exactly two solutions U = U±(y)

with U ′ < 0 for y > 0, with the following uniform expansions:

U+ ∼ −
√
y2 − κ , U+ (0) ∼ −

√
−κ , (2.98a)

U− ∼ −
√
y2 − κ

(
1− 3 sech 2

(√
−κy√

2

))
, U− (0) ∼ +

√
−κ . (2.98b)
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Figure 2.15: Left: Plot of the bifurcation diagram of κ versus s = U(0) for solutions to the
normal form equation (2.96). Right: the solution U(y) (solid curves) and the derivative U ′(y)
(dashed curves) versus y at four values of s on the bifurcation diagram.

These two solutions are connected. For any such solution, define s by s ≡ U(0) and consider

the solution branch κ = κ (s). Then, κ(s) has a unique (maximum) critical point at s = smax

and κ = κmax. Numerical computations yield that κmax ≈ 1.46638 and smax ≈ 0.61512.

A bifurcation diagram of κ versus s ≡ U(0) for solutions to the normal form equation (2.96)

is shown in the left panel of Fig. 2.15. In the right panel of Fig. 2.15 we plot the numerically

computed solution U(y) (solid curve), and the derivative U ′(y) (dashed curve), at a few selected

values of s = U(0).

We now proceed to analyze how the solution multiplicity in this boundary layer solution

leads to a fold-point behaviour in the bifurcation diagram of A(`) versus D. This analysis is

new and was not done in [28]. To do so, we first need to determine the far-field behaviour as

y →∞ for any solution of (2.96). We let U = −
√
y2 − κ+ Ū in (2.96), where Ū � 1, to obtain

that

Ūyy −
(

2
√
y2 − κ

)
Ū ∼ − κ

y3 , as y →∞ . (2.99)

A homogeneous solution Ūh to this equation has decay Ūh = O(e−2
√

2|y|3/2/3) as y →∞, whereas

the particular solution Ūp satisfies Ūp = O(y−4) as y → ∞. This shows that any solution to
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(2.96) with Uy → −1 as y →∞, has asymptotics

U ∼ −
√
y2 − κ+O(y−4) ∼ −y + κ

2y +O(y−2) , as y →∞ . (2.100)

We then substitute (2.100) into (2.97) for A to obtain the following far-field behaviour of

the boundary-layer solution:

A ∼ a0c + ε2/3a0cβ
1/2
(
−y + κ

2y

)
.

Upon recalling that y = ε−2/3β1/6(` − x), the equation above yields the following matching

condition for the outer solution:

A ∼ a0c + a0cβ
1/2(x− `) + ε4/3

(
a0cκβ

1/6

2

)
1

`− x
, as x→ `− . (2.101)

Since the first two terms in (2.101) agree with the local behaviour (2.84) as x → `− of the

renormalized outer solution aε(x), we obtain upon comparing (2.86) with (2.101) that

ν ≡ ε4/3 , (2.102)

and that aε,1 satisfies (2.88) subject to the singular behaviour

aε,1 ∼
(
a0cκβ

1/6

2

)
1

`− x
, as x→ `− . (2.103)

To solve (2.88) subject to (2.103) it is convenient to introduce the new variable ãε,1 defined

by

ãε,1 ≡ f(aε)aε,1 .

Then, we calculate using (2.84), (2.103), and f ′(a0c) = −2/a2
0c that

ãε,1 ∼ f ′(a0c)a0cβ
1/2(x− `)

(
a0cκβ

1/6

2

)
1

`− x
= β2/3κ , as x→ `− .
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Therefore, from this limiting behaviour and (2.88), we conclude that ãε,1 satisfies

(ãε,1)xx −
Λε
f(aε)

ãε,1 = Λε,1aε , xε < x < ` , (2.104a)

ãε,1(xε) = 0 ; ãε,1 → β2/3κ , as x→ `− . (2.104b)

We observe that since f(aε) = 0 has a simple zero at x = `, then x = ` is a regular singular point

for the differential operator in (2.104a). In (2.104) the condition at x = ` is over-determined in

the sense that we are specifying that ãε,1 is bounded as x→ `− and that the limiting behaviour

of ãε,1 as x → `− is a per-specified constant. This extra implicit condition in the boundary

condition at x = ` is the condition that determines Λε,1.

To determine Λε,1 it is convenient to reformulate (2.104) by introducing the new variable H

by ãε,1 ≡ Λε,1H, so that H satisfies

Hxx −
Λε
f(aε)

H = aε , xε < x < ` ; H(xε) = 0 , H bounded as x→ `− . (2.105)

In terms of the solution to (2.105) we identify the constant H` from H` ≡ limx→`− H(x). With

H` now known, we obtain upon comparing (2.105) with (2.104) that

Λε,1 = β2/3κ

H`
. (2.106)

Our numerical computations below show that H` > 0.

Finally, from (2.87) and (2.97), and the expression for β in (2.93), we obtain a local para-

metric description of the bifurcation diagram of A(`) and D in the form

D ∼ Dcrit,ε − ε4/3D4/3
crit,ε

(
(γ − α)2/3κ

22/3H`

)
, A(`) ∼ a0c

(
1 + ε2/3β1/3U(0)

)
, (2.107)

where a0c = 3α/2. Since the graph of κ versus U(0) is multivalued from Fig. 2.15, we conclude

from (2.107) that the graph of A(`) versus D has a fold-point behaviour near Dcrit,ε. When

H` > 0, we observe from (2.107) and Fig. 2.15 that D attains its minimum value Dmin,ε when

κ = κmax ≈ 1.466, corresponding to U(0) ≈ 0.615.

To numerically compute the constant H`, we use a shooting method after first formulating
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an asymptotic boundary condition to hold as x → `−. Near x = `, we calculate from (2.84)

that
Λε
f(aε)

∼ r

η
, r ≡ Λεa0c

2β1/2 , η = `− x ,

so that near x = `, (2.105) becomes

Hηη −
r

η
H = a0c − β1/2a0cη + · · · .

The local behaviour of the solution is readily calculated as

H(η) ∼ H` [1 + rη log η +O(η)] , as η → 0+ , (2.108)

which, after eliminating H`, yields the asymptotic boundary condition

Hx ∼ −rH log(`− x) , as x→ `− . (2.109)

0.2 0.4 0.6 0.8 1.0
x
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Figure 2.16: Numerically computed solution (solid curve) to (2.105) with asymptotic boundary
condition (2.109) imposed at x = ` − δ, with δ = 0.000001, and with parameter values γ = 2,
α = 1, ` = 1, and ε = 0.01. We obtain H` = limx→`− H(x) ≈ 0.303. The dashed curve is
the local Frobenius series approximation for H, valid near x = `, with leading terms given in
(2.108).

To determine the constant H` we use a shooting method on (2.105), which consists of

iterating on the constant H0 in Hx(xε) = H0, and then imposing (2.109) at x = `− δ, where δ

with 0 < δ � 1 is a regularization parameter. The function aε(x) in (2.105) is determined by

calculating aε,x from a first integral of (2.79). For γ = 2, α = 1, and ε = 0.01, our computations
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Figure 2.17: The asymptotic results (dashed curves) for A (left) and V (right) in the boundary
layer region near x = ` at the fold point value for D are compared with corresponding full
numerical results (solid curves). The asymptotic fold point value is given by (2.107). The top
row is for ε = 0.00273 and the bottom row is for ε = 0.005. The other parameter values are
γ = 2, α = 1, and ` = 1.

yield H` ≈ 0.303 when δ = 0.000001, which yields Dmin,ε ≈ 1.598 from (2.107). In Fig. 2.16

we plot the numerically computed H(x) versus x when γ = 2, α = 1, ` = 1, ε = 0.01, and

H` = 0.303. The dashed curve in this plot is a local Frobenius series approximation valid near

x = `, with leading terms given in (2.108).

For two values of ε, in Fig. 2.17 we show a favorable comparison between the asymptotic

and full numerical results for A and V in the boundary layer region at the fold point value.

The full numerical results are computed using AUTO-07p. Finally, in Fig. 2.18 we compare the

asymptotic result (2.107) for A(`) versus D, with H` ≈ 0.303, near the fold point with the

corresponding full numerical result computed using AUTO-07p. The plot is a zoom of the region

near the fold point.
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Figure 2.18: The asymptotic result (dashed curve) for A(`) versus D in a narrow interval near
the fold point, as obtained from (2.107) with H` ≈ 0.303, is compared with the corresponding
full numerical result (solid curve) computed using AUTO-07p. The parameter values are γ = 2,
α = 1, ` = 1, and ε = 0.01.

2.7 Slow Dynamics of Crime Hotspots

In this section we derive a DAE system for the slow dynamics of a collection of hotspots. In

our analysis we assume that a quasi-steady pattern of localized hotspots has emerged from

initial data by way of some transient process for (2.10). As such, we assume that we have

“prepared” initial data consisting of a quasi steady-state hotspot pattern. The analysis below

characterizing the slow evolution of the quasi steady-state hotspot pattern relies heavily on the

refined asymptotic theory of §2.5. We first consider the dynamics of a single hotspot centered

at x0 in the domain |x| ≤ `. In §2.7.2 we extend the analysis to study the dynamics of a multi-

hotspot pattern. In §2.7.3 we compare results from the asymptotic theory of slow hotspot

dynamics with corresponding full numerical results.

2.7.1 The Slow Dynamics of One Hotspot

To characterize the slow dynamics of a single hotspot we proceed by adapting the analysis of

§2.5. A dominant balance argument shows that the speed of the hotspot is O(ε2). In the inner

region, where y = ε−1(x− x0(σ)), with σ = ε2t, we pose a two-term expansion for A as

A ∼ A0/ε+A1 + . . . , V ∼ ε2Vε .
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Upon substituting this expansion into (2.10), and after retaining the dominant correction terms,

we obtain that

(
A0yy −A0 + VεA

3
0

)
+ ε

(
A1yy −A1 + 3VεA2

0A1 + α
)

+ · · · = −εẋ0A0y , (2.110a)

D
[(
A2

0 + 2εA0A1
)
Vεy
]
y
− εVε

(
A3

0 + 3A2
0A1ε

)
+ ε2 (γ − α) + · · · = −ε3

(
A2

0Vε
)
y
ẋ0 . (2.110b)

As in §2.5, we expand Vε = V0 + εV1 + · · · and substitute this expansion into (2.50) and

collect powers of ε. This yields the leading-order result that V0 is an unknown constant and

that A0 = w/
√
V0, where w(y) =

√
2 sech y. At next order, in place of (2.52), we obtain on

−∞ < y <∞ that

L0A1 ≡ A1yy −A1 + 3w2A1 = −α− V1

V
3/2

0
w3 − wy√

V 0
ẋ0 ,

[
w2V1y

]
y

=
√
V0
D

w3 . (2.111)

Since L0 has a one-dimensional nullspace with L0wy = 0, the solvability condition for the

A1-equation in (2.111) provides

ˆ ∞
−∞

(
αwy + V1

V
3/2

0
w3wy +

w2
y√
V0
ẋ0

)
dy = 0 .

Since w is odd with w(±∞) = 0, this condition reduces to

ẋ0

ˆ ∞
−∞

w2
y dy = − 1

4V0

ˆ ∞
−∞

V1
(
w4
)
y
dy .

We integrate this expression by parts and use the fact that w = O(e−|y|) as |y| → ∞, together

with V1 = O(e2|y|) as |y| → ∞ (see the discussion below equation (2.52)), to eliminate the

boundary term and obtain that

ẋ0

ˆ ∞
−∞

w2
y dy = 1

4V0

ˆ ∞
−∞

(
w2V1y

)
w2 dy .

We then integrate this expression once more by parts to get

ẋ0

ˆ ∞
−∞

w2
y dy = 1

4V0

[(
w2V1y

)
I(y)

∣∣∞
−∞ −

ˆ ∞
−∞

(
w2V1y

)
y
I(y) dy

]
, (2.112)
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where I(y) ≡
´ y

0 w
2 ds. Since I(y) is odd, and

(
w2V1y

)
y is even in y from (2.111), it follows

that the integral on the right-hand side of (2.112) vanishes identically. In addition, upon using

w =
√

2 sech y, we can evaluate the integral ratio
´∞
−∞w

2 dy/
´∞
−∞w

2
y dy = 3. In this way,

(2.112) reduces to

ẋ0 = 3
8V0

[
lim
y→∞

(
w2V1y

)
+ lim
y→−∞

(
w2V1y

)]
. (2.113)

The last step in the analysis is to evaluate the two limits in (2.113) by using the gradient

information on V provided by the knee solution. The analysis of the mid-inner, knee, and outer

solutions for A and V proceeds analogously as in §2.5, since these solutions are quasi-steady

on the time-scale of the slow dynamics. As such, in our discussion below, we only highlight the

results of the analysis.

In place of (2.79), the renormalized outer problem is now formulated as

D [f(aε)aεx]x = aε − γ , on x0+ε < x < ` , −` < x < x0−ε , (2.114a)

aε(x0+ε) = α , aε(x0−ε) = α , aεx(±`) = 0 , (2.114b)

where x0±ε > 0 is defined by in terms of the hotspot location x0 by

x0±ε ≡ x0 ± xε xε ≡ (−ε log ε) + ε

(
1 + log

(
2
√

2
α

)
− log

√
V0

)
. (2.114c)

In terms of aε(x), the renormalized outer solution vε(x) is

vε(x) = g (aε(x)) , (2.115)

where g(a) is defined in (2.17).

By matching the renormalized outer solution across the knee and mid-inner solutions one

can obtain, as in §2.5, the gradient information for V1 as y → ±∞. More specifically, in place

of (2.76), we obtain that

V1 ∼ b±e2±y , as y → ±∞ , b± ≡ ±
(
α2

2c2

)
vεx(x0±ε) , c ≡ 2

√
2√
V0
. (2.116)
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By using this limiting behaviour, together with the asymptotics w ∼ 2
√

2e±y as y → ±∞, we

can evaluate the two limits in (2.113) as

lim
y→±∞

(
w2V1y

)
= 8 lim

y→±∞

(
e∓2yV1y

)
= α2V0vεx(x0±ε) . (2.117)

Then, from (2.115) we calculate vεx(x0±ε) = α−3aεx(x0±ε), where we used g′(α) = α−3. In this

way, (2.113) reduces to an ODE determined in terms of the renormalized outer solution aε(x),

satisfying (2.114), given by

ẋ0 = 3
8α [aεx(x0+ε) + aεx(x0−ε)] . (2.118)

By calculating a first integral of (2.114), as similar to that in (2.21), we readily derive that

aεx(x0+ε) =
√

2
D
α
√
G(µ+)−G(α) , aεx(x0−ε) = −

√
2
D
α
√
G(µ−)−G(α) , (2.119)

so that (2.118) becomes

dx0
dσ

= 3
8

√
2
D

[√
G(µ+)−G(α)−

√
G(µ−)−G(α)

]
, σ ≡ ε2t . (2.120a)

Here G(u) is defined in (2.20b), and µ± ≡ aε(±l) are determined in terms of the hotspot location

x0 and the constant V0 from the implicit relations

χ(µ+) =
√

2
D

(`− x0+ε) , χ(µ−) =
√

2
D

(`+ x0−ε) , (2.120b)

where χ(µ) is defined in (2.23). Finally, to derive the renormalized equation for V0 we proceed

as in (2.80) of §2.5, to obtain

Dα2 [vεx(x0+ε)− vεx(x0−ε)] ∼
1√
V0

ˆ ∞
−∞

w3 dy − 2xε(γ − α) .

By substituting vεx(x0±ε) = α−3aεx(x0±ε), and using (2.119), we solve the resulting expression
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for V0 to get the approximate equation

V0 = 2π2[√
2D

(√
G(µ+)−G(α)−

√
G(µ−)−G(α)

)
+ 2xε(γ − α)

]2 . (2.120c)

For a given x0, (2.120b) and (2.120c) are a weakly nonlinear algebraic system for µ± and

V0, where the coupling arises through the weak dependence of xε on V0. With µ± determined

in this way for a given x0, the speed of the hotspot when at location x0 is given by (2.120a).

In this sense, the system (2.120) is a differential-algebraic ODE system for the evolution of a

single hotspot, starting from some initial value x0(0) with |x0(0)| < `.

For the solvability of (2.120b) and (2.120c), corresponding to the existence of an outer

solution, we require that the domain lengths for the two outer solutions on either side of x0

not exceed a threshold. In particular, as similar to that in (2.25) of §2.2, we require that the

following constraint, guaranteeing that no new hotspot is nucleated or created at the domain

boundaries, is satisfied:

max{`+ x0−ε, `− x0+ε} ≤ `max , `max ≡

√
D

2 χmax , χmax ≡ χ (3α/2) . (2.121)

We now discuss a key qualitative feature of the dynamics (2.120). Our main observation is

that the dynamics of a single hotspot is symmetrizing in the sense that


ẋ0 < 0 if x0 > 0

ẋ0 > 0 if x0 < 0
, (2.122)

so that the hotspot is repelled from the domain boundaries. To see this, we note that if x0 < 0,

then from (2.120b) and the fact that χ(µ) is monotone increasing in µ, it follows that µ− < µ+.

Then, since G(u) is monotone increasing in u, we conclude that G(µ−) < G(µ+), so that ẋ0 > 0

from (2.120a). As a result of this symmetrizing property of the hotspot dynamics, it follows that

if the constraint (2.121) is satisfied for the initial hotspot location x0(0), then this constraint

will still hold for all time under the DAE evolution (2.120). This implies that no new hotspots

can be nucleated at later times near the domain boundaries under the slow dynamics of a single
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Figure 2.19: For parameter values γ = 2, α = 1, ` = 1, D = 4, and with initial state
x0(0) = 0.3, the asymptotic result (2.120) for slow hotspot dynamics is plotted for three values
of ε. These results are compared with the corresponding result when the switchback term
−ε log ε is neglected, so that x0±ε = x0 in (2.120b). The plot on the right is a zoom of that on
the left.

hotspot. Since x0e = 0 is the only fixed point of the dynamics, we have that x0 → 0 as σ →∞

for any x0(0).

In Fig. 2.19 we show the quantitative effect on the slow hotspot dynamics of the switchback

term −ε log ε. Recall that in (2.120b), x0±ε is defined in terms of this switchback term by

(2.114c). With the initial value x0(0) = 0.3, the asymptotic result for the slow dynamics of x0

versus σ = ε2t is plotted for three values of ε, and is compared with the corresponding result

when the switchback term is not included, so that x0±ε = x0 in (2.120b).

We remark that although the DAE dynamics (2.120) for x0 is highly nonlinear when D =

O(1), it simplifies considerably in the limit D � 1. For D � 1, we can approximate the solution

to the renormalized problem (2.114) by

aε = α+ 1
D
ãε + · · · ,

where ãε satisfies

ãεxx = (α− γ)
f(α) = α(α− γ) , x0+ε < x < ` , −` < x < x0−ε ,

ãε(x0±ε) = 0 , ãεx(±`) = 0 .
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From the simple solution to this limiting problem, we calculate for D � 1 that

aεx(x0+ε) ∼
1
D
α(α− γ)(x0+ε − `) , aεx(x0−ε) ∼

1
D
α(α− γ)(x0−ε + `) . (2.123)

By substituting (2.123) into (2.118), we obtain the following simple linear ODE dynamics, with

flow towards the origin, for a one-hotspot solution when D � 1:

ẋ0 ∼ −
3

4D (γ − α)x0 , (2.124)

with only exponentially decaying solutions:

x0 = C exp
(
− 3

4D (γ − α) τ
)
→ 0 as τ →∞.

2.7.2 A DAE System for Repulsive Hotspot Dynamics

In this section we generalize the results for the dynamics of a single hotspot to the case where

there are N ≥ 1 hotspots on the domain |x| ≤ `. We label the centers of the hotspots by xj

for j = 1, . . . , N , and assume the ordering −` < x1 < x2 < · · · < xN < `. In order to simplify

our analysis, we will use the leading-order result that the spatial extent of the hotspot centered

at xj is xj − xε < x < xj + ε, where xε = −ε log ε + O(ε). By neglecting the O(ε) term in

xε and using xε ∼ −ε log ε the slow hotspot dynamics becomes uncoupled from the heights of

the hotspots. With this simplification, the adjacent outer problems for the hotspots centered

xj and xj+1 must agree at a common vanishing Neumann boundary point at the midpoint

(xj + xj+1)/2. With this observation, and by using translation invariance of (2.10), it is clear

that the one-hotspot results derived above can be readily adapted to determine the dynamics

of a collection of hotspots.

More precisely, let `j+ and `j− denote the half-lengths of the outer problems on either side

of the hotspot centered at xj for j = 2, . . . , N − 1. In contrast, for the hotspot adjacent to

x = −`, we let `1− be the distance from x1 to x = −`, whereas `N+ is the distance from xN to
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x = `. In terms of xj , this yields

`j+ ≡
(xj+1 − xj)

2 , j = 1, . . . , N − 1 ; `j− ≡
(xj − xj−1)

2 , j = 2, . . . , N ,

`N+ = `− xN , `1− = l + x1 .

(2.125a)

We then define the constants µj+ and µj− for j = 1, . . . , N by the implicit equations

χ(µj+) =
√

2
D

[`j+ − (−ε log ε)] , χ(µj−) =
√

2
D

[`j− − (−ε log ε)] . (2.125b)

In terms of the µj±, which depend on the instantaneous locations of the hotspots, the centers

of the N hotspots satisfies the slow dynamics

ẋj ∼
3
8

√
2
D

(√
G(µj+)−G(α)−

√
G(µj−)−G(α)

)
, j = 1, . . . , N. (2.125c)

The DAE system (2.125) for the slow evolution of a collection of hotspots is valid provided

that the lengths of the outer regions between adjacent hotspots is below a threshold, i. e.

provided that

max
j=1,...,N

{`j−, `j+} ≤ `max , `max ≡

√
D

2 χmax , χmax ≡ χ (3α/2) . (2.126)

A steady-state configuration for the N−hotspot pattern is the equally-spaced solution

whereby

xj = −`+ (2j − 1)
N

` , j = 1, . . . , N .

2.7.3 Comparison of Asymptotic and Full Numerical Results for Slow Hotspot

Dynamics

Finally, we compare the asymptotic results (2.120) and (2.125) for slow hotspot dynamics with

corresponding full numerical results computed using the software PDEPE in MATLAB R2013b.

For the full numerical computations, we take 10/ε + 1 evenly-spaced spatial mesh points in

order to adequately resolve the narrow cores of the hotspots. Initial conditions for the quasi
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Figure 2.20: The slow dynamics of a single hotspot on the slow time-scale σ, as predicted by
the asymptotic theory (2.120) (dashed curves), are compared with corresponding full numerical
results of the PDE system (2.10) (solid curves) computed using PDEPE of MATLAB R2013b. The
domain is |x| ≤ 1 and the parameter values are γ = 2, α = 1, and D = 4. Left: ε = 0.005.
Middle: ε = 0.01. Right: ε = 0.02.

steady-state hotspot patterns are generated by evolving the PDE (2.10) from small initial bump

perturbations, such as shown in the left panel of Fig. 2.2. The resulting transient evolution

leads to the formation of a pattern of hotspots that is essentially stationary on O(1) time

intervals. The locations of the maxima of A for this pattern are then identified numerically.

We re-initialize the full numerical computations by using this computed hotspot pattern as the

initial condition for (2.10). Then, the subsequent slow evolution of the maxima of A are tracked

numerically over very long time intervals, and compared with corresponding results from the

asymptotic theory.

In Fig. 2.20 we compare the asymptotic results for the slow dynamics of a single hotspot,

as predicted by (2.120), with corresponding full numerical results. The comparisons are done

for three values of ε. The agreement between the asymptotic and numerical results is very close

when ε = 0.005, but is still decent even when ε = 0.02.

For the case of multiple hotspots, and with ε = 0.01, in Fig. 2.21 we show a very favorable

comparison between the slow dynamics predicted from the asymptotic theory (2.125) and that

computed numerically from the full PDE system (2.10) for either a two or four hotspot evolution.

2.8 Discussion

2.8.1 Summary

In this chapter, we used the method of matched asymptotic expansions, together with the

numerical bifurcation software AUTO-07p to analyze the bifurcation properties of steady-state

hotspot solutions of (2.11) in the limit ε → 0 for the regime D = O(1) for any γ > α. It
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Figure 2.21: Comparison of slow dynamics predicted from the asymptotic theory (2.125) (dashed
curves) and from full numerical simulations (solid curves) of the PDE system (2.10). The
domain is |x| ≤ 1 and the parameter values are γ = 2, α = 1, and ε = 0.01. Left: a two-
hotspot evolution with D = 2, with initial locations x0 ≈ −0.300, 0.299. Right: a four-hotspot
evolution with D = 0.3, with initial locations are x0 ≈ −0.794, −0.346, 0.151, 0.698.

was shown, both analytically and numerically, that new hotspots of criminal activity can be

nucleated at the domain boundary or in the middle of two adjacent hotspots, and that such

events are characterized by a saddle-node bifurcation point of the corresponding bifurcation

diagram. Such nucleations are also known as “peak insertion” events, and they occur whenever

the distance between neighbouring hotspots, or between a hotspot and the domain boundary,

increases beyond a critical threshold. This “peak insertion” behaviour effectively determines the

minimum number of steady-state hotspots that will occur for a given domain length. Further-

more, the peak insertion behaviour for (2.11) is very similar to the mechanism characterizing the

onset of the rupture, and ultimately self-replication, of mesa patterns in RD systems (cf. [28]),

and the breakup of droplets for a diffusive interface surface tension model under compressible

flow (cf. [34]).

Our leading-order-in-ε asymptotic theory in Section 2.2 features a nonlinear but strictly

monotone outer problem which is at the crux of the distinction of the supercritical and subcrit-

ical behaviours of crime hotspots as observed in [48]. Moreover, the asymptotic theory predicts

a simple one-sixth rule for the prediction of the insertion of hotspots on page 43. The leading

order theory was also sufficient for the NLEP theory in Section 2.3 to prove that multi-hotspot

steady-state solutions are unconditionally linearly stable on an O(1) time-scale when D = O(1),

regardless of the number of hotspots and the value of D, and as long as the pattern exists as a

steady state.
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The previous study [29] of the stability of hotspot equilibria for the regime D = O(ε−2)

showed that K-hotspot equilibria with K ≥ 2 are linearly stable on an O(1) time-scale only

when D < D0K/ε
−2 for some constant D0K . For other RD activator-inhibitor systems, without

the chemotactic term, nonlocal eigenvalue problems characterizing the stability of multi-spike

patterns in 1-D on O(1) time-scales have been derived and analyzed in [13], [20], [24], [52], [53],

[54] (see also the references therein).

However, our leading-order-in-ε asymptotic theory in Section 2.2 for the construction of

steady-state hotspot solutions was found to agree well with full numerical results for (2.11)

only when ε is quite small. A more refined asymptotic theory in Section 2.5, based on a

detailed analysis of a triple-deck structure near the core of the hotspot and the retention of a

certain switchback term that is logarithmic in ε, was shown to provide a significantly better

approximation of hotspot equilibria at moderately small values of ε. Switchback terms also arise

in the singular perturbation analysis of some other problems, including model problems of low

Reynolds number flows (cf. [31], [32], [42]), and the analysis in [33] of singular solutions to a PDE

model for the deflection of a micro-plate capacitor. In order to include the effect of switchback

correction terms, we used a novel procedure, somewhat similar to the renormalization approach

in [8], whereby the leading-order-in-ε asymptotic theory can still be used upon re-defining a

certain term with an ε-dependent quantity.

The refined asymptotic theory for the construction of hotspot equilibria was shown to be

central for deriving a differential algebraic system (DAE) characterizing the slow dynamics of a

collection of quasi-steady hotspots for the time-dependent problem (2.10) in Section 2.7. From

this DAE system, it is shown that the dynamic interactions between neighbouring hotspots are

repulsive. Therefore, due to the geometrical constraint of the 1-D domain, peak insertion events

that are triggered dynamically as a result of the distance between two neighbouring hotspots ex-

ceeding some critical threshold are not typically possible in 1-D. This behaviour is qualitatively

different than the merging-emerging dynamics of localized peaks for the chemotaxis-growth

model of [39], whereby localized peaks experience attractive, rather than repulsive, dynam-

ics. Peak insertion events, together with attractive dynamics between neighbouring peaks, was

shown in [39] to lead to spatio-temporal chaotic behaviour of localized peaks for the chemotaxis-

growth model.
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We emphasize that our DAE system for the evolution of a single hotspot for the urban

crime model (2.10) has a rather different form to that for the dynamics of a single localized

spike for other singularly perturbed RD systems such as the Gierer-Meinhardt, Schnakenberg,

and Gray-Scott systems, studied in [9], [14], [15], [19], [43], [50] (see also the references therein).

In these previous studies, the outer problem away from a spike is linear and its solution for

the inhibitor variable can be represented in terms of a Green’s function. This leads to a single,

explicit, ODE for the evolution of a spike. In contrast, in our analysis of (2.10), the outer

problem is nonlinear and there is an intricate triple-deck inner layer structure near the hotspot

core for the slow V variable that must be resolved. The resolution of this intricate inner layer

structure leads to the generation of switchback terms characterizing the correction terms for

the outer expansion away from the core of the hotspot. Overall, this analysis leads to a DAE

system rather than a single ODE characterizing the slow motion of a single hotspot.

2.8.2 Open Problems

We conclude this chapter by briefly discussing a few possible directions for further research.

An open problem evident from the numerical studies in Section 2.4.2 is to construct the

pattern observed with O(1) amplitude in both A and V . Our preliminary results show that by

expanding A ∼ A0 + . . . , V ∼ V0 + . . . and substituting to (2.12) gives V0 = const while A0(y)

solves the problem.


A0yy −A0 + V0A

3
0 + α = 0

A0(0) = maxA0, A0y(y)→ 0 as y → ±∞
(2.127)

is a homoclinic for V0 in the range of 0 < V0 <
4
27 . This will present a potential solvability

condition from the matching process. The fact that A0 = O(1) and V0 = O(1) is numerically

verified by continuation of the solution in the limit of ε→ 0+ as shown in Fig. 2.22.

An immediately related question is whether these two types of hotspots can be glued together

to form a new type of asymmetric pattern. We remark that such a pattern with spiky profiles

of different asymptotic order is novel to the best of our knowledge. Fig. 2.23 shows that such

a possibility exists. We also remark that this may be related to the interim states contained in
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Figure 2.22: The continuation of the function values at the core of the unstable crime hotspot
shown in Fig. 2.12. Other parameter values are D = 1, α = 1, γ = 1.25. These show that
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Figure 2.23: Continuation of O(1) amplitude spike in the A component in domain length `
naturally connects to the O(ε−1)-amplitude spike at a fold bifurcation. We plots the range
of possible A(`) and check possible overlapping in their range. This is to throw light on the
possibility of asymmetric patterns with neighbouringO(1) andO(ε−1) spikes. Model parameters
are ε = 0.01, D = 1, γ = 1.25, α = 1.

Fig. 2.8 after the solution goes around the insertion fold point but before the hotspot doubling

is complete. When a new spike is being born, it seem plausible that a transitional spike solution

of amplitude O(1) in A exists. However, an asymptotic theory for this kind of spike is currently

lacking.

Other open directions include, first and foremost, to consider extensions of the basic 1-

D model. For instance, one may analyze hotspot slow dynamics for some extensions of the

basic 1-D model (2.10). Such possible extensions of the basic model include, allowing for

spatial variability of the rate at which criminals are re-introduced, so that γ −α depends on x,
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accounting for the effect of crime deterrence by police presence (cf. [41], [56]), or allowing for

a nonlinear diffusivity of the attractiveness field (cf. [18]). These extensions have a potential

to allow for both heterogeneous patterns and more complex spatio-temporal dynamics not

observed in this chapter.

Another key open problem is to extend the preliminary analysis in [29] to analyze the

existence, stability, and dynamics of 2-D localized hotspot patterns to (2.1) in the limit ε→ 0

with D = O(1) on bounded 2-D domains. For simpler RD systems, without the chemotactic

term in the inhibitor variable as in (2.1), such as the Gierer-Meinhardt, Schnakenberg, and

Gray-Scott systems, results in 2-D for the slow dynamics of localized solutions are given in [23],

[27], and [10] (see also the references therein).

In Section 5 of [29], a formal asymptotic analysis was used in the limit ε → 0, and with

D � 1, to construct quasi steady-state patterns of K ≥ 1 well-separated hotspots for (2.1)

in arbitrary, but bounded, 2-D domains. Through the derivation and analysis of a nonlocal

eigenvalue problem, it was shown in [29] that, on the D � O(1) regime, a one-hotspot pattern

is linearly stable on an O(1) time-scale. Additionally, it was shown that K−hotspot patterns

with K ≥ 2 are linearly stable on an O(1) time-scale when D < ε−4D0c/K
3, where D0c

depends on γ, α and the area of the domain. Therefore, for multi-hotspot patterns on the

regime D � O(1), the stability threshold occurs when D = O(ε−4). No study of the slow

dynamics of 2-D hotspot patterns was made in [29].

The mathematical challenge with analyzing the D = O(1) regime in 2-D is that, in contrast

to the 1-D case studied herein, the outer problem for the attractiveness field will consist of

a nonlinear elliptic PDE that cannot be reduced to a simple quadrature. However, we do

expect that this nonlinear PDE has a saddle-node bifurcation structure and leads to a peak

insertion phenomena, similar to that studied in 1-D. Furthermore, the characterization of the

slow dynamics of a collection of hotspots should depend on the spatial gradient of the solution

to the nonlinear outer problem at the hotspot locations. The goal would be to investigate

whether it is possible in 2-D that new hotspots can be nucleated through peak-insertion events

that are triggered, intermittently in time, from the overall collective dynamics of interacting

hotspots.

Such a mechanism, if it exists, would give rise to highly complex spatio-temporal patterns
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of dynamically interacting hotspots, similar to that found for the chemotaxis-growth model of

[39] in one spatial dimension.
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Chapter 3

Police Intervention - a Simple

Interaction Model

In this chapter, we consider the simple interaction case for the police-criminal dynamics (I(ρ, U) =

U) in the three-component reaction-diffusion model introduced in (1.20). The following model

is included as a special case of a general form proposed in [45]. In particular, the simple

interaction term −U in the ρ-equation (criminal density) represents a criminal removal rate

proportional to the number of police present at the same spatial location. The nonlinear police

movement term corresponds to a choice of the function v(A) not explicitly studied in [45], given

by

v(A) = qD∇ logA .

We leave the predator-prey interaction case (I(ρ, U) = ρU) for future study, except to

mention that our preliminary results suggest that there are three nonlocal terms in the corre-

sponding NLEP problem compared to two nonlocal terms for the current system, which we will

derive in this chapter in Section 3.2.

We begin our study of the simple police interaction model on the finite one-dimensional
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domain −` < x < `, formulated as

At = ε2Axx −A+ ρA3 + α , (3.1a)

ρt = D (ρx − 2ρAx/A)x − ρA+ γ − α− U , (3.1b)

τuUt = D (Ux − qUAx/A)x , (3.1c)

subject to the no-flux boundary conditions

Ax = ρx = Ux = 0 at x = ±` .

We first observe that by integrating (3.1c) over the domain, we obtain that the total amount

of police
´ `
−` U(x, t)dx is conserved in time. The parameter q > 0 measures the degree of focus

in the police patrol random walk, as was discussed in the paragraphs containing the formula

(1.6). The choice of boundary conditions indicates we are studying a closed system, and this

makes sense when the main crime and police deployment are localized in a city sufficiently

isolated from its neighbors.

There are two important remarks regarding the police diffusion term (Ux − qUAx/A)x.

Firstly, we recall that choosing the factor q = 2 in front of UAx/A in the third equation we

are modeling a mimicry police deployment strategy whereby the police concentration diffuses

in exactly the same way as the criminals. When q is above or below 2, the police force diffuses

in a less or more focused manner, respectively, compared to the movement of the criminals.

Secondly, the diffusivity of the police can be regarded as D/τu, and so if τu < 1, the police

are more mobile than the criminals. Conversely, τu > 1 can be interpreted as the police being

comparatively more “sluggish” in their movements.

The key qualitative question we ask is the following. What should the optimum degree of

focus be in patrolling? The common overarching question in virtually all the efforts in crime

modeling is to seek strategies to reduce crime, by minimizing the number of crime hotspots in

a given region. In our context, we will investigate whether there are optimal values of q and

τu, so that the least number of hotspots can be stable. From a mathematical perspective, this

is equivalent to optimizing the stability threshold of the diffusivity D by tuning q and τu.
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3.1 Asymptotic Construction of a Multiple Hotspot Steady-

State

We now construct steady-state solutions for (3.1) with multiple hotspots. First, we observe

that the spatial differential operators on ρ and U are similar, and has the simpler flux form by

reversing a product rule

∂

∂x

[(
∂

∂x
− qAx/A

)
(· · · )

]
= ∂

∂x

[
Aq

∂

∂x

(
A−q (· · · )

)]
.

This suggests that we make the change of variables analogous to (2.9)

ρ = V A2 , U = uAq ,

so that (3.1) transforms to

At = ε2Axx −A+ V A3 + α , (3.2a)(
V A2

)
t

= D
(
A2Vx

)
x
− V A+ γ − α− uAq , (3.2b)

τu (uAq)t = D (Aqux)x . (3.2c)

The key assumption is that the attractiveness field A is highly localized as compared to both

the criminal and police densities, so that ε � 1. Then, anticipating a homoclinic in A with

hotspot amplitude of order O(ε−1), we will consider the large D regime where D = O(ε−2).

Then, by choosing V = O(ε2), we obtain a distinguished balance. This motivates the rescaling

V = ε2v, D = D0/ε
2 ,
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so that (3.2) transforms to

At = ε2Axx −A+ ε2vA3 + α , (3.3a)

ε2
(
A2v

)
t

= D0
(
A2vx

)
x
− ε2vA3 + γ − α− uAq , (3.3b)

τuε
2 (Aqu)t = D0 (Aqux)x , (3.3c)

with Ax = ux = vx = 0 at x = ±`.

Observe that, as compared to (2.10), our system will be coupled more weakly as some key

nonlinear terms have a different order with respect to ε. This will facilitate our asymptotic

analysis. The analysis of the stronger coupling regime where D = O(1), as considered for the

basic crime model in the previous chapter, would be the natural next step in future work. In

this chapter we will focus our analysis on (3.3), pertaining to the D = O(ε−2) regime.

3.1.1 A Symmetric Pattern of Hotspots of Equal Amplitude

To construct a symmetric steady-state with K hotspots to (3.3), a simple way to do so is to

consider a larger domain of length S, where S = (2`)K, and construct a single hotspot on

(−`, `). Owing to the translation-invariance of the equations (3.3), the single hotspot steady-

state can be placed side-by-side to give a K−hotspot pattern on the large domain of length S,

which we conveniently choose to be (0, S). Consequently, the total number of police, given by

U0 ≡
ˆ S

0
U(x, t) dx , (3.4)

which is constant in time, can now be expressed as

U0 = K

ˆ `

−`
U dx , (3.5)

if we integrate (3.1c) on (0, S) and use translation-invariance. We now begin the matched

asymptotic expansions procedure to construct a single hotspot solution on (−`, `)

First, we substitute U = uAq into (3.5) to readily obtain the steady-state solution to (3.3c)
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as

u = U0

K
´ `
−`A

q dx
, (3.6)

provided the steady-state solution A to (3.3a) is known. Therefore, the steady-state problem

for the 3-component system (3.3) is equivalent to the following two-component system with an

nonlocal integral term:

ε2Axx −A+ ε2vA3 + α = 0 , (3.7a)

D0
(
A2vx

)
x
− ε2vA3 + γ − α− U0

K

Aq´ `
−`A

q dx
= 0 . (3.7b)

For the first component, we have A ∼ α + O(ε2) in the outer region, while in the inner

region, we put y = ε−1x and A ∼ A0/ε to obtain

A0yy −A0 + vA3
0 + εα = 0 , D0ε

−4
(
A2

0vy
)
y

+O(ε−1) = 0 .

Therefore, to leading order it follows that v ∼ v0 is a constant, and that

A0 = w(y)
√
v0

, (3.8)

where w(y) =
√

2 sech y is the homoclinic solution of

w′′ − w + w3 = 0, −∞ < y <∞ ,

w(0) > 0, w′(0) = 0, w → 0 as y → ±∞ .

Some particular values of the integrals of w(y) will be needed below. They are collected here

as ˆ ∞
−∞

w(y)dy =
ˆ ∞
−∞

w3(y)dy =
√

2π ,
ˆ ∞
−∞

w2(y)dy = 4,
ˆ ∞
−∞

w4(y)dy = 16/3 ,
ˆ ∞
−∞

w5(y)dy/
ˆ ∞
−∞

w3(y)dy = 3
2 .
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In particular, a general formula for Iq ≡
´∞
−∞w

q(y)dy is

Iq =
ˆ ∞
−∞

wq(y) dy = 23q/2−1 Γ2(q/2)
Γ(q) , (3.9)

where Γ(z) is the usual Gamma function. This general formula, along with the analogous

formula for a general class of homoclinic solutions is computed in the Appendix at (A.11) and

(A.13).

We return to (3.6), which is valid uniformly on the whole domain, and estimate the key

integral ˆ `

−`
Aq dx ∼ 2`α+ ε1−qv

q/2
0

ˆ ∞
−∞

wq(y) dy = O(ε1−q) ,

so that u = O(εq−1).

Remark 3.1. A key assumption we make is that q > 1 so that the integral
´ `
−`A

qdx, and thus

u depend only on the inner region contribution from Aq, and is decoupled from the O(1) term

2`α. With this assumption, the leading order solution to u is given by

u ∼ εq−1ũe, where ũe ≡
U0
K

v
q/2
0
Iq

. (3.10)

Next, we determine v0 by integrating (3.7b) on (−`, `) and imposing vx(±`) = 0 to find

ε2
ˆ `

−`
vA3dx = 2` (γ − α)− U0/K .

Therefore, since A ∼ α = O(1) in the outer region, while A = O(ε−1) in the inner region, it

follows that the dominant contribution to the integral arises from the inner region. In this way,

we estimate
1

√
v0
´
w3 = 2` (γ − α)− U0/K , (3.11)

which determines v0 as

v0 = 2π2 (2` (γ − α)− U0/K)−2 . (3.12)

We observe that v0, and thus the amplitude of the hotspot, as determined by A0, is independent

of the parameter q.
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Remark 3.2. In Chapter 2, the value V0 given in (2.35), which has a role analogous to v0 given

above at 3.12, are both a limit of the outer solution v(x) at hotspot the spot location, and in

both cases 2/
√
V0 and 1/√v0 give the leading order approximations of the amplitudes of the

corresponding attractiveness hotspots. However, the strengths of interaction between the inner

and outer solutions are significantly different for the D = O(ε−2) regime, versus the D = O(1)

regime studied in Chapter 2), with the stronger interaction case D = O(1) being asymptotically

more intricate to analyze. Therefore, unlike the leading order approximation for A, which we

use A0 for both, we are distinguishing V0 from v0 by the capitalization.

Also, we observe from (3.11) that a necessary condition for a hotspot solution with A =

O(ε−1) to exist is that

U0 < U0,max ≡ 2`K (γ − α) , (3.13)

so that the total police deployment must be below some threshold. We will assume such a

condition for U0 throughout this section.

In the outer region, we expand v ∼ ve(x) + . . . and recalling that A ∼ α + O(ε2) we find

that ve(x) solves the simple ODE problem on 0 < x < ` given by

D0vexx = −(γ − α)
D0α2 ≡ −ζ , 0 < x < ` ; ve(0) = v0, vex(`) = 0 , (3.14)

which has the solution

ve(x) = ζ

2
[
(`− |x|)2 − `2

]
+ v0, 0 < |x| ≤ ` , (3.15)

with v0 as given in (3.12). Notice that this is a uniformly valid leading order solution for v.

We summarize the results for the leading order approximation of a steady-state with a single

hotspot on (−`, `) as follows.

Theorem 3.3. For the system (3.3), there exists a symmetric steady-state solution on (0, S)
with K hotspots. On each sub-domain with length 2` = S/K, and translated to (−`, `) to contain
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exactly one hotspot at x = 0, the steady-state solution, to leading order, is given by

A ∼ w(x/ε)
√
v0

, if x = O(ε), A ∼ α if x = O(1) ,

v ∼ ve = ζ

2
[
(`− |x|)2 − `2

]
+ v0 ,

u ∼ εq−1ũe, ũe ≡
U0
K

v
q/2
0
Iq

,

where v0 = 2π2 (2` (γ − α)− U0/K)−2 and Iq = 23q/2−1 Γ2(q/2)
Γ(q) .

Remark 3.4. The leading order behavior is now seen to be entailed predominantly by the local

behavior of the O(ε−1) spike in the A-component. In contrast, the only term that depends on

the assumption that the the hotspot is located at x = 0 in (−`, `) is ve which has a simple

explicit formula. Therefore, in the construction of an asymmetric pattern, i.e. with hotspot

located at 0 6= x0 ∈ (−`, `), only the term ve needs to be changed.

We now also summarize the above result in terms of the original variables to facilitate the

interpretation of what it means to the original model (3.3).

Corollary 3.5. For the system (3.3), the K-hotspot steady-state that corresponds to that stated

in (3.3) is given by:

A ∼ w(x/ε)
√
v0

, if x = O(ε), A ∼ α , if O(ε)� |x| < ` ,

ρ ∼ w2(x/ε) , if x = O(ε), ρ ∼ ε2veα2 , if O(ε)� |x| < ` ,

U ∼ ε−1U0
K
wq/Iq , if x = O(ε), U ∼ εq−1U0

K
αqv

q/2
0 /Iq , if O(ε)� |x| < ` .

3.2 NLEP Stability of Multiple Spike Steady-State for General

Power 1 < q <∞

To analyze the linear stability of a K-hotspot steady-state solution, we will first derive the non-

local eigenvalue problem (NLEP) by using the method of matched asymptotic expansions. We

first derive the NLEP for a one-hotspot solution where the boundary conditions are of Floquet

type. From this canonical problem we readily extract the corresponding NLEP correspond-

ing to a multi-spike pattern with our desired Neumann boundary conditions by following the

methodology described in the Appendix, Section A.1 on page 179). This approach to study the
102



stability of multi-spike steady-states is a relatively new technique first applied to spike-stability

problems for a general class of reaction-diffusion systems [40], for the study of the stability of

mesa patterns [36], and for a spike solution to a competition model with cross-diffusion [30].

Our approach is related to the recent work by Kolokolnikov et al. in [29] on the basic crime

model, but here we extend this analysis to incorporate the third component representing the

police density. The novelty of the analysis is that it leads to an NLEP that now has two distinct

nonlocal terms. Nevertheless, we will show that the spectrum of this NLEP can be reduced to

the study of a simple transcendental equation in the eigenvalue parameter for the case where

q = 3. For this value of q, the equation for the discrete eigenvalue of the NLEP will be sufficiently

simple so as to lead to an explicit characterization of an asynchronous, or anti-phase, oscillation

in the hotspot amplitudes for a pattern of two hotspots in a certain parameter regime. This

oscillation is due to a Hopf bifurcation, whose threshold can be determined analytically. The

existence of robust asynchronous oscillations in the spike amplitudes is a new phenomena, which

does not occur in the study of spike stability for other reaction-diffusion systems such as the

Gierer-Meinhardt and Gray-Scott models, where synchronous oscillations typically occur.

We also mention in passing that such problems with two or more nonlocal terms are relatively

novel in the literature for NLEP stability analysis. Active research is being conducted to

investigate new ways to treat multiple nonlocal terms in an NLEP, and in this chapter we

present some new results in this direction for the value q = 3 where the analysis is particularly

simple, and for the more challenging case where q 6= 3.

3.2.1 Linearization with Floquet B.C.

To study the linear stability problem for a K-hotspot pattern we first introduce a linear per-

turbation of the form

A = Ae + eλt, v = ve + eλtεψ, u = ue + eλtεqη , (3.16)

where (Ae, ve, ue) represents a steady-state with a single hotspot centered at the origin in

−` < x < `. The orders of perturbations (O(1), O(ε) and O(εq) for the A, v and u components

relatively) were chosen such that φ, ψ, and η are all O(1) in the inner region.
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Then, we obtain from (3.3) that

ε2φxx − φ+ 3ε2veA2
eφ+ ε3A3

eψ = λφ , (3.17a)

D0
(
2Aevexφ+ εA2

eψx
)
x
− 3ε2A2

eveφ− ε3A3
eψ

−queAq−1
e φ− εqηAqe = λε2

(
2Aeveφ+ εA2

eψ
)
, (3.17b)

D0
(
qAq−1

e φuex + εqAqeηx
)
x

= ε2τuλ
(
qAq−1

e ueφ+ εqAqeη
)
. (3.17c)

For (3.17b),(3.17c), we impose the following Floquet boundary conditions on x = ±`

 η(`)

ψ(`)

 = z

 η(−`)

ψ(−`)

 ,

 η(`)

ψ(`)

 = z

 ηx(−`)

ψx(−`)

 , (3.18)

where z is a complex-valued parameter. In Section A.1 we discuss how to extract the spectrum

for the Neumann problem for a multi-spike pattern from our initial imposition of Floquet

boundary conditions.

For (3.17a), in the inner region, we use Ae ∼ w/
√
ε and ψ ∼ ψ0 to obtain that

Φ′′ − Φ + 3w2Φ + ψ(0)
v

3/2
0

w3 = λΦ , (3.19)

where Φ(y) = φ(xj + εy) is the leading order inner expansion of φ. In contrast, in the outer

region we obtain from (3.17) to leading-order that

φ ∼ ε3α3ψ/[λ+ 1− 3ε2α2ve] = O(ε3), ψxx = 0, ηxx = 0 .

The main goal of the calculation below involves determining the values ψ(0) and η(0). We

will find that ψ(0) depends on η(0).

3.2.2 The Jump Conditions

We first recall that ue = O(εq−1), as shown from our steady-state analysis. As such, we define

ue = εq−1ũe and integrate (3.17b) over an intermediate domain (−δ, δ) with 1� δ � ε. We use
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the facts that Ae ∼ w/
√
v0, φ ∼ Φ(y) and Ae(±δ) ∼ α, and we obtain, upon letting δ/ε→ +∞,

that

εD0α
2 [ψx]0 + 2D0α [vexφ]0 = 3ε

ˆ ∞
−∞

w2Φdy + εψ(0)
v

3/2
0

ˆ ∞
−∞

w3dy

+ qεũe

v
(q−1)/2
0

ˆ ∞
−∞

wq−1Φdy + εη(0)
v
q/2
0

ˆ ∞
−∞

wqdy +O(ε2λ) ,

where we used the notation [a]0 ≡ a(0+)− a(0−).

Since φ = O(ε3) in the outer region, we can neglect the second term on the left-hand side

of this expression. For eigenvalues for which λ� O(ε−1), we obtain that

D0α
2[ψx]0 = 3

ˆ
w2Φ + ψ(0)

v
3/2
0

ˆ
w3 + qũe

v
(q−1)/2
0

ˆ
wq−1Φ + η(0)

v
q/2
0

ˆ
wq , (3.20)

where we used the convenient shorthand notation that
´

(. . . ) ≡
´∞
−∞ (. . . ) dy.

Now from (3.17b), we use φ = O(ε3) in the outer region, together the fact with q > 1, so

that the term εqηAqe is of lower order. In this way, we obtain the following BVP problem for ψ

with jump condition across x = 0:

ψxx = 0 , |x| ≤ ` ,

e0 [ψx]0 = e1ψ(0) + e2η(0) + e3 , (3.21)

ψ(`) = zψ(−`), ψx(`) = zψx(−`) ,

where we have defined ej for j = 0, . . . , 3 by

e0 = D0α
2, e1 = 1

v
3/2
0

ˆ
w3, e2 = 1

v
q/2
0

ˆ
wq , e3 = 3

ˆ
w2Φ+ qũe

v
(q−1)/2
0

ˆ
wq−1Φ . (3.22)

This BVP problem for ψ can be solved using the generic procedure outlined in Lemma A.1.

This leads to the following expression for the central value of ψ:

ψ(0) = − e2η(0) + e3
e0 (1− cos(πj/K)) /`+ e1

. (3.23)

This expression shows that we need to calculate η(0) as well. To determine this value we first

105



integrate (3.17c) over the region |x| = O(δ) to obtain

D0ε
qαq [ηx]0 +D0qα

q−1O(εq+2) = ε2τuλ

[
qεq−1ũe
εq−1

ε

v
(q−1)/2
0

ˆ
wq−1Φ + ε

v
q/2
0

η(0)
ˆ
wq
]
.

If we define τ̂u by

τ̂u ≡ εq−3τu , (3.24)

we can write the expression above as

D0α
q [ηx]0 = τ̂uλ

[
qũe

v
(q−1)/2
0

ˆ
wq−1Φ + 1

v
q/2
0

η(0)
ˆ
wq
]
. (3.25)

We observe that τ̂u = O(1) when q = 3, and we will use this parameter below as a bifurcation

parameter.

Now in the outer region we obtain from (3.17c) that

D0ε
qαqηxx +O(εq+2) = ε2τuλ

[
O(εq+2) +O(εq)

]
.

Therefore, if we assume

τu � O(ε−2) , (3.26)

so that τ̂u � O(εq−5), then we obtain that ηxx = 0 to a first approximation. In this way, we

obtain that the BVP problem for η, with jump condition across x = 0, is

ηxx = 0 , |x| ≤ ` ,

d0 [ηx]0 = d1η(0) + d2 , (3.27)

η(`) = zη(−`), ηx(`) = zηx(−`) ,

where the constants dj for j = 0, . . . , 2 are defined by

d0 = D0α
q, d1 = τ̂uλ

v
q/2
0

ˆ
wq, d2 = τ̂uλqũe

v
(q−1)/2
0

ˆ
wq−1Φ . (3.28)
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Then, by applying Lemma A.1 again, we determine η(0) as

η(0) = − d2
d0 (1− cos(πj/K)) /`+ d1

. (3.29)

The final step in the analysis is to simplify ψ(0) and express it explicitly in terms of the

original parameters, so as to identify the key coefficient ψ(0)/v3/2
0 in the NLEP (3.19).

First, since d0 = D0α
q and e0 = D0α

2 have similar forms, this suggests that we define a

key factor in the denominators of (3.23) and (3.29) as

Dj,q ≡
D0α

q

`
(1− cos(πj/K)) ≡ Djα

q , (3.30)

where

Dj ≡
D0
`

(1− cos(πj/K)) . (3.31)

We observe that Dj,q < Dj+1,q for any j = 1, 2, . . . ,K − 2 and any q.

Then, we substitute (3.30) into both the expressions for ψ(0) and η(0), as given in (3.23)

and (3.29), and in this way obtain that

ψ(0) = − 1
Dj,2 + e1

[
e3 −

e2d2
Dj,q + d1

]
. (3.32)

Before continuing, we use the formula for ũe given in (3.10) to rewrite the expressions for

e1, e2, e3, d1, and d2 as

e1 =
´
w3

v
3/2
0

, e2 =
´
wq

v
q/2
0

, e3 = 3
ˆ
w2Φ +

U0
√
v0

K

q
´
wq−1Φ´
wq

,

d1 = τ̂uλ

´
wq

v
q/2
0

, d2 = τ̂uλ

(
U0
√
v0

K

q
´
wq−1Φ´
wq

)
.

With these expressions we can write ψ(0) as

ψ(0) = − 1
e1

1
1 +Dj,2/e1

[
e3 −

(e2/d1) d2
1 +Dj,q/d1

]

= − v
3/2
0´
w3

1
1 + v

3/2
0 Dj,2/

´
w3

[
e3 −

d2/ (τ̂uλ)
1 + v

q/2
0 Dj,q/

´
wq/ (τ̂uλ)

]
.
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We simplify the expression in the bracket by noting that e3 = 3
´
w2Φ +d2/ (τ̂uλ), which yields

e3 −
d2/ (τ̂uλ)

1 + v
q/2
0 Dj,q/

´
wq/ (τ̂uλ)

.

= 3
ˆ
w2Φ +

(
1− τ̂uλ

τ̂uλ+ v
q/2
0 Dj,q/

´
wq

)(
U0
√
v0

K

q
´
wq−1Φ´
wq

)
.

We then group terms together to define a key quantity χ as

χ ≡ −ψ(0)
v

3/2
0

= 1
1 + v

3/2
0 Dj,2/

´
w3

[
3
´
w2Φ´
w3 +

v
q/2
0 Dj,q/

´
wq

τ̂uλ+ v
q/2
0 Dj,q/

´
wq

(
U0
√
v0

K
´
w3 ·

q
´
wq−1Φ´
wq

)]
. (3.33)

This expression motivates the introduction of a few new quantities

χ0,j ≡
1

1 + v
3/2
0 Dj,2/

´
w3
, χ1,j ≡

U0
√
v0

K
´
w3

χ0,j
Cq(λ) , Cq(λ) ≡ 1 + τ̂uλ

v
q/2
0 Dj,q/

´
wq

, (3.34)

so that χ can be written compactly as

χ(λ) ≡ χ0,j
3
´
w2Φ´
w3 + χ1,j(λ)q

´
wq−1Φ´
wq

. (3.35)

We observe that Cq(0) = 1 and χ1,j(0) = U0
√
v0

K
´
w3χ0,j .

Finally, we substitute these expression back into our NLEP (3.19), and in this way derive

the main result of this section, which we summarize as follows:

Proposition 3.6. (Principal Result) The linear stability of a symmetric K−hotspot state given

by Theorem 3.3 is governed by the spectrum of the following NLEP:

L0Φ− χ(λ)w3 = λΦ , (3.36)

where the local operator is given by

L0Φ ≡ Φ′′ − Φ + 3w2Φ , (3.37)
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and where the multiplier χ(λ) consists of two nonlocal terms of the form

χ(λ) = χ0,j
3
´
w2Φ´
w3 + χ1,j(λ)q

´
wq−1Φ´
wq

, (3.38)

with coefficients defined in 3.34.

3.2.3 The Competition Instability Threshold

We now turn to determining the competition instability threshold value of the diffusivity D,

which is characterized by the zero eigenvalue crossing of the NLEP. Before proceeding, we

remind ourselves of the assumptions made on the model parameters during the construction of

the steady-state solution and the derivation of the NLEP, which are that

q > 1, U0 < U0,max ≡ S(γ − α), τu � O(ε−2) .

We set λ = 0 in (3.36) together with Φ = w. Then, since L0w = 2w3, we have (2− χ(0))w3 = 0,

so that χ(0) = 2. We then calculate,

2 = χ(0) = χ0,j
3
´
w2 · w´
w3 + χ1,j(0)q

´
wq−1 · w´
wq

= 3χ0,j + q

(
U0
√
v0

K
´
w3χ0,j

)
,

which determines χ0,j as

χ0,j = 2
3 + qU0

√
v0/K

´
w3 . (3.39)

We then recall the definition of χ0,j given in (3.34), which yields then algebraic equation for

Dj,2 given by
1

1 + v
3/2
0 Dj,2/

´
w3

= 2
3 + qU0

√
v0/K

´
w3

Upon solving for the critical value of Dj,2, we get

D∗j,2 = 1
2

´
w3

v
3/2
0

(
1 + qU0

√
v0/K

ˆ
w3
)
. (3.40)
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For convenience, we define ω by

ω ≡ U0,max − U0 = S(γ − α)− U0 , (3.41)

and rewrite √v0 given in (3.12) in terms of ω as

√
v0 = K

´
w3

S(γ − α)− U0
= K

ω

ˆ
w3 . (3.42)

In this way, we can further rewrite (3.40) compactly as

D∗j,2 = 1
2
(´
w3)2 ω3

K3

(
1 + qU0

ω

)
= ω3

4π2K3

(
1 + qU0

ω

)
. (3.43)

Finally, we recall that the outer domain width of a hotspot is given by ` = S/(2K), and so

from the definition of Dj,2 given in (3.30), we have that the threshold value for the j-th mode

is given by

D∗j,2 = D0α
2 (2K)
S

(1− cos(πj/K)) . (3.44)

Comparing (3.43) and (3.44) we see that there are K−1 zero eigenvalue crossings for the NLEP

(3.36), which occur at the following critical values of D0:

D∗0,j ≡
S

8π2K4α2
1

[1− cos(πj/K)]ω
3
(

1 + qU0
ω

)
, j = 1, . . . ,K − 1 , (3.45)

where ω = S(γ − α)− U0 > 0.

Remark 3.7.

1. Note that D0,j is undefined for the j = 0 synchronous mode. We will have to show sepa-

rately below that no competition instability threshold, corresponding to a zero eigenvalue

crossing of the NLEP, exists for a single spike steady-state solution.

2. The original model parameter in (3.2) is D, and so the zero eigenvalue crossings in terms

of the diiffusivity D of criminals are at D = ε−2D0,j .

We conjecture that when D0 < D∗0 ≡ minj(D0,j) = D0,K−1, we will have linear stability for

τ̂u small enough. However, when D0 > D∗0 we expect instability. This is studied in some detail
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later in the chapter. We summarize our main result for the competition instability threshold

derived above as

D∗0 ≡
S

8π2K4α2
1

[1 + cos(π/K)]ω
3
(

1 + qU0
ω

)
. (3.46)

Next, we will analyze the behavior of the competition instability threshold D∗0 with respect to

the degree of patrol focus q and the total number U0 of police.

3.2.4 Interpretation of the Threshold

According to the results in Corollary (3.5), we can use (3.42) to obtain to leading order that

Amax ∼
√

2
√
v0

=
√

2ω
K
´
w3 = ω

Kπ
.

Therefore, the amplitude of the hotspot in the attractiveness field is directly proportional to

ω, but inversely proportional to the number of hotspots K. However, the amplitude of the

criminal density ρ at the hotspot locations is ρmax = w2(0) = 2, which is independent of all

model parameters. In addition, away from the hotspots in the outer region the criminal density

is O(ε2). Therefore, it is the number of hotspots that is the most important factor in reducing

the total crime in the domain, and we seek to tune the police related parameters q and U0 so

that the range of diffusivity D0 for which a K-hotspot pattern is linearly stable is smallest.

By examining (3.46), we observe that D∗0 increases with q in a linear fashion. This predicts

that if the police become increasingly focused on patrolling the more crime-attractive areas,

and under the assumption that the police-criminal interaction is of the simple type −U which

does not depend on criminal density, then paradoxically the range of D0 where a K-hotspot

steady-state exists and is stable increases. Therefore, for the goal of reducing crime hotspots,

a police deployment with intense focus on crime-attractive areas does not offer an advantage

over that of a less focused patrol. We remark that the lower limit of q is 1 for which the above

theory is valid, while q = 0 and q = 2 corresponds to police exhibiting a pure random walk and

a movement mimicking the criminals, respectively.

For a fixed q > 1, we next examine how the stability of a K-hotspot steady-state changes

with respect to the total police deployment U0. To this end, we substitute U0 = S(γ − α)− ω
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into (3.46) and write D∗0 as a function of ω as

D∗0 = S

8π2K4α2
1

[1 + cos(π/K)]g(ω) , where g(ω) ≡ ω3(1− q) + qS(γ − α)ω2 . (3.47)

We now analyze the critical points of g(ω).

We first observe that dω/dU0 = −1 and that U0 → U0,max as ω → 0. We then differentiate

g with respect to U0 to get

dg

dU0
= −3ω2(1− q)− 2qS(γ − α)ω = −ω (3ω(1− q) + 2qS(γ − α)) ,

which shows that dg/dU0 ∼ −2ωqS(γ − α) as ω → 0. We conclude that g must have a critical

point in 0 < U0 < U0,max, which must be necessarily be a maximum, if and only if

ωc = 2qS(γ − α)
3(q − 1) < S(γ − α) , which implies 2q

3(q − 1) < 1 so that q > 3 .

On the range where q ≤ 3 we have dg/dU0 < 0 for 0 < U0 < U0,max.

Our main conclusion from this simple calculus exercise is that if the degree of focus q satisfies

q ≤ 3, then D∗0 is monotonically decreasing in U0, and thus with increasing police deployment

U0 the parameter region where the crime hotspots are stable decreases. However, if q > 3, then

initially as police deployment increases from zero, the stability of hotspots is paradoxically

strengthened until the critical value

U0,c ≡ S(γ − α)− ωc = S(γ − α) q − 3
3(q − 1) ,

is reached. For U0 > U0,c, the hotspot pattern becomes less stable when more police deployment

is added. We display these results graphically in Fig. 3.1.

3.2.5 Stability of a Single Spike

The NLEP (3.36) was derived by imposing Floquet boundary conditions to analyze the stability

of K−hotspot equilibrium with K > 1. For the case of a single hotspot, we can impose the

Neumann boundary conditions directly on x = ±`, as the Floquet analysis is not needed. With
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Figure 3.1: Competition instability threshold nonlinearity g(U0) against police deployment U0
at various focus degrees q. Other model parameters are S = 2, γ = 2, α = 1, so U0,max = 2 as
shown in the right-most tick of the figure. The competition instability threshold D∗0 is simply
a positive scaling of g(U0) according to (3.47).

the same procedure as that leading to (3.21) and (3.27) above, we now obtain that

ψxx = 0 , |x| ≤ ` ,

e0 [ψx]0 = e1ψ(0) + e2η(0) + e3 , (3.48)

ψx(±`) = 0 ,

together with the BVP for η(x), given by

ηxx = 0 , |x| ≤ ` ,

d0 [ηx]0 = d1η(0) + d2 , (3.49)

ηx(±`) = 0 .

Here the coefficients e0, e1, e2, e3 and d0, d1 and d2, are as defined in (3.22) and (3.28),

respectively.

From these two problems it immediately follows that η(x) = η(0) everywhere and that

η(0) = −d2/d1. In addition, we find that ψ(x) = ψ(0) everywhere, with ψ(0) given by

ψ(0) = − 1
e1

(e2η(0) + e3)/e1 = − 1
e1

(e3 −
e2d2
d1

) .
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This is precisely the formula given in (3.32) with Dj,2 and Dj,q set to zero.

Therefore, by proceeding in the same way as done in the Floquet analysis performed earlier,

we simply set Dj,2 and Dj,q to zero in the expression (3.33), and in this way determine χ as

χ ≡ −ψ(0)
v

3/2
0

= 3
´
w2Φ´
w3 . (3.50)

This leads to an NLEP for a single hotspot solution of the form

L0Φ− 3w3
´
w2Φ´
w3 = λΦ ,

which is independent of all model parameters. Moreover, it is identical to that given in (2.46)

in Chapter 2. We conclude from Lemma 3.2 of [29] that any nonzero eigenvalue of (2.46)

must satisfy Re(λ) < 0. Therefore, we conclude that a single hotspot steady-state solution is

unconditionally stable for any D0 when τu � O(ε−2).

3.3 Analysis of the NLEP - Competition Instability and Hopf

Bifurcation

3.3.1 Combining the Nonlocal Terms

We now proceed to analyze the NLEP (3.36), which we first write in the following more explicit

form by invoking (3.35):

L0Φ− χ0,jw
3 3
´
w2Φ´
w3 − χ1,j(λ)w3 q

´
wq−1Φ´
wq

= λΦ ,

χ0,j ≡
1

1 + v
3/2
0 Dj,2/

´
w3
, χ1,j ≡

χ0,j
Cq(λ)

U0
√
v0

K
´
w3 ,

Cq(λ) ≡ 1 + τ̂uλ

v
q/2
0 Dj,q/

´
wq

.

(3.51)

We now use a special property of the local operator L0, which has the eigenpair L0w
2 = 3w2

(see Appendix, Section A.2 for a discussion of how we can exploit properties of L0 to help solve

the NLEP). By applying Green’s identity to w2 and Φ, we get
´ (
w2L0Φ− ΦL0w

2) = 0, which
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yields ˆ
w5
(
χ0,j

3
´
w2Φ´
w3 + χ1,j

q
´
wq−1Φ´
wq

)
+ (λ− 3)

ˆ
w2Φ = 0 .

We combine terms with
´
w2Φ to find

(
3
´
w5´
w3 χ0,j + λ− 3

) ˆ
w2Φ = −

ˆ
w5χ1,j

q
´
wq−1Φ´
wq

.

Since the integral ratio
´
w5/
´
w3 is 3/2, as seen by using formulas given in (A.12), we can

write one nonlocal term in terms of the other as

3
´
w2Φ´
w3 = −9

9χ0,j + 2(λ− 3)

(
χ1,j

q
´
wq−1Φ´
wq

)
.

Therefore, we may combine the nonlocal terms in the multiplier as follows:

χ = χ0,j
3
´
w2Φ´
w3 + χ1,j(λ)q

´
wq−1Φ´
wq

,

=
(

1− 9χ0,j
9χ0,j + 2(λ− 3)

)
χ1,j

q
´
wq−1Φ´
wq

,

=
[

2(λ− 3)
9χ0,j + 2(λ− 3)χ1,j

]
q
´
wq−1Φ´
wq

.

If we define

C(λ) ≡ 1
qχ1,j

(
1 + 3

2 ·
3χ0,j
λ− 3

)
, (3.52)

we conclude that 3.51 takes the form

L0Φ− χ(λ)w3
´
wq−1Φ´
wq

= λΦ, where χ = 1
C(λ) . (3.53)

Finally, we write C(λ) in terms of the original model parameters and simplify the resulting

expression. First, we substitute √v0 = K
´
w3/ω into the formula for χ1,j to get

χ1,j = χ0,j
Cq(λ)

U0
√
v0

K
´
w3 = χ0,j

Cq(λ)
U0
ω
.
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In this way, we obtain that

C(λ) = ω

U0

Cq(λ)
qχ0,j

(
1 +

(3
2

) 3χ0,j
λ− 3

)
. (3.54)

We eventually would like to express C(λ) in terms of the parameters q and ω. To this end,

we first rewrite Cq(λ) and χ0,j , by using √v0 = K
´
w3/ω, as

Cq(λ) ≡ 1 + τ̃jλ , (3.55)

where

τ̃j = τ̂u/

[(√
2Kπ/ω

)q
Dj,q/

ˆ
wq
]
, (3.56)

and

χ0,j =
(
1 + 2π2(K/ω)3Dj,2

)−1
. (3.57)

Here we have defined new intermediate parameter τ̃j for subsequent notational convenience.

We then define

κq ≡
(√

2παK
ω

)q
/

ˆ
wq . (3.58)

Upon recalling that Dj,q = αqDj , we arrive at simpler expressions for τ̃j and χ0,j given by

τ̃j = τ̂u
κqDj

, (3.59)

χ−1
0,j = 1 + ακ3Dj . (3.60)

In particular, for the special case where q = 3 we have

κ3 = 2
√

2π3α3K3

ω3
(√

2π
) = 2π2α3K3

ω3 , (3.61)

and so for this value of q we have that χ−1
0,j is related to τ̃j rather explicitly as

χ−1
0,j = 1 + ατ̂u/τ̃j . (3.62)
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Remark 3.8. In the study of spikes for similar reaction diffusion systems, τ̃j usually is the

result of an “effective” time relaxation constant. Also note that Dj = D0 (1− cos(πj/K)) /`

appearing in the formulas above is an important factor resulting from the Floquet boundary

condition. It was found to be crucially related to the competition instability, corresponding to

the zero eigenvalue crossing.

We keep here for a quick reference the form of C(λ) which will be central in a subsequent

explicit calculation of eigenvalues:

C(λ) = ω

qU0
(1 + τ̃jλ)

(
1
χ0,j

+ 9
2(λ− 3)

)
. (3.63)

Remark 3.9.

1. We observe that our current NLEP is of the form

L0Φ−
(

a0 + a1λ

b0 + b1λ+ b2λ2

)
w3
´
wq−1Φ´
wq

= λΦ .

i.e. the multiplier is a proper rational function of degree 2. There have been no prior

studies to our knowledge of NLEP’s arising from other reaction-diffusion systems with

this type of multiplier.

2. The key model parameters we will use to analyze the NLEP will be q and ω. The latter

being a complementary quantity defined in relation to the maximum police presence so

that hotspots can exist, i.e. ω = U0,max − U0, where U0,max = S(γ − α) is defined by the

model parameters.

3.3.2 The Zero Eigenvalue Crossing Revisited

We would like to recover our result for the competition instability threshold given in (3.46) to

further ascertain that the new form of NLEP with one single nonlocal term is correct.

Upon setting λ = 0 in (3.63) we get

C(0) = ω

qU0

(
1
χ0,j
− 3

2

)
, (3.64)
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where we have used the fact that Cq(0) = 1 as noted before. We further set Φ = w in the

multiplier to get

χ = 1
C(0)

´
wq−1 · w´
wq

= 1
C(0) ,

so that our NLEP at (3.53) becomes

L0w = w3/C(0) .

Then, since L0w = 2w3 implies C(0) = 1/2, we arrive at the equation

ω

qU0

(
1
χ0,j
− 3

2

)
= 1

2 (3.65)

Upon solving for χ0,j , we get
1
χ0,j

=
(3 + qU0/ω

2

)
,

which is equivalent to (3.39) since ω = √v0/K
´
w3 by (3.42). Therefore, the exact same

calculations after (3.39) gives that C(0) = 1/2 implies (3.65), which in turn implies that

Dj,2 = D∗j,2 ≡
ω3

4π2K3

(
1 + qU0

ω

)
. (3.66)

Now, note that from the definition of χ0,j at (3.57), we obtain that χ0,j , given by

χ−1
0,j = 1 + 2π2(K/ω)3Dj,2 ,

is strictly increasing with Dj,2. Therefore, when Dj,2 is not exactly equal to the j-th mode

instability threshold D∗j,2, we have the following equivalence of inequalities:

Dj,2 < D∗j,2 iff ω

qU0

(
1
χ0,j
− 3

2

)
= C(0) < 1

2 , (3.67)

with a similar statement for Dj,2 > D∗j,2.

If we express using Dj = Dj,2/α
2 instead, the statement C(0) = 1/2 can be found to be
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equivalent to the inequality

Dj < D∗j ≡
ω3

4α2π2K3

(
1 + qU0

ω

)
. (3.68)

3.3.3 Solution to NLEP as Zeros of a Meromorphic Function

We now reformulate (3.53) so that we are seeking the eigenvalues λ as the zeros of some

meromorphic function ζ(λ) in the complex plane. We first write (3.53) as

(L0 − λ) Φ =
(

1
C(λ)

´
wq−1Φ´
wq

)
w3 ,

so that

Φ = 1
C(λ)

´
wq−1Φ´
wq

(L0 − λ)−1w3 .

We then multiply both sides of this expression by wq−1 and integrate to get

(ˆ
wq−1Φ

)(
1− F(λ)
C(λ)

)
= 0, F(λ) ≡

´
wq−1 (L0 − λ)−1w3´

wq
. (3.69)

Provided that the eigenfunction satisfies
´
wq−1Φ 6= 0, the eigenvalue λ solves

ζ(λ) ≡ C(λ)−F(λ) = 0 , (3.70)

where C(λ) is a proper rational function of degree 2 defined in (3.54).

We will proceed to analyze the zeros of the meromorphic function at ζ(λ) = C(λ)−F(λ) in

two cases: q = 3 and q > 1, with the former being explicitly solvable, and the latter requiring

the Nyquist criterion to count the number of zeros in the right half plane. Moreover, we will

also investigate the possibility of Hopf bifurcation, i.e. seeking solutions of the form λ± = ±iλI

to (3.70)with λI > 0.

Remark 3.10. If
´
wq−1Φ = 0, then the NLEP becomes simply the local eigenvalue problem:

L0Φ = λΦ with an extra condition
´
wq−1Φ = 0. From Proposition 5.6 of [13], we know that

there are exactly two discrete eigenvalues, and the only eigenpair with an odd eigenfunction is

λ = 0, Φ = w′. This suggests that there should also be discrete spectra of the full problem
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that are near zero as ε→ 0. These are the “small” eigenvalues that are related to translational

instabilities. A relevant treatment for the two-component system without police in the regime

ε � 1, D = O(1) was found in Section 2.7. There we observed a mild instability in the

slow dynamics of hotspots with an asymmetrical pattern (different outer region lengths). Our

analysis of the NLEP characterizes only those eigenvalues that are O(1) as ε → 0, which can

lead to O(1) time-scale instabilities.

3.4 Explicitly Solvable Case q = 3 and Asynchronous Oscilla-

tions

We now study the stability of a K-hotspot solution and also illustrate the possibility of a Hopf

bifurcation for the explicitly solvable case q = 3, where F(λ) can be written in a closed form.

Rather remarkably, we will be able to reduce the problem of determining unstable spectra of the

NLEP to finding pure imaginary solutions to a quadratic equation in the eigenvalue parameter.

When q = 3, we can calculate F(λ) explicitly by using the principal eigenpair of L0 given

by L0w
2 = 3w2. We consider the integral in the numerator of F(λ), and use integration by

parts to get

I ≡
ˆ
w2 (L0 − λ)−1w3 =

ˆ
w3 (L0 − λ)−1w2 .

Since w2 = 1
3L0w

2 = 1
3
[
(L0 − λ)w2 + λw2], we find that

I = 1
3

[ˆ
w5 + λ

ˆ
w3 (L0 − λ)−1w2

]
= 1

3

(ˆ
w5 + λI

)
.

Upon solving for I we get I = −
´
w5/(λ− 3), and so

F(λ) = I´
w3 =

´
w5´
w3

1
3− λ = −

(3
2

) 1
λ− 3 . (3.71)

Upon substituting (3.63) and (3.71) into ζ(λ) = C(λ)−F(λ) = 0, we get

ω

qU0
(1 + τ̃jλ)

(
1
χ0,j

+
(3

2

) 3
λ− 3

)
= −

(3
2

) 1
λ− 3 .
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The resulting equation for λ is simply a quadratic equation, which we write as

c2λ
2 + c1λ+ c0 = 0 , (3.72)

which has a positive leading coefficient c2 = τ̃jχ
−1
0,j/3 > 0. The other two coefficients in the

quadratic are

c1 = τ̃j

(
3
2 −

1
χ0,j

)
+ 1

3χ0,j
, c0 = qU0

2ω + 3
2 −

1
χ0,j

. (3.73)

Remark 3.11. If we are only interested in the explicitly solvable case q = 3 where F(λ) has a

closed-form formula, one could have observed that (3.53) takes the form

L0[φ]− χwr
ˆ ∞
−∞

w(p+1)/2Φdy = λΦ ,

where r = 3 and p = 3 is the degree of the nonlinearity in the homoclinic equation (2.14). One

can then apply the formula in Proposition (A.3) directly to obtain

λ = ν0 − χ
ˆ ∞
−∞

w
p+1

2 +rdy ,

where ν0 = 3 is the principal eigenvalue of the local operator L0. This provides an alternative

derivation of (3.72) as well. The above treatment highlights how F(λ) in the general form

reduces to a simple function when q = 3.

Next, we analyze the complex roots of the quadratic equation (3.72) to determine the

location of eigenvalues. We have that Re(λ) < 0 iff c1 > 0 and c0 > 0. Firstly, we check that

c0 > 0 holds if and only if
qU0
2ω >

1
χ0,j
− 3

2

which is exactly the inequality (3.67) that in turn is equivalent to Dj,2 < D∗j,2. This confirms

that the stability of K-hotspot occurs only if Dj,2 is below the competition instability threshold

D∗j,2. Secondly, we check that the condition c1 > 0 holds if and only if

1
3χ0,j

> τ̃j

(
1
χ0,j
− 3

2

)
, (3.74)
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which is always true if
1
χ0,j

<
3
2 . (3.75)

In other words, recalling (3.57), this is equivalent to 1 + 2π2(K/ω)3Dj,2 < 3/2, which yields

that

Dj,2 <
ω3

4π2K3 ≡ D
∗
j,2,min . (3.76)

Thus we have arrived at a threshold (3.76) below which we have stability.

Remark 3.12. We also note in passing that the same statement can also be expressed using Dj

and κq from (3.58) and (3.31), which yields

Dj < D∗j,2,min ≡
ω3

4π2α2K3 = α

2κ3
. (3.77)

This suggests a possibility that D∗j,2,min may not be a uniform bound for all q 6= 3 because it

depends on κ3, which can be the result from choosing q = 3. In contrast, D∗j,2 was derived in

(3.66) in a context when q = 3 was not assumed. This observation is related to an eventual

difficulty we will encounter below for proving stability for the range Dj,2 < D∗j,2,min when q 6= 3

regardless of τu. This furnishes a possible route of investigation in the algebraic relationships

between the stability thresholds and the problem parameters.

Finally, for the parameter range where D∗j,2,min < Dj,2 < D∗j,2, then we find from (3.74) that

there is a Hopf bifurcation threshold where purely imaginary complex conjugate eigenvalues

exist, given by

τ̃j,Hopf ≡
(2

3

) 1
2− 3χ0,j

. (3.78)

This threshold determines the sign of the coefficient c1 in the quadratic in the following way:

0 < τ̃j < τ̃j,Hopf iff c1 > 0 ; τ̃j > τ̃j,Hopf iff c1 < 0 . (3.79)

Therefore, in this interval, instability is governed by an “effective” time relaxation constant τ̃j ,

which leads to the existence of a Hopf bifurcation.

In addition, if we compare the lower threshold D∗j,2,min with the upper threshold D∗j,2 given

122



in (3.67), we see that
D∗j,2

D∗j,2,min
= 1 + qU0

ω
. (3.80)

We observe that the case where Dj,2 lies between D∗j,2 and D∗j,2,min does not exist when U0 = 0,

i.e. the removal of the police equation. Conversely, if U0 → U−0,max so that ω = U0,max−U0 → 0+,

then both D∗j,2 and D∗j,2,min vanish, but D∗j,2/D∗j,2,min → +∞.

We now summarize the above findings. The location of the two zeros λ± of the meromorphic

function ζ(λ) = C(λ)−F(λ), depend on the values of Dj,2 and τ̃j in the following way:

Proposition 3.13. Let λ+, λ−, with Reλ+ ≥ Reλ−, denote the two solutions of the quadratic

equation (3.72) in the complex plane. Then, their location in the complex plane depends on

Dj,2 = D0α
2(1− cos(πj/K)/` in the following way:

1. If Dj,2 > D∗j,2 = ω3

4π2K3

(
1 + qU0

ω

)
, then we have a pair of opposite-signed real eigenvalues

λ+ > 0 > λ−, and the K-hotspot steady-state is unstable.

2. If Dj,2 < D∗j,2,min = ω3

4π2K3 , then Reλ± < 0, and we have stability.

3. If D∗j,2,min < Dj,2 < D∗j,2, then if

(a) τ̃j = τ̃j,Hopf ≡ 2
3

1
2−3χ0,j

, we have Reλ± = 0 and a Hopf bifurcation occurs.

(b) τ̃j > τ̃j,Hopf , then Reλ± > 0,

(c) 0 < τ̃j < τ̃j,Hopf , then Reλ± < 0.

Remark 3.14. The multiple hotspot steady-state exhibits an interesting novel phenomenon in

the context of the study of the stability of spike patterns to reaction-diffusion systems. Firstly,

the window of oscillatory instability, i.e. the interval (D∗j,2,min, D
∗
j,2), where a Hopf bifurcation

occurs can occur is the result of the addition of the police equation with a simple coupling term

−U in the ρ-equation (criminal density). In particular, for a two-hotspot equilibrium, then j = 1

is the only mode of oscillation, and our theory predicts the possibility of an asynchronous Hopf

bifurcation so that the amplitudes of the two crime hotspots begin to exhibit temporal anti-

phase oscillations. In terms of the urban crime model, this means that when police patrols with

a certain specific diffusivity relative to the criminals (determined by τ̃j,Hopf), one observes an
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interesting picture that the police concentration is drifting to and fro from the hotspots without

annihilating any of them. However, if the police patrol diffusivity exceeds such a threshold, then

one of the hotspot will dissipate due to an oscillatory instability. Such a qualitative behavior

in the possible types of detstabilization of localized spike patterns was not observed in other

well-studied reaction-diffusion systems exhibiting similar concentration phenomena, such as the

Gray-Scott, Gierer-Meinhardt and Schnakenburg models.

3.4.1 Explicit Determination of Hopf Bifurcation and Stability Region

In this section, we again consider the case q = 3, but we will determine stability thresholds for

an arbitrary number K ≥ 2 of hotspots. For K > 2, the number of modes j is K − 1 > 1.

To analyze this more complicated situation, we first express our results above in terms of the

original model parameters. We first observe that the expression

Dj,2 = D0α
2 (1− cos(πj/K)) /` ,

implies the following ordering relation:

D1,2 < D2,2 < · · · < DK−1,2 .

Therefore, for a pattern of K-symmetric hotspot on an interval of length S = 2K` with q = 3,

it is easy to define a sufficient condition for instability and stability, corresponding to Case 1

and 2 of Proposition 3.13 as follows.

We first conclude that we have an unstable real eigenvalue due to the K−1-mode whenever

DK−1,2 > D∗j,2. This motivates introducing D0,upper by

D0,upper ≡ D0
(
D∗j,2/DK−1,2

)
= Sω3

8π2α2K4 (1 + cos(π/K))

(
1 + 3U0

ω

)
,

so that we have instability if D0 > D0,upper.

Similarly, for the eigenvalues with respect to all j = 1, 2, . . . ,K − 1 modes to be in the left
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half-plane Re(λ) < 0, we need that DK−1,2 < D∗j,2,min. This motivates the introduction of a

second threshold D0,lower by

D0,lower ≡ D0
(
D∗j,2,min/DK−1,2

)
,

= Sω3

8π2α2K4 (1 + cos(π/K)) .

We conclude that the K-spike pattern is linearly stable if D0 < D0,lower.

We observe that the ratio of these two thresholds, given by

D0,upper
D0,lower

=
D∗j,2

D∗j,2,min
= 1 + 3U0

ω
,

holds regardless of the value of τ̃j = τ̂u/(κ3Dj). Therefore, this ratio is independent of the

value of τ̂u = τu as well (since q = 3, see (3.24)).

However, if D0,lower < D0 < D0,upper, then we certainly have D∗j,2,min < DK−1,2 < D∗j,2. As a

result, there will be a Hopf bifurcation associated with the K−1-mode when τ̃K−1 = τ̃K−1,Hopf ,

as defined in Proposition 3.13, i.e. at τu = κ3DK−1τ̃K−1,Hopf . Moreover, it can also happen

that D∗j,2,min < Dj0,2 for some minimal 1 ≤ j0 < K − 1 as well.

This indicates that there can be multiple Hopf bifurcation curves of the form

τu = Hj(D0) for j = j0, j0 + 1, . . . ,K − 1 ,

whose domains may or may not overlap. If they do not overlap, then all the Hopf curves Hj

for j < K − 1 exist in domains to the right of D0,upper, and consequently do not affect stability

since D0 > D0,upper is already sufficient to conclude instability due to a real unstable eigenvalue

in the K − 1 mode. However, if they do overlap, then one needs to determine if they have

intersection points.

To analyze this more complicated case, we need to first discuss, the domain of Hj , i.e. the

range of D0 so that Hopf bifurcation is possible for each mode j separately.
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First, we define oscillatory instability thresholds D−0,j and D
+
0,j for the j-th mode as follows:

D−0,j ≡ D0
(
D∗j,2,min/Dj,2

)
= Sω3

8π2α2K4
(
1− cos jπK

) ,
D+

0,j ≡ D0
(
D∗j,2/Dj,2

)
= D−0,j

(
1 + 3U0

ω

)
= Sω3

8π2α2K4
(
1− cos jπK

) (1 + 3U0
ω

)
.

Then, with respect to a specific mode j only, the steady-state is stable if D0 < D−0,j , is unstable

if D0 > D+
0,j , and a Hopf bifurcation occurs at some τu = τj,Hopf when D0 is on the interval

D−0,j < D0 < D+
0,j .

Notice that D0,lower = D−0,K−1 and D0,upper = D+
0,K−1. Moreover, we have the following

ordering for the thresholds for each mode of oscillation:

D−0,j < D+
0,j for j = 1, 2, . . . ,K − 1 , (3.81)

owing to the fact that D+
0,j/D

−
0,j = 1 + 3U0/ω > 1. Moreover, if K ≥ 3, we have

D±0,j+1 < D±0,j for j = 1, 2, . . . ,K − 2 , (3.82)

as a result of the fact that Dj+1,2 > Dj,2 for j = 1, 2, . . . ,K − 2.

An issue of interest is then to determine whether D+
0,j+1 ≤ D

−
0,j for all j, so that the domains

of the Hopf curves Hj do not overlap and a complete ordering is possible:

D−0,K−1 < D+
0,K−1 ≤ D

−
0,K−2 < D+

0,K−2 ≤ · · · ≤ D
−
0,1 < D+

0,1 . (3.83)

To investigate this issue, we first note that 1 ≥ D+
0,j+1/D

−
0,j =

(
D−0,j+1/D

−
0,j

)
(1 + 3U0/ω)

gives the inequality

1 + 3U0
ω
≤

1− cos j+1
K π

1− cos j
Kπ

,

which implies that

ωU0 ≥
3
(
1− cos jπK

)
cos jπK − cos j+1π

K

.

Next, recall that since ω = U0,max − U0, the expression above implies the following condition
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on the ratio U0/U0,max depending on j and K:

U0
U0,max

=
(
ω

U0
+ 1

)−1

≤
cos jπK − cos j+1π

K

3− 2 cos jπK − cos j+1π
K

≡ rj,K . (3.84)

To maintain a weaker ordering compared to (3.83) so that no other j-th thresholds appear in

the interval

(D0,lower, D0,upper) =
(
D−0,K−1, D

+
0,K−1

)
,

that is

D−0,K−1 < D+
0,K−1 ≤ D

−
0,K−2 < · · · , (3.85)

where terms in the ellipsis is of unknown order (though still subject to the restrictions (3.81)

and (3.82)), then, it is sufficient to require that D+
0,K−1 ≤ D−0,K−2 holds, and so we apply

j = K − 2 to (3.84). We would then conclude that (3.85) holds if and only if

U0 ≤ U0,max rK−2,K , (3.86)

where rj,K is defined in (3.84).

In such a case, one can conclude that there is only one Hopf curve τu = H(D0) due to the

K − 1 mode, with the domain

D0,lower = D−0,K−1 < D0 < D+
0,K−1 = D0,upper .

There would then be stability with respect to the remaining modes j = 1, . . . ,K − 2, because

D0 < D+
0,K−1 ≤ D

−
0,K−2 < D−0,K−3 < · · · < D−0,1 .

Although the condition (3.86) on the total amount of police guarantees this ordering, the actual

determination of the threshold values D+
0,j ’s for j = 1, . . . ,K − 2 would require further work.

From the numerically computed values in Table 3.1, one sees that (3.86) is quite restrictive

and actually implies a complete ordering of the thresholds for the given values of K. For
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j \ K 3 4 5 6
1 0.4000 0.4459 0.4660 0.4766
2 0.1907 0.2297 0.2500
3 0.1129 0.1429
4 0.0752

Table 3.1: Values of the constant rj,K defined in (3.84).

example, stability can occur without a complete ordering if

min
j
D−0,j = D−0,K−1 .

In general, it is possible that there exists a minimal j0 so that

D−0,j0 < D+
0,K−1 .

A closer examination of this would require a detailed analysis of the rj,K coefficients, which we

do not attempt here.

Instead, we only note that 0 < rj,K < 1 for any K ≥ 3 and j = 1, . . .K − 2, and we leave

open the possibility that D+
0,j1 > D−0,j2 , with j1 < j2, may occur in general. In particular, we

recognize the possibility that the adjacent Hopf curves (i.e j1 = j2 − 1) may have overlapping

regions on their domains. See Fig. 3.2 for an illustration of some possible cases where both

overlapping and disjoint domains are possible.

Bearing in mind that the domains of the Hopf curves may overlap, our key question now

is to determine whether the graphs Hj(D0) could intersect in the τu − D0 plane, leading to

the possibility of different modes oscillations depending on the location of D0 in the interval

(D0,lower, D0,upper).

To this end, we first express χ0,j in terms of D−0,j as

χ−1
0,j = 1 + 2π2(K/ω)3Dj,2 = 1 + Dj,2

2

(
4π2K3

ω3

)
.
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(a)

(b)

(c)

Figure 3.2: Regions of stability (shaded) and Hopf curves as function of D0 for K = 2, 3, 4
according to (3.92). Model parameters are S = 4, γ = 2, α = 1, U0 = 1. The vertical dotted
lines denote D0,lower and D0,upper respectively.
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Then, by using the definition of D∗j,2,min in (3.76), and recalling (3.81), we get

χ−1
0,j = 1 + Dj,2

2D∗j,2,min
= 1 + D0

2D−0,j
. (3.87)

Then, we can rewrite τ̃j,Hopf as

τ̃j,Hopf = 2
3

1
2− 3χ0,j

= 2
3

(
χ−1

0,j

2χ−1
0,j − 3

)
= 2

3

(
D0/(2D−0,j) + 1
D0/D

−
0,j − 1

)
= 1

3 +
(
D0

D−0,j
− 1

)−1

. (3.88)

Remark 3.15. The simplicity of the final expressions in (3.87) and (3.88) are interesting in their

own right, but are not strictly necessary for the following results to hold.

Since we have the ordering D−0,j+1 < D−0,j , we conclude that, for any fixed D0, it implies

that the ordering of the (rescaled) thresholds is

τ̃j+1,Hopf < τ̃j,Hopf ,

for all j = 1, . . . ,K − 2 when K ≥ 3.

To obtain some qualitative properties for τ̃j,Hopf as a function of Dj,2, we first observe that

for each j = 1, 2, . . .K − 1, we have

D0

D−0,j
= Dj,2
D∗j,2,min

→


1+ as Dj,2 →

(
D∗j,2,min

)+
,

1 + 3U0
ω as Dj,2 → D∗j,2 .

This yields the following limiting behaviors for τ̃j,Hopf as Dj,2 approach the lower and upper

thresholds:

τ̃j,Hopf →


+∞ as Dj,2 →

(
D∗j,2,min

)+
,

1
3

(
1 + ω

U0

)
as Dj,2 → D∗j,2 .

(3.89)

Finally, we unpack the definition of τ̃j,Hopf to define the Hopf threshold with respect to the

original parameter τu. We recall from (3.59) that when q = 3 we have τu = τ̃jDjκ3, and so we

define

τj,Hopf ≡ τ̃j,HopfDjκ3 . (3.90)
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Therefore, apart from a positive scaling factor Djκ3, the limiting behavior (3.89) still holds

qualitatively for τj,Hopf .

Finally, according to (3.31), we have Dj+1 > Dj as well. Therefore, if D−0,j < D+
0,j+1, then

for any D0 ∈ DomHj+1
⋂

DomHj = (D−0,j , D
+
0,j+1), we have following majorizing property for

the Hopf curves:

τj+1,Hopf = Hj+1(D0) < Hj(D0) = τj,Hopf , (3.91)

with this holding for all j = 1, . . .K − 2 if K ≥ 3 whenever there is an intersection of domains.

In addition, from (3.89) and (3.90), we also see that the Hopf curves τj,Hopf = Hj(D0) tend to

+∞ as D0 → D−0,j , and to some finite positive limit if D0 → D+
0,j . This verifies the shape of

the numerically computed Hopf bifurcation curves shown in Fig. 3.2.

In conclusion, (3.91) gives a negative answer to the possibility of Hopf curve intersection.

More precisely, if Hj1 and Hj2 are any two Hopf curves with j1 < j2, then their graphs do

not intersect even within the overlap of their domains. Instead, the lower mode curve always

majorizes the higher mode curve wherever they overlap in their domains, according to

Hj2(D0) < Hj1(D0) for any D0 ∈
(
D−0,j1 , D

+
0,j2

)
.

In other words, for any D0 ∈ (D0,lower, D0,upper), as τu increases from 0 to infinity, the first

Hopf bifurcation that is triggered is always the K − 1-mode, i.e. the mode associated with the

amplitudes of neighboring spikes oscillating in opposite directions.

Finally, we would like to determine the formula of τj,Hopf more explicitly in terms of D−0,j .

To this end, we first note that

D−0,j = S

2K ·
ω3

4π2α2K3(1− cos jπK )
,

= α

2D0 ·
`

D0(1− cos jπK )
· ω3

2π2α3K3 ,

= α

2D0 (Djκ3)−1 .

By using this expression, we can thus rewrite the scaling factor τj,Hopf/τ̃j,Hopf = Djκ3 (see
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(3.90)) as
τj,Hopf
τ̃j,Hopf

= Djκ3 = α

2
D0

D−0,j
.

With this expression for τ̃j,Hopf in terms of D−0,j in (3.88), we conclude that

τj,Hopf = Hj(D0) ≡ α

2
D0

D−0,j

1
3 +

(
D0

D−0,j
− 1

)−1
 , (3.92)

which is in agreement with the asymptotic behavior (3.89) as D0 →
(
D−0,j

)−
derived above,

without appealing to this formula. Moreover, we have

Hj(D+
0,j) = α

2

(1
3 + U0

ω

)(
1 + ω

U0

)
.

We summarize all these findings in the following main result.

Proposition 3.16. For D0,lower < D0 < D0,upper, a Hopf bifurcation occurs at some unique

τu = τHopf > 0 defined as a function of D0 by

τu = τHopf = HK−1(D0) = α

2
D0

D0,lower

1
3 +

(
D0

D0,lower
− 1

)−1
 , (3.93)

where the upper and lower thresholds are defined by

D0,lower ≡ D−0,K−1 = Sω3

8π2α2K4 (1 + cos π
K

) , (3.94a)

D0,upper ≡ D+
0,K−1 = D−0,K−1

(
1 + 3U0

ω

)
. (3.94b)

The oscillation at τu = τHopf corresponds to the highest mode j = K − 1, i.e. the amplitudes of

neighboring hotspots oscillate in opposite directions (anti-phase oscillatory instability).

If τu < τHopf , we have stability, while if τu > τHopf we have instability, due to complex

eigenvalues with negative and positive real parts respectively.

Moreover, if

τu < τmin = lim
D0→(D0,upper)−

H(D0) = α

2

(1
3 + U0

ω

)(
1 + ω

U0

)
,
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the no Hopf bifurcation occurs and the pattern is stable on this interval of D0.

3.5 General case q 6= 3

In this section we analyze the NLEP for the general case where q 6= 3.

3.5.1 Determining the Number of Unstable Eigenvalues by the Argument

Principle

We will return to the expression given in (3.70) where the discrete eigenvalues of the NLEP are

the complex zeros the function ζ(λ) = C(λ)−F(λ). We recall that C(λ) can be written as

C(λ) = a(1 + τ̃jλ)
(

1− b

3− λ

)
, (3.95a)

where the coefficients are given by

a = ω

qU0χ0,j
, b = 9χ0,j

2 , χ0,j = (1 + 2π2K3

ω3 )Dj,2 = 1 + ακ3Dj , (3.95b)

τ̃j = τ̂u/

[(√
2Kπ/ω

)q
Dj,q/

ˆ
wq
]

= τ̂u
κqDj

. (3.95c)

We observe that C(λ) is a meromorphic function with a simple pole at λ = 3, and with coefficients

defined by all the model parameters.

The latter function F(λ) is also meromorphic with a simple pole at λ = 3, but is instead

defined by integrals involving the local operator L0 and the ground-state solution w as

F(λ) =
´
wq−1(L0 − λ)−1w3´

wq
. (3.96)

It has a closed form given in (3.71) when q = 3. Since closed forms for F(λ) are not available

for q 6= 3, in this section we must appeal to the argument principle to count the number of

zeros of the meromorphic function C(λ)−F(λ) in the unstable right half-plane Re(λ) > 0.
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By using the identity w3 = 1
2L0w, as given in Lemma A.2, we calculate

F(λ) = 1
2

´
wq−1 (L0 − λ)−1 [(L0 − λ) + λ]w´

wq
,

= 1
2 + λ

2
´
wq

ˆ
wq−1(L0 − λ)−1w , (3.97)

which will be in a form more amenable for analysis below. Next, we derive a formula, based on

the argument principle, that can be used to determine the number of zeros of ζ(λ) in the right

half plane. First we observe that the simple poles of C(λ) and F(λ) do not cancel as λ → 3−,

since when restricted to the real line we get

F(λ)→ +∞ while C(λ)→ −∞ as λ→ 3− .

We then introduce the anticlockwise “Nyquist” contour that covers the right half plane as

R→∞ consisting of the union of the segments

ΓI+ = segment from iR to 0, ΓI− = segment from 0 to − iR,

CR = half circle from − iR to iR ,

where R > 0. A plot of this contour is shown in Fig. 3.3.

Let N denote the number of roots of ζ(λ) = 0 in Re(λ) > 0, corresponding to the number of

unstable eigenvalues of the NLEP. Then, since the contour encloses the simple pole whenever

R is large enough, we have by the argument principle that

lim
R→∞

(
[arg ζ]|CR + [arg ζ]|ΓI+ + [arg ζ]|ΓI−

)
= 2π(N − 1) . (3.98)

To determine the change in the argument of ζ over the semi-circle, we use the asymptotics

of F and C as |λ| → ∞, given by

F(λ) = O(1/|λ|) and C(λ) ∼ aτ̃λ ,
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Figure 3.3: Schematic plot of the Nyquist contour used for determining the number of unstable
eigenvalues of the NLEP in Re(λ) > 0.
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Figure 3.4: An image of the Nyquist contour transformed by ζ. Notice that ζ(CR) shrinks to
the complex infinity ∞ as R → ∞, and both ζ(Γ+) and ζ(Γ−) are asymptotically parallel to
the imaginary axis due to (3.101).

to derive that

lim
R→∞

[arg ζ]|CR = π, for any τ̃ > 0 .

Therefore the problem of determining the number or unstable eigenvalues is is reduced to

computing the change of argument of ζ = C −F as we go down the imaginary axis. In Fig. 3.4

we show a typical picture of how ζ transforms the Nyquist contour. The key question is whether

the origin (marked by “x” in the figure) is inside or outside of the fish-shaped loop.
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We further observe that since ζ(λ) = ζ(λ), it readily follows that [arg ζ]|ΓI+ = [arg ζ]|ΓI− .

In this way, we conclude that 2π(N − 1) = π + 2 [arg ζ]|ΓI+ , which determines N as

N = 3
2 + 1

π
[arg ζ]|ΓI+ . (3.99)

Due to the symmetry, the visual interpretation of whether the “fish loop swallows the origin”

(as shown in Fig. (3.4)) then depends crucially on the distinction of whether ζ(0) = C(0)−F(0)

is to the left or right of the origin, and then whether the loop is anticlockwise or clockwise with

respect to the origin. To this end, we will need to examine the properties of C and F on the

positive imaginary axis in detail. More explicitly, our strategy in the following sections is to let

λ = iλI and let λI decrease from ∞ to 0 to determine the behavior of the functions C and F

in the complex plane.

Before we proceed, we would like to state a typical choice of model parameters, which we

will use repeatedly in the subsequent figures for illustrating various stages of the analysis:

α = 1, γ = 2, q = 2, U0 = 1, ` = 1, K = 2, j = 1, S = 2K` = 4 . (3.100)

Our value q = 2 corresponds to the “cops on the dots” strategy, whereby the police patrol

mimics that of the criminals.

3.5.2 The Starting and Ending Point of the Path and the Two Main Cases

The location of the end of the path at λI = 0 is easily determined. We have F(0) = 1/2 from

(3.97), and so

ζ(0) = ζR(0) = C(0)− 1
2 = a(1− b

3)− 1
2 ∈ R .

Thus, the equation ζ(0) = 0 corresponds to exactly C(0) = 1/2, which we derived in (3.65) in

Section 3.3.2 where we studied the competition instability threshold. Moreover, we conclude

from (3.95) that

ζ(0) > 0 when Dj,2 > D∗j,2 ; ζ(0) < 0 when Dj,2 < D∗j,2 .
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Next, we consider the limiting behavior as λI → +∞. We begin by decomposing ζ(iλI)

into real and imaginary parts as ζ(iλI) ≡ ζR(λI) + iζI(λI). Then, we readily have the limiting

behavior for ζ(iλI) as λI →∞, given by

ζ(iλI) ∼ a (1 + τ̃jb) + iaτ̃jλI as λI → +∞ ,

so that

ζR(λI) ∼ a(1 + τ̃jb), ζI(λI) ∼ aτ̃jλI , as λI →∞ . (3.101)

This means, with respect to the origin, that the path begins asymptotically close to the positive

infinity of the imaginary axis.

Therefore, this reduces the problem to determining whether the path crosses the imaginary

axis and real axis on the range 0 < λI <∞.

The easiest case to consider is for Dj,2 > D∗j,2 when the end point is on the positive real

axis. Then, in order to prove

[arg ζ]|ΓI+ = −π2 ,

it suffices to show that the path never crosses the imaginary axis. When this occurs we obtain

that N = 1, which gives one unique unstable eigenvalue for the NLEP. Fig. 3.5 shows the path

ζ(ΓI+) in two distinctive cases.

The next natural step would be to consider Dj,2 < D∗j,2, so that the end point is on the

negative real axis. Then, by continuity, the imaginary axis must be crossed. If one can prove

monotonicity in the real component it follows that there must be exactly one such crossing,

and it would remain to determine whether it occurs on the positive or the negative imaginary

axis. If it occurs on the positive imaginary axis, then it is clear that

[arg ζ]|ΓI+ = π

2 ,

so that N = 2, and we have two unstable eigenvalues. Otherwise, if it occurs on the negative

imaginary axis, then

[arg ζ]|ΓI+ = −3π
2 .
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The upper threshold, corresponding to the competition instability, is given by D0,upper = D+

0,1 ≈
3.103. The curve with ζ(0) < 0 and ζ(0) > 0 correspond to the choice D0 = 3.0 and D0 = 3.2,
respectively. The number of unstable eigenvalues are respectively N = 0 and N = 1.
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common to both are α = 1, γ = 2, U0 = 1, D0 = 3 and ` = 1 (but S = 2K` = 4). The curves
that are clockwise and anticlockwise with respect to the origin correspond to the choices τu = 1
and τu = 4, respectively. The number of unstable eigenvalues are numerically determined to be
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In this case we would have N = 0, and no unstable eigenvalues. See Fig. 3.6 for examples of

both paths.

In order to distinguish between these two cases, we must determine detailed properties of

the component functions C(λ) and F(λ), and especially for the latter, as it has no closed form
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representation.

3.5.3 Key Global and Asymptotic Properties of C(λ) and F(λ)

We will analyze the global and asymptotic properties of C(λ) and F(λ) restricted on the positive

imaginary axis. We first consider F(iλI) = FR(λI) + iFI(λI) where

F(iλI) =
´
wq−1(L0 − iλI)−1w3´

wq
.

If we rewrite the operator as

(L0 − iλI)−1 = (L0 + iλI)
[
(L0 + iλI)−1 (L0 − iλI)−1

]
,

= L0
[
L2

0 + λ2
I

]−1
+ iλI

[
L2

0 + λ2
I

]−1
,

we readily obtain upon separating the real and imaginary parts that

FR(λI) =
´
wq−1L0

[
L2

0 + λ2
I

]−1
w3´

wq
, FI(λI) = λI

´
wq−1 [L2

0 + λ2
I

]−1
w3´

wq
. (3.102)

Now, we call some rigorous results for FR(λI) and FI(λI), as proved in [52].

Fact 3.17.

The real functions FR(λI) and FI(λI) have the following properties:

(i) FR(λI) = O(λ−2
I ) as λI → +∞, FR(0) = 1/2.

(ii) F ′R(λI) < 0 when q = 2 [Proposition 3.1 of [52]].

(iii) FI(λI) = O(λ−1
I ) as λI → +∞.

(iv) FI(λI) ∼ λI
4

(
1− 1

q

)
> 0 as λI → 0+ when q > 1 [Proposition 3.2 of [52]].

(v) FI(λI) > 0 for q = 2 and q = 4.

For q = 3, we have the explicit formula F(λ) =
(

3
2

)
1

3−λ from 3.71, and so for this case it is

easy to calculate that

F(iλI) = 3
2

( 1
3− iλI

)
= 3

2

(
3 + iλI
9 + λ2

I

)
= 3

2

(
3

9 + λ2
I

+ i
λI

9 + λ2
I

)
.
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Therefore, for q = 3, we have the explicit formulas

FR(λI) = 3
2

3
9 + λ2

I

, FI(λI) = 3
2

λI
9 + λ2

I

, (3.103)

which show clearly that property (v) is also true for q = 3.

Moreover, we can then further compute

F ′R(λI) = − 9λI(
9 + λ2

I

)2 , F ′I(λI) = 3(3− λ)(3 + λ)
2
(
9 + λ2

I

)2 , (3.104)

and

F ′′R(λI) = 27(λ2
I − 3)(

9 + λ2
I

)3 . (3.105)

Therefore, it follows that (ii) is true for q = 3, and furthermore, we observe that there is a

unique maximum of FI occurring at the principal eigenvalue of L0 given by

λI = 3 = ν0 ,

and that the inflection point of FR occurs at

λI =
√

3 =
√
ν0 .

Apart for the asymptotic behaviors (i) , (iii) and (v) which is known to be true for all q > 1,

we now have some sound reasons to further assume for (ii) and (iv) that the following conjecture

should hold:

Conjecture 3.18. The properties (ii) and (iv) in Fact 3.17 still hold for all integers q > 1,

i.e.

F ′R(λI) < 0, FI(λI) > 0 . (3.106)

We already have rigorous justifications that F ′R(λI) < 0 when q = 2, 3 and that FI(λI) > 0

when q = 2, 3, 4. In Fig. 3.7 we plot the numerically computed functions FR(λI) and FI(λI)

for various values of q.

Next we consider C(λ) restricted to the positive imaginary axis. We first separate C(iλI)
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Figure 3.7: Plots of FR and FI for q = 2, 3, 4, 5. Note that FR(0) = 1/2 and FI(0) = 0, and
that the maximum of FI occurs near λI = 3. In fact, the maximum does occur exactly at
λI = 3 when q = 3.

into its real and imaginary parts as

C(iλI) = a (1 + iτ̃jλI)
(

1− b

3− iλI

)
= a (1 + iτ̃jλI)

(
1− b(3 + iλI)

9 + λ2
I

)

Therefore, if we denote C(iλI) = CR(λI) + iCI(λI), we have that

CR(λI) = a

(
1 + τ̃jb−

3b
9 + λ2

I

(1 + 3τ̃j)
)
, (3.107a)

CI(λI) = aλI
9 + λ2

I

(
3τ̃j (3− b)− b+ τ̃jλ

2
I

)
. (3.107b)

We now list several elementary properties of CR(λI) and CI(λI).

Properties of CR(λI)

(i) CR(0) = a(1 − b/3). Therefore, CR(0) > 0 if and only if b < 3 (also,

CR(0) < 0 if and only if b > 3).

We also had earlier a similar condition that CR(0) > 1/2 if and only if

b− 3 + 3/(2a) < 0, which occurs if and only if Dj,2 > D∗j,2.

(ii) C′R(λI) > 0 for λI > 0, and CR(λI)→ a(1 + τ̃jb) > 0 as λI →∞.

(iii) Suppose b > 3, then CR(λI) < 0 on the interval

0 < λI <

√
3(b− 3)
1 + τ̃jb

.
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Properties of CI(λI)

(iv) CI(λI) ∼ aλI [3τ̃j(3− b)− b] as λI → 0+, and CI(λI) ∼ aτ̃jλI as λI →

+∞.

(v) CI(λI) < 0 on 0 < λ2
I < 3(b− 3) + b/τ̃j . Otherwise, we have CI(λI) > 0.

Therefore, if b > 3/(1 + 1
3τ̃j ), it follows that there is a range of λI , given by

0 < λI <

√
3(b− 3) + b

τ̃j
≡ λII ,

for which CI(λI) < 0.

(vi) Alternatively if b < 3/(1 + 1
3τ̃j ), we can then show that CI(λI) > 0 for

all λI > 0.

To establish property (vi) above we begin by calculating

C′I(λI) = a

(9 + λ2
I)2

[
τ̃jλ

4
I + λ2

I (18τ̃j + b+ 3bτ̃j) + 9 (τ̃j(9− 3b)− b)
]
. (3.108)

The expression in the brackets of 3.108 is a quadratic in x = λ2
I , and upon setting C′I(λI) = 0,

we see that the two roots x+ ≥ x− satisfy

x+ + x− = − [18τ̃j + b+ 3bτ̃j ] /τ̃j , x+x− = 9 (τ̃j(9− 3b)− b) /τ̃j .

Since x+ + x− < 0 always holds, there is a root x+ = λ2
I > 0 if and only if x+x− < 0. It

follows that there exists λ2
I > 0 for which C′I(λI) = 0 if and only if τ̃j(9 − 3b) − b < 0, which

implies that b > 3/(1 + 1
3τ̃j ) must hold. Therefore, C′I(λI) > 0 for any λI > 0, and with the fact

that CI(0) = 0, we conclude CI(λI) > 0 always holds as well. This establishes property (v) for

CI(λI).

In Fig. 3.8 we show various plots of CR(λI) and CI(λI) for τu = 1 and for the model

parameters given in (3.100). These plots illustrate our established properties for CR(λI) and

CI(λI).

From property (ii) of CR(λI) we have C′R(λI) > 0, while from property (ii) of FR(λI) we
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Figure 3.8: Plots of CR and CI for τu = 1 and the model parameters given in (3.100). The value
for D0 was chosen as follows for each curve: Left figure: three cases of CR(λI) are plotted: (i)
b > 3 (D0 = 0.4), (ii) 3 − 3/(2a) < b < 3 (D0 = 0.6), (iii) b < 3 − 3/(2a) (D0 = 1.0). Right
figure: two cases of CI(λI) are plotted: (i) b < 3/ (1 + 1/(3τ̃j)) (D0 = 1.0), b > 3/ (1 + 1/(3τ̃j))
(D0 = 0.5), and the right end point of the interval of negative values for CI is at λII ≈ 1.6204,
indicated by a heavy dot.

conclude that F ′R(λI) < 0. Therefore, we have that ζR(λI) = Re [ζ(iλI)] satisfies

ζ ′R(λI) = C′R(λI)−F ′R(λI) > 0 for all λI > 0 . (3.109)

This leads to a key result that the path ζ(ΓI+) can only intersect the imaginary axis exactly

one or zero times. The only remaining issue will be to determine whether any such intersection

point occurs on the positive or negative imaginary axis.

3.5.4 Above Competition Instability Threshold Dj,2 > D∗j,2; A Unique Unsta-

ble Real eigenvalue

Suppose that b < 3 − 3/(2a) so that CR(0) = C(0) > 1/2. Recall from (3.67) that this implies

that Dj,2 > D∗j,2, and so we are above the competition instability threshold.

Since FR(0) = 1/2, it follows that the endpoint of the path is at ζ(0) = CR(0)−FR(0) > 0.

Then, since the path ζ(ΓI+) begins “at positive infinity” in the imaginary axis, stays within

the right half-plane and ends at the positive real axis, owing to the key monotonicity property

(3.109), it follows that we must have [arg ζ] |ΓI+ = −π
2 . Therefore, we conclude from (3.99) that

N = 3/2 + 1
π

(−π2 ) = 1 for all τ̃j > 0 .
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Our main conclusion regarding stability for the regime Dj,2 > D∗j,2 is that for any j =

1, . . . ,K − 1, a K-hotspot steady-state solution is unstable due to a unique positive real eigen-

value that occurs for any τ̃j > 0.

3.5.5 Below Competition Instability Threshold Dj,2 < D∗j,2

Now suppose that b > 3 − 3/(2a), so that CR(0) = C(0) < 1/2. From (3.67) this means that

Dj,2 < D∗j,2 and so we are below the competition instability threshold.

For this case, since ζ(0) = CR(0) − FR(0) < 0, while C′R(λI) > 0 for any λI > 0 and

FR(λI) = 1/2 at λI = 0 but decreases monotonically to 0 as λI → ∞ (by Conjecture 3.18),

there must be a unique root λ∗I to ζR(λ∗I) = 0. Since ζI(0) = 0, the endpoint is on the negative

real axis, with exactly one crossing at λI = λ∗I when traveling from λI = +∞. It is then clear

that there are two distinctly different cases:

(I) If the crossing occurs on the positive imaginary axis, i.e. ζI(λ∗I) > 0, then [arg ζ] |ΓI+ =

π/2, and so N = 2.

(II) If the crossing occurs on the negative imaginary axis, i.e. ζI(λ∗I) < 0, then [arg ζ] |ΓI+ =

−3π/2, and so N = 0.

These two distinguishing cases were presented in Fig. 3.6, where we also noticed that case

(I) and (II) implies that the curve approaches ζ(0) < 0 as λI → 0+ in an anticlockwise and

clockwise direction, respectively, with respect to the origin. Therefore, the final key step in the

analysis is to distinguish path (I) from path (II).

We first establish that when b > 3 we obtain path (II) if either τ̃j � 1 or τ̃j � 1. Recall

that b > 3 means 9χ0,j/2 > 3, or equivalently

1
χ0,j

<
3
2 .

This is precisely the condition (3.75) which was applied to (3.74) to show that the eigenvalues

are stable regardless of τ̃j in the q = 3 explicitly solvable case. This condition (3.75) implies a

lower threshold

Dj,2 < D∗j,2,min < D∗j,2, Dj,2,min = ω3

4π2K3 ,
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which for q = 3 case guarantees stability regardless of τ̃j . However, in the general case q 6= 3,

the lack of an explicit form for F(λ) prevents us from obtaining the same conclusion as easily.

We must then appeal to the local and far-field asymptotic properties of C and F .

Firstly, if τ̃j � 1, we obtain from (3.107a) that

CR(λI) ∼ a
[
τ̃jb−

(3b)(3τ̃j)
9 + λ2

I

]
= aτ̃jbλ

2
I

9 + λ2
I

.

Then, upon setting CR(λI) = FR(λI) and using FR(0) = 1/2, we obtain that ζR(λI) = 0 has

a root with λI = O(τ̃−1/2) when τ̃ � 1. In particular, if we write λ∗I = λ∗I,0τ̃j
−1/2 so that

λ∗I,0 = O(1), then we see that ab
(
λ∗I,0

)2
/9 ∼ 1/2, which yields

λ∗I,0 ∼
1√
ab

3√
2
.

Therefore, ζR(λ∗I) = 0 has a unique root when τ̃j � 1, and that this root is located near the

the origin with asymptotics

λ∗I ∼
3√
2ab

τ̃j
−1/2 . (3.110)

Now since CI(λI) < 0 on the range 0 < λI <
√

3(b− 3) + b/τ̃j ∼
√

3(b− 3) for τ̃j � 1, we

have CI(λ∗I) < 0 and so ζI(λ∗I) < 0. We then conclude that the crossing occurs on the negative

imaginary axis as stipulated, which yields path (II).

Next, if we instead consider τ̃j � 1, then we have from (3.107a) that

CR(λI) ∼ a
[
1− 3b

9 + λ2
I

]
= a

[
3(3− b) + λ2

I

9 + λ2
I

]
, (3.111)

which is independent of τ̃j . Thus, the intersection point where CR = FR must occur at some λ∗I =

O(1). However, since CI(λI) < 0 on 0 < λI <
√

3(b− 3) + b/τ̃j = O(τ̃j−1/2) as τ̃j → 0, which

is now asymptotically large as τ̃j → 0, we conclude that 0 < λ∗I = O(1)�
√

3(b− 3) + b/τ̃j . It

follows that ζI(λ∗I) < 0, and so the crossing occurs on the negative imaginary axis as well. This

again yields path (II).

In both cases, since the point ζI(λ∗I) < 0 is the only place the curve ζ(ΓI+) crosses the

imaginary axis, we have path (II) so that N = 0 by the formula (3.99). As a consequence, there
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are no unstable eigenvalues of the NLEP.

The remaining issue is to consider whether the statement above regarding N is still true for

any τ̃j > 0 for the general case q > 1. We now consider three possible strategies for exploring

this question.

One way to begin an analysis is to observe that FR is independent of τ̃j and that

CR(λ∗I)−FR(λ∗I) = 0 , (3.112)

gives us an implicit relation for λ∗I as a function of τ̃j . If we differentiate (3.112) with respect

to τ̃j we get
∂

∂λ∗I
CR(λ∗I)

dλ∗I
dτ̃j

+ ∂

∂τ̃j
CR(λ∗I)−

∂

∂λ∗I
FR(λ∗I)

dλ∗I
dτ̃j

= 0 .

By letting (. . . )′ denote derivatives with respect to λ∗I , and by using (3.107a), we obtain that

[
C′R(λ∗I)−F ′R(λ∗I)

] dλ∗I
dτ̃j

= − ∂

∂τ̃j
CR(λ∗I) = −ab

(
1− 9

9 + λ2
I

)
. (3.113)

Since C′R(λ∗I) > 0 and F ′R(λ∗I) < 0 by (3.107a) and Conjecture (3.18), the expression above

yields that
dλ∗I
dτ̃j

< 0 , for all τ̃j .

Next, we observe that the upper end point of the interval of negativity of CI(λI) is a function

of τ̃j as well. We will denote this endpoint as h(τ̃j). It satisfies

dh

dτ̃j
≡ d

dτ̃j

√
3(b− 3) + b/τ̃j = − b

2τ̃2
j

√
3(b− 3) + b/τ̃j

< 0 .

In this way, we would conclude that the root λ∗I stays within the interval (0, h(τ̃j)) if we can

prove that the following inequality holds for all τ̃j > 0:

dλ∗I
dτ̃j

<
dh

dτ̃j
. (3.114)

Then, since λ∗I(τ̃j) ∈ (0, h(τ̃j)) has been shown above to be true for τ̃j � 1, the inequality above
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Figure 3.9: Numerical verification of a Nyquist path that predicts stability. Left: a plot of the
unique roots to ζR(λI) = 0 as τu varies. For very large τu, λI can be quite close to zero. Right:
a plot of the possible range of values of ζI(λI) when the Nyquist contour hits the imaginary
axis, where λI was chosen to vary from zero to the maximum value plotted on the left. The
model parameters chosen were D0 = 0.4 and the parameters specified in (3.100).

would imply that

λ∗I(τ̃j) ∈ (0, h(τ̃j)) for all τ̃j > 0 .

However, it seems analytically intractable to prove that (3.114) holds.

A second route of resolution would be to explore this issue numerically. For instance, in

Fig. 3.9 we fix D0 = 0.4 so that b ≈ 3.1279 > 3. Then, we find the unique root to ζR(λI) = 0

for each τu from 0 to a large number to determine the range of possible λI values so that the

eigenvalue is on the imaginary axis. Then, we compute ζI(λI) for λI on this range to determine

its sign. For q = 2, where the NLEP is not explicitly solvable, we are able to confirm that

ζI(λI) < 0. Therefore, since path (II) applies, we conclude that the steady-state spike pattern

is linearly stable for this parameter configuration. Nonetheless, it is still desirable to provide

an analytical proof to show that the eigenvalues are in Re(λ) < 0 for all choices of q > 1 and

0 < τu <∞.

The final route that we pursue to resolve this final case where Dj,2 < D∗j,2,min (b > 3) is

to assume an extra condition, as we will derive below. We first observe that CR(λI) = 0 at

λI = λIR ≡
√

3(b−3)
1+τ̃jb , and we recall that CI(λI) = 0 at λI = λII =

√
(3(b− 3) + b/τ̃j . Then,
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since b/τ̃j > 1/(1 + τ̃jb) for b > 1, it follows that the inequality

λIR < λII ,

holds, because we have b > 3. For a typical picture of this scenario, we refer to Fig. 3.10 where

we present full numerical computations for a particular parameter set.

We now determine the value λIM for which CR(λIM ) = 1/2. We conclude that the root λ∗I

to ζR(λI) = 0 must occur in λIR < λ∗I < λIM . If we can further show that λIM < λII , so that

CI(λIM ) < 0, it follows also that CI(λ∗I) < 0. This would imply that ζI(λ∗I) < 0 and N = 0.

Therefore, the desired order of these special values of λI , which will guarantee that path (II)

holds and so N = 0, is that

λIR < λ∗I < λIM < λII . (3.115)

For a particular set of parameter values this is illustrated in the numerical results shown in

Fig. 3.11 .

We now show that the ordering (3.115) does in fact hold under an additional assumption.

To show this, we consider the real part of (3.107a), and solve

CR(λIM ) = 1
2 = a

[
1 + τ̃jb−

3b
9 + λ2

IM

(1 + 3τ̃j)
]
.
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and λII (indicated by heavy dots), as stated in (3.115). The model parameters, τu = 1 and
D0 = 0.4, together with the parameter values stated in (3.100), were used.

This readily yields, after a little algebra, that

b(1 + 3τ̃j)
9 + λ2

IM

= 1
3

(
1 + τ̃jb−

1
2a

)
if 1 + τ̃jb− 1/(2a) > 0 .

Next, we consider the imaginary part of (3.107a). Upon substituting the expression above

into it, we calculate that

CI(λIM ) = aλIM

[
τ̃j −

3bτ̃j + b

9 + λ2
IM

]
= aλIM

[1
3(1 + τ̃jb−

1
2a)

]
.

This expression can be written as

CI(λIM ) = −a3λIM
[
τ̃j(b− 3) +

(
1− 1

2a

)]
.

From this last expression, we conclude that if b > 3 and the extra condition a > 1/2 holds,

then λIM exists and CI(λIM ) < 0. It follows that N = 0 since CI(λ∗I) < CI(λIM ) < 0, and then

ζI(λ∗I) < 0 because FI > 0.

We summarize this result in the following statement:

Proposition 3.19. Suppose that

Dj,2 < D∗j,2,min = ω3

4π2K3 (i.e. b > 3) ,
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and that
ω

qU0χ0,j
>

1
2 (i.e. a > 1

2),

or equivalently,

Dj,2 >

(
qU0
2ω − 1

)(
ω3

2π2K3

)
. (3.116)

Then we have three different possibilities:

(I) If qU0
2ω − 1 < 0, i.e. qU0 < 2ω = 2(U0,max − U0), or equivalently

ω = S(γ − α)− U0(1 + q/2) > U0q/2 , (3.117)

then the lower bound is negative and the inequality (3.116) is automatically true. Therefore,

(3.117) together with Dj,2, < D∗j,2,min implies N = 0 and thus stability, or:

(II) If qU0
2ω − 1 > 1/2, then this conflicts with Dj,2 < D∗2,jmin and no conclusion regarding

stability can be made, or:

(III) If 0 < qU0
2ω − 1 < 1/2 , then if

(
qU0
2ω − 1

)(
ω3

2π2K3

)
< Dj,2 < D∗j,2,min ,

we have N = 0 for all τ̃ > 0. This gap condition holds with an analogous gap condition in U0.

U0q/3 < ω = S [γ − α]− U0 < U0q/2 .

It is an open problem to close the gap and drop the condition (3.116), and prove that N = 0

for all τ̃j > 0 and 0 < Dj,2 < D∗j,2,min, in agreement with what we discovered for the special

case q = 3. However, Remark 3.12 also suggests that the threshold D∗j,2,min could possibly be

revised, as it may depend on q.

3.5.6 A Gap Between the Lower and Upper Thresholds: Dj,2,min < Dj,2 < D∗j,2,

Existence of Hopf Bifurcation

Having considered Dj,2 above D∗j,2, where there is instability due to one unstable eigenvalue,

and below D∗j,2,min, where we have stability subject to the extra condition, we now consider the
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Figure 3.12: Locating the Hopf bifurcation point. The two curves shows the locus of the roots
of ζR(λI) and ζI(λI) as functions of τu. Hopf bifurcation is determined numerically to occur
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are D0 = 0.6 and those stated in (3.100). For this parameter set we confirm numerically that
3− 3/(2a) ≈ 2.397 < b ≈ 2.714 < 3, which satisfies (3.118).

gap region defined by

D∗j,2,min < Dj,2 < D∗j,2 .

In this gap region we will argue that a Hopf bifurcation exists with respect to the parameter

τ̃j . An example of a such a Hopf bifurcation point is illustrated in Fig. 3.12.

Unlike in the explicitly solvable case, q = 3, where a Hopf bifurcation point can be located

by a closed-form formula τ̃j = τ̃j,Hopf = O(1) using (3.92) (but only the mode j = K − 1 will

actually occur), corresponding to the critical case ζI(λ∗I) = 0 (and by definition ζR(λ∗I) = 0 as

well, so λ = ±iλ∗I are a pair of purely imaginary eigenvalues corresponding to Hopf bifurcation),

we seek only to confirm that if τ̃j � 1, we have path (II), i.e. stability, while if τ̃j � 1, then

we have path (I), i.e. instability.

We first observe that when

3− 3
2a < b < 3 , (3.118)

then Dj,2 is on the gap range

D∗j,2,min < Dj,2 < D∗j,2 .

For the typical model parameter set given in (3.100) with two hotspots, these bounds are

0.4559 ≈ D∗0,min < D0 < D∗0 ≈ 0.7599
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Since purely imaginary eigenvalue implies λ = ±iλ∗I , we still seek to find λ∗I such that

ζR(λ∗I) = ζI(λ∗I) = 0 directly. In other words, we are seeking the boundary case where the

image of the positive imaginary axis is neither away from nor enclosing the origin, but exactly

crosses through the origin.

Now on the range τ̃j > b
3(3−b) > 0, we have CI(λI) > 0 for all λI > 0. We can again let

τ̃j →∞, as in the derivation of (3.110), to conclude that ζR(λ∗I) = 0 when

λ∗I ∼
3√
2ab

τ̃
−1/2
j � 1 .

Next, by using λ∗I = O(τ̃−1/2
j ), together with CI(λ∗I) from (3.107a), we estimate that

CI(λ∗I) ∼
aτ̃
−1/2
j

9 [3τ̃j(3− b) +O(1)] ∼
aτ̃

1/2
j

9 (3− b) > 0 ,

since b < 3. Then, since CI(λ∗I) = O(τ̃1/2
j ) � 1, but FI(λ∗I) = O(τ̃−1/2

j ) when λ∗I = O(τ̃−1/2
j ),

we conclude that ζI(λ∗I) > 0 as τ̃j → +∞. This implies that path (I) holds and N = 2.

On the other hand, when τ̃j → 0+ we can repeat a previous calculation given in (3.111) to

obtain that the intersection of CR(λI) and FR(λI) must occur at some λ∗I = O(1) > 0. Then,

since for τ̃j → 0 we have from (3.107a) that CI(λ∗I) < 0 because b > 0, we must conclude that

ζI(λ∗I) < 0 when τ̃j � 1. This implies that in the limit τ̃j � 1, path (II) holds and N = 0.

We then prove the existence of a Hopf bifurcation by appealing to a continuous path ar-

gument, namely that λ∗I = λ∗I(τ̃j) as a continuous function. Since N = 0 for τ̃j � 1, while

N = 2 for τ̃j � 1, there must exist a minimum value of τ̃j,Hopf > 0 such that ζI(λ∗I(τ̃j,Hopf)) = 0

exactly with λ∗I > 0. However, it is not clear whether there are other values of τ̃j at which other

Hopf bifurcations occur for τ̃j > τ̃j,Hopf > 0.

One way to attempt to prove uniqueness of the Hopf bifurcation value would be to prove

a condition of one-way traversality at the onset of a purely imaginary eigenvalue. To do so,

we may again let λ = λR + iλI and consider both real part and imaginary part as a function

of τ̃j , so that the Hopf bifurcation occurs at λI(τ̃j) = λ∗I where λR = 0. If one can further

show that dλR/dτ̃j > 0 whenever we have a root on the imaginary axis, it would follow that

the locus of any eigenvalue in the complex plane can cross the imaginary axis only once, and
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in only the direction from left to right. It appears to be analytically rather difficult to prove

such a one-way transversal crossing condition.

3.5.7 Conclusions on the Stability of a Symmetric K−Hotspot Steady-State

For q = 2, 3, 4, suppose that Conjecture 3.18 holds and that K ≥ 2. Let N denote the

number of eigenvalues with positive real part. Then, for any mode of competition instability

j = 1, . . . ,K − 1, we have established the following statement:

(i) If Dj,2 > D∗j,2, then N = 1 for all τ̃j > 0. The steady-state K-spike pattern is

unstable for any q.

(ii) If D∗j,2,min < Dj,2, < D∗j,2, then there exists a Hopf bifurcation threshold τ̃H which

is possibly non-unique when q 6= 3. Moreover, we have N = 2 when τ̃j � 1, and

hence instability. Otherwise if τ̃j � 1, then we have N = 0, and hence stability.

When q = 3, the threshold τ̃H is unique with formula given in (3.88), and we have

N = 0 and N = 2 for τ̃j below and above the threshold τ̃H , respectively.

(iii) If Dj,2 < D∗j,2,min, then for q 6= 3 we have N = 0 if τ̃j � 1 and τ̃j � 1. If we

suppose further the additional condition that ω = S(γ − α)− U0 > U0q/2, then we

have N = 0 for any τ̃j > 0. For q = 3, we have that N = 0 for any τ̃j > 0 with no

extra condition needed.

Remark 3.20.

1. A reason for considering integral values of q only in the range {2, 3, 4} is that we assumed

in the course of deriving the NLEP 3.36 that τu � O(ε−2) (see the calculations leading

to 3.26). Then, for the parameter

τ̃j = τuO(εq−3) ,

to be O(1), we must have that τu = O(ε3−q). This establishes that q < 5 is required to

satisfy the assumption that τu � O(ε−2). If q = 5, then the ODE for the perturbation η

at (3.27) will be changed to

D0α
qηxx = ε2τuλα

qη ,
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where τu = O(ε−2). This will result in a different problem to be solved for η(x), and

consequently a different value for η(0). Ultimately, this leads to a different NLEP that

requires a separate analysis.

2. Conjecture (3.18) is rigorously established in the literature except for the statement

F ′R(λI) < 0 for q = 4. However, this monotonicity condition for q = 4 was readily

established numerically in Fig. 3.7.

3.5.8 Asymptotic Determination of Hopf Bifurcation Threshold

Finally, we would like to see if we can determine λ∗I and τ̃j,Hopf asymptotically as b → 3 from

below. We recall that for the explicitly solvable case q = 3 that we have τ̃j,Hopf →∞ as b→ 3−

(Dj,2 →
(
D∗j,2,min

)−
) and, correspondingly, that λI,H → 0+ . This motivates us to consider the

general case q 6= 3 to examine whether only the known local behavior of CR, CI , FR, and FI as

λI → 0, is involved in estimate the Hopf bifurcation point.

From [52], it is well known for any q > 1 that

FR(λI) ∼
1
2 − kcλ

2
I + · · · , FI(λI) ∼

λI
4 (1− 1/q) as λI → 0 ,

where kc > 0 is a constant depending on q. We then recall that CR(λI) can be written as

CR(λI) = a

9 + λ2
I

[
3(3− b) + (1 + τ̃jb)λ2

I

]
.

To examine the region near b = 3, we introducing a detuning parameter δ by δ = 3 − b,

where 0 < δ � 1. We then look for a root to CR(λI) = FR(λI) near λI = 0 when τ̃j � 1. To

this end, we expand CR(λI) near λI = 0 as

CR(λI) = a

9 + λ2
I

[
3δ + (1 + 3τ̃j)λ2

I +O(τ̃jδλ2
I)
]
.

This suggests that we must have the dominant balance τ̃jλ2
I = O(1) so that CR → 1/2 = FR(0)

as λI → 0. This motivates the introduction of the rescaling

λI ∼ τ̃−1/2
j λI,0 ,
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which must be chosen in such a way that

a

9
[
3λ2

I,0 +O(δ)
]
∼ 1

2 .

This yields that

λI,0 =
√

3
2a .

Therefore, for τ̃j � 1 and b = 3 − δ with 0 < δ � 1, the unique root of ζR(λI) = 0 is located

asymptotically at

λI ∼
√

3
2aτ̃

−1/2
j .

Next, we relate τ̃j to δ by enforcing that CI(λI) ∼ FI(λI) as λI → 0+. This latter condition

yields that

aλI

(
3τ̃jδ − 3 +O(δ) + τ̃jλ

2
I

9 + λ2
I

)
∼ λI

4 (1− 1/q) .

Upon cancelling λI from both sides of this expression, and putting τ̃jλ2
I = 3/(2a), we get

a

9

[
3τ̃jδ − 3 + 3

2a

]
= 1

4(1− 1/q) .

Upon solving this equation for τ̃j , we get

τ̃j ∼ δ−1
(

1 + 1
4a −

3
4aq

)
.

In summary, provided that

1 + 1
4a(1− 3/q) > 0, (3.119)

we have that as b→ 3−, the Hopf bifurcation occurs at

τ̃j = τ̃j,Hopf ∼
1
δ

(
1 + 1

4a (1− 3/q)
)
, (3.120)

with corresponding frequency

λ∗I ∼ δ1/2
√

3
2a

(
1 + 1

4a (1− 3/q)
)−1/2

, (3.121)
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where δ = 3− b→ 0+.

Finally, let us compare this result for general q to the explicit result that we obtained earlier

for the exactly solvable case q = 3.

Firstly, we observe that the quadratic equation (3.73) for λ that occurs when q = 3 is

equivalent to

λ2 +
(

1 + τ̃j(b− 3)
τ̃j

)
λ+ [b− 3 + 3/(2a)]

τ̃j
= 0 .

We conclude that a Hopf bifurcation occurs if the coefficient of λ vanishes, i.e. if τ̃j,Hopf =

(3 − b)−1 = δ−1 in agreement with setting q = 3 in (3.120). In addition, since at the Hopf

bifurcation we have

(λ∗I)
2 = b− 3 + 3/(2a)

τ̃j
= 1
τ̃j

( 3
2a − δ

)
,

we conclude that

λ∗I ∼ δ1/2
√

3
2a .

This expression agrees with (3.121) upon setting q = 3.

When q = 4, we readily observe that the assumption (3.119) for (3.120) and (3.121) is

always satisfied. However for q = 2, we have to require that a > 1/8 in order for (3.119) to

hold. This means for a = ω/(U0χ0,j), b = 9χ0,j/2 = 3, which gives χ0,j = 2/3, that we must

have the condition

a = ω
4
3U0

>
1
8 ,

which is equivalent to the requirement that ω > U0/6. Therefore, we conclude that a Hopf

bifurcation occurs when Dj,2 → (Dj,2,min)+ with asymptotics given by (3.120) and (3.121) if

the condition

ω = S(γ − α)− U0 > U0/6 , (3.122)

holds. In other words, the asymptotic conclusions hold provided we are not too close to the

existence threshold ω = 0 of the hotspot pattern.

Remark 3.21. The fact that, for q = 2, the Hopf bifurcation with the asymptotics (3.120) and

(3.121) does not occur for

0 < S(γ − α)− U0 < U0/6 ,
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when b → 3−, i.e. as Dj,2 →
(
D∗j,2,min

)+
does not contradict the fact that there exists a Hopf

bifurcation when

D∗j,2,min < Dj,2 < D∗j,2 .

It only shows that the limiting asymptotics is not of the form where τ̃j → ∞ and Dj,2 →(
D∗j,2,min

)+
simultaneously.

3.6 Stability of a Stripe Pattern, Explicitly Solvable Case.

In this section we extend our 1-D spike stability analysis to study the transverse stability

of a homoclinic stripe for our three-component crime model with simple police interaction.

A homoclinic stripe occurs when the attractivness concentration A concentrates on a planar

curve in the 2-D domain. The simplest type of homoclinic stripe solution is a stripe of zero

curvature, which results when a 1-D homoclinic spike solution is trivially extended along the

midline of a rectangular domain. The main goal of this section is to analyze the linear stability

of this type of stripe solution to transverse perturbations for our three-component model. In

our stability analysis we will assume that the patrol focusing parameter is q = 3, which will lead

to an explicitly solvable NLEP spectral problem, which is then highly tractable analytically.

In this way, we are able to explicitly identify a band of unstable transverse wavenumbers, and

calculate both the growth rate and most unstable mode within this band. This instability

is shown to lead to the breakup of the stripe into a localized hotspot of criminal activity.

For two-component reaction-diffusion systems, such as the Gierer-Meinhardt and Gray-Scott

models, there have been several prior studies of the stability of homoclinic stripes to transverse

perturbations ([16], [25], [26]). As far as we are aware there have been no prior studies for

three-component systems.

We formulate our three-component model in the rectangular domain defined by

Ω = {(x1, x2)| − ` < x1 < `, 0 < x2 < d} . (3.123)
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The three-component RD system (3.3) in 2-D now takes the form

At = ε2∆A−A+ ρA+ α , x ∈ Ω ; ∂nA = 0 , x ≡ (x1, x2) ∈ ∂Ω , (3.124a)

ρt = D∇ ·
(
A2∇

(
ρ/A2

))
− ρA+ γ − α− U , x ∈ Ω ; ∂nρ = 0 , x ∈ ∂Ω , (3.124b)

τuUt = D∇ · (Aq∇ (U/Aq)) , x ∈ Ω ; ∂nU = 0 , x ∈ ∂Ω , (3.124c)

where Ω is the rectangular domain of (3.123).

3.6.1 Extension of a 1-D Spike Solution to a 2-D Stripe Solution

In the construction of the steady-state stripe solution below, we will need to assume that q > 1.

It will be shown that for the case q = 3, the NLEP governing the transverse stability of this

stripe is explicitly solvable.

We will analyze the transverse stability properties of a steady-state stripe solution for (3.124)

for the regime O(1) � D � O(ε−2). As motivated by the scalings in [29], we introduce the

new variables v, D0, and u by

ρ = ε2vA2 , U = uAq , D = D0/ε
2 , (3.125)

where we will assume that D0 � O(ε2) so that D � 1. In terms of these new variables, (3.124)

becomes

At = ε2∆A−A+ ε2vA3 + α , x ∈ Ω ; ∂nA = 0 , x ≡ (x1, x2) ∈ ∂Ω , (3.126a)

ε2
(
vA2

)
t

= D0∇ ·
(
A2∇v

)
− ε2vA3 + γ − α− uAq , x ∈ Ω ; ∂nv = 0 , x ∈ ∂Ω , (3.126b)

ε2τu (Aqu)t = D0∇ · (Aq∇u) , x ∈ Ω ; ∂nu = 0 , x ∈ ∂Ω . (3.126c)

We now construct a steady-state stripe solution consisting of a localized region of high

attractiveness, which we center along the midline x1 = 0 of the rectangle. To do so, we simply

construct a steady-state 1-D spike A = A(x1), v = v(x1), and u = u(x1) as in Section 3.1,

and extend it trivially in the x2 direction. Since the total number of police is conserved due
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to (3.124c), we have
´

Ω U(x, t) dx = U for all time, where U > 0 is the initial number of police

deployed. As such, we have for the steady-state stripe solution that

ˆ `

−`
U(x1) dx1 = U0 ≡ U/d, (3.127)

where d is the width of Ω. It follows from (3.126c) that the steady-state 1-D solution u(x1) is

a constant given by

u(x1) = U0/

ˆ `

−`
[A(x1)]q dx1 , (3.128)

and that the steady-state 1-D problem for A(x1) and v(x1), from (3.126a) and (3.126b), is

ε2Ax1x1 −A+ ε2vA3 + α = 0 , |x1| ≤ ` ; Ax1(±`) = 0 , (3.129a)

D0
(
A2vx1

)
x1
− ε2vA3 + γ − α− U0A

q

´ `
−`A

q dx1
= 0 , |x1| ≤ ` ; vx1(±`) = 0 . (3.129b)

In the inner region |x1| ≤ O(ε) near the pulse we set y = x1/ε and expand

A = A0/ε+ · · · , v = v0 + · · · ,

as in [29] and also Section 3.1. Note that we are reusing the notations A0 and v0 for the leading

order expansions for this context, because the procedures and structures of the asymptotics are

very similar.

We readily obtain that v0 is a constant and A0yy−A0 + v0A
3
0 = 0 as before. This yields the

leading order inner solution

A(x1) ∼ 1
ε
√
v0
w (x1/ε) , v ∼ v0 , (3.130)

where w(y) =
√

2 sech y satisfies (2.14), and where the constant v0 is to be determined. To

determine the constant v0, we integrate (3.129b) over |x1| ≤ ` to get−ε2
´ `
−` vA

3 dx1+2`(γ−α)−

U0 = 0. Since A = O(ε−1) in the inner region, while A = O(1) in the outer region, the integral

above can be calculated asymptotically as ε2
´ `
−` vA

3 dx1 ∼ v
−1/2
0

´∞
−∞w

3 dy = v
−1/2
0
√

2π. In
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this way, provided that 0 < U0 < 2`(γ − α), we calculate v0 as

v0 = 2π2

[2`(γ − α)− U0]2
, (3.131)

which looks very similar to (3.12) with K = 1, except that

U0 = U/d ,

now carries a different meaning. Therefore a stripe solution exists only if the total police

deployment U0 per cross-sectional length satisfies

U0 < 2`(γ − α).

In the inner region, the police concentration U(x1), given by U(x1) = uAq, becomes

U = U0A
q

´ `
−`A

q dx1
∼ U0

ε

wq´∞
−∞w

q dy
, |x1| ≤ O(ε) . (3.132)

In contrast, in the outer region we have from (3.129a) that Aout = α + O(ε2). To determine

the leading-order outer problem for v, we first need to estimate the integral
´ `
−`A

q dx1 in

(3.129b). Since A = O(ε−1) in the inner region |x1| ≤ O(ε), while A = O(1) in the outer region

O(ε) � |x1| ≤ 1, it follows that when q > 1 the contribution to the integral
´ `
−`A

q dx1 from

the inner region is dominant, with the estimate
´ `
−`A

q dx1 = O(ε1−q)� 1. We will henceforth

assume that q > 1, so that the nonlocal term in (3.129b) can be neglected to leading-order in

the outer region. Then, from (3.129b) we obtain that the leading-order outer problem for v is

v ∼ ṽ0 + o(1), where ṽ0 satisfies

ṽ0x1x1 = −(γ − α)
D0α2 , 0 < |x1| < ` ; ṽ0x1(±`) = 0 , ṽ0(0) = v0 . (3.133)

This yields the leading-order outer solution for ṽ0 as given below in (3.136).

Finally, we calculate u. Since q > 1, we use A ∼ ε−1w/
√
v0 to estimate the integral in
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(3.128). This yields that

u = U0´ `
−`A

q dx1
∼ εq−1ũe , where ũe ≡

U0v
q/2
0´∞

−∞w
q dy

. (3.134)

We summarize our result in the following statement.

Proposition 3.22. For ε� 1, D � 1, and U < 2d`(γ −α), the steady-state spike solution for

(3.126) is given to leading order in the inner region by

A(x1) ∼ 1
ε
√
v0
w (x1/ε) , v ∼ v0 , U(x1) ∼ U0

ε

wq´∞
−∞w

q dy
, |x1| ≤ O(ε) , (3.135)

where v0 ≡ 2π2 [2`(γ − α)− U0]−2, U0 = U/d, and w =
√

2 sech(x1/ε). In the outer region,

O(ε)� |x1| ≤ `, we have

A ∼ α , v ∼ (γ − α)
2D0α2

[
`2 − (`− |x1|)2

]
+ v0 , U ∼ εq−1U0α

q v
q/2
0´∞

−∞w
q dy

. (3.136)

The criminal density in the inner and outer regions, as obtained from (3.125), is

ρ(x1) ∼ [w (x1/ε)]2 , |x1| = O(ε) ; (3.137a)

ρ(x1) ∼ ε2α2
[
v0 + (γ − α)

2D0α2

(
`2 − (`− |x1|)2

)]
, O(ε)� |x1| ≤ ` . (3.137b)

In Fig. 3.13, we plot the above asymptotic results. We observe that the criminal density ρ

is accompanied by a large quantity A, the attractiveness, at the vicinity of the crime hotspot.

Moreover, the degree of patrol focus q, can be reflected by the shape of the police concentration.

For the larger value of q we observe a more narrow profile near the crime hotspots.

3.6.2 The Stability of a Stripe

Next, we derive an NLEP governing the stability of the stripe solution to transverse pertur-

bations that can lead to the breakup of the stripe into localized hotspots. Let Ae, ve, and
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Figure 3.13: Plot of the steady-state spike from Proposition 3.22 in the inner region on the
x1 axis for ε = 0.05, ` = 1.0, γ = 2, and α = 1. The x2 direction is omitted because it
extends trivially. Left plot: The attractiveness A ∼ w (x1/ε) /(ε

√
v0) + α (heavy solid curve)

and criminal density ρ ∼ w (x1/ε) (solid curve), these curve do not depend on q. Right plot:
The police density U from (3.136) for q = 2 (heavy solid curve) and for q = 3 (solid curve).

ue denote the steady-state solution constructed in the previous subsection and summarized in

Proposition 3.22. We then extend it trivially in the x2 direction to make a stripe. To determine

the stability of this stripe with respect to transverse perturbations we introduce

A = Ae(x1) + eλt+imx2φ(x1) , v = ve(x1) + eλt+imx2εψ(x1) , u = ue + eλt+imx2εqη(x1) .

(3.138)

Here m = kπ/d where d is the width of the rectangle and k > 0 is an integer. The relative sizes

in ε in (3.138) are such that φ, ψ, and η are all O(1) in the inner region. Upon substituting

(3.138) into (3.126), we obtain on |x1| ≤ l that

ε2φx1x1 − (1 + ε2m2)φ+ 3ε2veA2
eφ+ ε3A3

eψ = λφ , (3.139a)

D0
[
εA2

eψx1 + 2Aevex1φ
]
x1
− εm2D0A

2
eψ − 3ε2veA2

eφ− ε3ψA3
e

−εqAqeη − qAq−1
e ueφ = λε2

(
εA2

eψ + 2Aeveφ
)
,

(3.139b)

D0
[
εqAqeηx1 + qAq−1

e uex1φ
]
x1
− εqm2D0A

q
eη = ε2τuλ

(
εqAqeη + qAq−1

e ueφ
)
. (3.139c)

In the analysis of (3.139), we must allow for spatial perturbations of high frequency as ε→ 0

because the hotspot O(ε) width is small relative to the O(1) domain diameter of Ω. As such,
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we consider the range 0 < m ≤ O(ε−1). Below, we show that the upper stability threshold

occurs when m = O(ε−1).

In (3.139b) and (3.139c), we note that uex1 = 0 and ue ∼ εq−1ũe, where ũe is given in

(3.134). In the outer region where Ae ∼ α we obtain from (3.139b) that φout = O(ε3ψout),

when 0 < m ≤ O(ε−1). Next, we estimate the terms in (3.139b) in the outer region. We obtain

from (3.134), and our estimate of φout, that qAq−1
e ueφ = O(εq+2ψout). Moreover, since q > 1,

we have εqAqeη � O(ε). In this way, we obtain in the outer region that (3.139b) reduces to

ψx1x1 −m2ψ = 0 , O(ε) < |x1| ≤ l ; ψx1(±l) = 0 . (3.140)

Similarly, since τu = O(1) and uex1 = 0, we obtain from (3.139c) that to leading order

ηx1x1 −m2η = 0 , O(ε) < |x1| ≤ l ; ηx1(±l) = 0 . (3.141)

In the inner region, we look for a localized eigenfunction for φ in the form φ = Φ (x1/ε),

i.e. which is constant in x2 direction. Since the equations for ψ and η are not singularly

perturbed, we obtain that ψ ∼ ψ(0) and η ∼ η(0) to leading order in the inner region. Then,

since Ae ∼ ε−1w/
√
v0 and ve ∼ v0 in the inner region, as obtained from (3.135), we find from

(3.139b) that Φ(y) satisfies

Φ′′ − Φ + 3w2Φ + 1
v

3/2
0

w3ψ(0) =
(
λ+ ε2m2

)
Φ , −∞ < y <∞ . (3.142)

Next, we derive the jump conditions for η and ψ across x = 0. To do so, we introduce an

intermediate length-scale δ with O(ε) � δ � 1 and integrate (3.139b) from −δ < x1 < δ and

use Ae ∼ α at x1 = ±δ. This yields that

e0 [ψx1 ]0 = e1ψ(0) + e2η(0) + e3 , (3.143a)
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where we have defined [ψx1 ]0 ≡ ψx1(0+)− ψx1(0−). Here ej for j = 0, . . . , 3 are defined by

e0 = D0α
2 , e1 = D0m

2

εv0

ˆ ∞
−∞

w2 dy + 1
v

3/2
0

ˆ ∞
−∞

w3 dy ,

e2 = 1
v
q/2
0

ˆ ∞
−∞

wq dy , e3 = 3
ˆ ∞
−∞

w2Φ dy + qũe

v
(q−1)/2
0

ˆ ∞
−∞

wq−1Φ dy .

(3.143b)

In a similar way, we integrate (3.139c) across −δ < x1 < δ and use Ae ∼ α at x1 = ±δ.

This yields that

f0 [ηx1 ]0 = f1η(0) + f2 , (3.144a)

where fj for j = 0, . . . , 2 are defined by

f0 = D0α
q , f1 = D0m

2ε1−q

v
q/2
0

ˆ ∞
−∞

wq dy + ε3−qτuλ

v
q/2
0

ˆ ∞
−∞

wq dy ,

f2 = ε3−qqũeτuλ

v
(q−1)/2
0

ˆ ∞
−∞

wq−1Φ dy .

(3.144b)

In (3.143b) and (3.144b), ũe is given in (3.134).

Next, we must solve for ψ(x1) and η(x1) from the solution to (3.140) and (3.141) subject to

the jump conditions (3.143) and (3.144), and the boundary conditions ψx1(±`) = ηx1(±`) = 0.

From this solution, we calculate ψ(0), which then determines the NLEP for Φ(y) from (3.142).

To solve for η, we introduce the Green’s function Gm(x1) satisfying

Gmx1x1 −m2Gm = −δ(x1) , |x1| ≤ ` ; Gmx1(±`) = 0 . (3.145)

The explicit solution to this problem is

Gm(x1) = cosh [m(`− |x1|)]
2m sinh(m`) , (3.146)

for m > 0. In terms of Gm(x1), and using [Gmx1 ]0 = −1, the solution to (3.141) with (3.144) is

η(x1) = η(0)Gm(x1)
Gm(0) , η(0) = − f2

f1 + f0/Gm(0) . (3.147)
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Similarly, for m > 0, the solution to (3.140) subject to (3.143) is

ψ(x1) = ψ(0)Gm(x1)
Gm(0) , ψ(0) = − e2η(0) + e3

e1 + e0/Gm(0) . (3.148)

We estimate the asymptotic order of the terms in (3.144b) as f0/Gm(0) = m tanh(m`)·O(1),

f1 = m2ε1−q ·O(1) + ε3−qτu ·O(1), and f2 = ε3−qτu ·O(1). As such, when τu = O(1) and q > 1,

we conclude for any m > 0 with m� O(ε) that

f1 + f0
Gm(0) ∼

D0m
2ε1−q

v
q/2
0

ˆ ∞
−∞

wq dy ,

η(0) = − f2
f1 + f0/Gm(0) ∼

O(ε3−q)
O(ε1−qm2) = O(ε2/m2)� 1 .

Since η(0) � 1 when q > 1, τu = O(1), and m � O(ε), we conclude from (3.148) that, in this

parameter regime,

ψ(0) ∼ − e3
e1 + e0/Gm(0) . (3.149a)

Upon using (3.134) for ũe, the coefficients in (3.149a) are

e0 = D0α
2 , e1 = D0m

2

εv0

ˆ ∞
−∞

w2 dy + 1
v

3/2
0

ˆ ∞
−∞

w3 dy ,

e3 = 3
ˆ ∞
−∞

w2Φ dy + qv
1/2
0 U0

´∞
−∞w

q−1Φ dy´∞
−∞w

q dy
,

(3.149b)

Upon substituting (3.149a) into (3.142), and by using (3.131) for v0, together with
´∞
−∞w

2 dy =

4 and
´∞
−∞w

3 dy =
√

2π, we obtain the following NLEP with two nonlocal terms:

L0Φ− χ0w
3´∞

−∞w
3 dy

(
3
ˆ ∞
−∞

w2Φ dy + qv
1/2
0 U0

´∞
−∞w

q−1Φ dy´∞
−∞w

q dy

)
=
(
λ+ ε2m2

)
Φ , (3.150a)

χ0 ≡
(

1 + 4D0m
2ε−1

[2`(γ − α)− U0] + 4D0α
2π2m tanh(m`)

[2`(γ − α)− U0]3

)−1

. (3.150b)
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3.6.3 Analysis of the NLEP - Stripe Breakup Instability

The analysis of the spectrum of (3.150) is challenging for general q > 1 owing to the presence

of the two nonlocal terms. In our analysis below, we will focus on the special case q = 3, as we

have done before for our 1-D hotspot analysis, for which this NLEP with two nonlocal terms

can be transformed to the following NLEP with only one nonlocal term:

L0Φ− χw3
´∞
−∞w

2Φ dy´∞
−∞w

3 dy
=
(
λ+ ε2m2

)
Φ , χ ≡ χ0

[ 6`(γ − α)
2`(γ − α)− U0

]
, (3.151)

which is explicitly solvable. Here χ0 is defined by (3.150b). It is an open problem to analyze

(3.150) for arbitrary q > 1.

The NLEP (3.151) for q = 3 is a special case of the class of explicitly solvable NLEP’s of Prin-

cipal Result 2.2 in [37]. Upon replacing λ, σ, g(w), and h(w) with λ+ ε2m2, 3, w2/
´∞
−∞w

3 dy,

and w3 respectively in the formula (2.2) of [37], we get

λ = σ − χ(λ)
ˆ ∞
−∞

g(w)h(w) dy. (3.152)

By using the definition of χ at (3.151), we obtain the following explicit formula for any unstable

eigenvalue of (3.151):

Proposition 3.23. Let ε→ 0, q = 3, τu = O(1), U0 < 2`(γ − α), with m > 0 and m� O(ε).

Then, the transverse stability of a stripe solution for (3.124) on an O(1) time-scale is determined

by the sign of the discrete eigenvalue

λ = 3− ε2m2 − 9`(γ − α)
[2`(γ − α)− U0]

[
1 + 4D0m

2ε−1

[2`(γ − α)− U0] + 4D0α
2π2m tanh(m`)

[2`(γ − α)− U0]3

]−1

. (3.153)

To determine the edges of the instability band for a stripe, we set λ = 0 in (3.153) and solve

for m. For ε � 1, the upper edge m+ of the instability band is m+ ∼
√

3/ε, with λ < 0 for

m > m+. In contrast, the lower edge m− of the instability band satisfies m− ∼ ε1/2m0− where

m0− satisfies

3 ∼ 9`(γ − α)
[2`(γ − α)− U0]

(
1 + 4D0m

2
0

[2`(γ − α)− U0]

)−1

.
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Upon solving for m0−, we conclude for ε� 1 that λ > 0 when

ε1/2m0− < m <

√
3
ε
, m0− ≡

√
`(γ − α) + U0

4D0
. (3.154)

We remark that the lower O(ε1/2) edge of the band is consistent with the assumption m� O(ε)

used to derive (3.153). In addition, we note that the lower edge of the band increases with the

level U0 of police effort. This shows that as U0 increases, less transverse modes become unstable.

Finally, we estimate the mode mdom within the instability band that has the largest growth

rate. To do so, we set dλ/dm = 0 in (3.153), and obtain that mdom is the root of

2ε2m ∼ 9`(γ − α)
[2`(γ − α)− U0]

(
4D0m

2ε−1

[2`(γ − α)− U0] + · · ·
)−2 ( 8D0m

ε [2`(γ − α)− U0] + · · ·
)
.

For ε � 1, this reduces to 16D0m
4 ∼ 36`ε−1(γ − α). For ε � 1, this yields the most unstable

mode as

mdom ∼ ε−1/4
[ 9

4D0
`(γ − α)

]1/4
, (3.155)

which is independent of U0. We predict that a stripe for the urban crime model (3.124) on a

rectangular domain of width d will break up into N localized hot-spots, where N is the closest

integer to mdomd/2π.

In Fig. 3.14 (left plot), we use (3.153) to plot λ versus m for the parameter set ε = 0.05,

D0 = 1, γ = 2, α = 1, ` = 1, and U0 = 1. In the caption of the figure, the asymptotic predictions

for the edges of the instability band, as obtained from (3.154), are compared with results from

(3.153). From (3.155), the asymptotic prediction for the most unstable mode is mdom ∼ 2.59,

which compares well with the numerically computed result mdom ≈ 2.44 as computed from

(3.153). In Fig. 3.14 (right plot), we compare λ versus m near the lower threshold m− for

U0 = 1 and for U0 = 1.5.

For the same parameter values as used in Fig. 3.14, we further put d = 2 to compute

mdomd/2π = 2.59/π ≈ 0.82. (3.156)

This suggests that a stripe on a square domain of side-length two should break up into only
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Figure 3.14: Principal eigenvalue λ as a function of frequency m. Left: plot of λ versus
m, as given in (3.153), for ε = 0.05, D0 = 1, γ = 2, α = 1, l = 1, and U0 = 1. The
asymptotic prediction as ε→ 0 for the instability band from (3.154) is 0.158 < m < 34.64. The
corresponding numerical result is 0.131 < m < 34.56. Right: plot of λ versus m near the lower
threshold m− for U0 = 1 (solid curve) and U0 = 1.5 (heavy solid curve). The lower edge of the
instability band increases as U0 increases.

one spot, which is relatively few as compared to, say, the case of the Gierer-Meinhardt model

studied also in [37] for an explicitly solvable case. To validate this claim we computed full

numerical solutions to (3.126) for the parameter set ε = 0.05, D0 = 1, γ = 2, α = 1, U0 = 1, on

Ω = [−1, 1]× [−1, 1], i.e. ` = 1, d = 2.

The computations were done using the adaptive grid finite difference solver VLUGR2 [3].

The initial conditions were taken to be the leading order steady-state stripe solution of Propo-

sition 3.22. The results for A at different times, as shown in the gray-scale plot of Fig. 3.15,

confirm the theoretical prediction that the stripe breaks up into only one spot.

3.7 Discussions

The modelling aspect of this chapter is relatively preliminary in nature, and we have considered

a police-criminal interaction of the simplest type. Nonetheless, what insights can we still draw

about how a chief of police should instruct the patrolling policemen?

We discovered that if there are sufficiently many policemen, it would preclude the math-

ematical existence of crime hotspots. Since this is usually not the case, when crime hotspots

do exist, we consider how the policemen should patrol in order to destabilize multiple crime

hotspots (single crime hotspot is unconditionally linearly stable). In other words, we want to
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Figure 3.15: Spontaneous breakup of a stripe into one spot, obtained from a full numerical
simulations of (3.124) using VLUGR2. The model parameter values were ε = 0.05, D0 = 1, γ =
2, α = 1, U0 = 1, d = 2 and ` = 1. The time instants chosen were t = 0.000, 0.7299, 8.220, 9.985
from top to bottom respectively.

increase the range of criminal diffusivity so that a crime hotspot is unstable (i.e. lowering the

competition threshold). This is exactly the main thrust of our mathematical analysis.

Firstly, we found that the competition threshold does not go down necessarily as the num-

ber of policemen increase. Paradoxically, if the degree of focus of police patrol is too high,

the threshold goes up to a maximum before going down as the number of policemen further

increases. This suggests that "hotspot policing" which focuses policemen too much on police

hotspots could be counter-productive. The optimal strategy, thus, lie in the middle ground
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between "random policing" and "hotspot policing", which suggests some sort of "containment

approach".

Secondly, we found that below the competition threshold, the relative speed of policemen

also play a role in destabilizing crime hotspots through a novel asynchronous oscillatory insta-

bility. The policemen need to travel fast enough relative to criminals so as to trigger instability

of crime hotspots through this mechanism. This suggests that upgrades of mobility of patrolling

policemen could be potentially valuable to decrease the total number of crime hotspots in a

city.

As in many modelling endeavours, both the pros and cons of a model may serve as inspi-

rations for more accurate and applicable models in the future. To this end, here we briefly

summarize our main mathematical results, and we suggest a few directions that warrant fur-

ther investigation, both for the sake of completeness for the analysis of this model, and also for

improving it to make it more realistic.

3.7.1 Summary

In this chapter we used the method of matched asymptotic expansions to construct a steady-

state hotspot solution to (3.3) having K hotspots of a common amplitude in the limit ε → 0

for the regime D = O(ε−2). We then studied the spectrum characterizing the linear stability

properties of this steady-state solution by analyzing an NLEP with two nonlocal terms. We

studied the NLEP by first considering a special case with patrol focus degree q = 3, which

results in an explicitly solvable NLEP and, consequently, an explicit formula for the principal

eigenvalue. Explicitly solvable NLEP problems also appear in [29, 37, 38]. The general case

was then studied using the argument principle to count the number of unstable eigenvalues in

the right half plane. This procedure was first developed to study the stability of steady-state

spike patterns for the Gierer-Meinhardt model (cf. [52]) and now has a rather large body of

literature (see [29] and the references therein). Our conclusions from the explicitly solvable

case q = 3 are considerably stronger than those for the non-explicitly solvable case q 6= 3. In

particular, when q = 3, two thresholds D0,lower and D0,upper given in (3.94) were determined

so that the a multiple-hotspot pattern is stable when D0 < D0,lower and unstable due to a

competition instability when D0 > D0,upper. Moreover, an explicit formula for the existence of
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Hopf bifurcation τu = τHopf when D0,lower < D0 < D0,upper was given in (3.93). In contrast

to the absence of a Hopf bifurcation for the basic crime model with no police intervention, as

discovered in [29], the window of existence for a Hopf bifurcation given by (D0,lower, D0,upper)

vanishes exactly when U0 = 0. In other words, the third component of the PDE system,

modeling the police interaction, is essential to inducing the possibility of oscillations. Moreover,

unlike the case of the Gray-Scott and Gierer-Meinhardt models studied in [9, 52, 50], where

synchronous oscillatory instabilities of the spike amplitudes robustly occur and are the dominant

instability, our three-component system exhibits asynchronous oscillatory instabilities. These

asynchronous, anti-phase, oscillations of the spike amplitudes have the qualitative interpretation

that, for a range of police diffusivities, the police presence is only able to mitigate the amplitude

of certain hotspots at the expense of the growth of other hotspots in different spatial regions.

However, when q 6= 3, we had difficulty in analytically proving results as strong as for the

case q = 3. In particular, we were not able to prove, without assuming further conditions,

that a multiple hotspot pattern is stable when the rescaled criminal diffusivity D0 is below the

same lower threshold defined earlier in the q = 3 case. One possibility is that the definition

of the lower threshold should be revised and should change with q. When D0 is between the

lower and upper thresholds, we were able to prove the existence of a Hopf bifurcation, but we

cannot show uniqueness of the critical Hopf bifurcation value in τu. These are interesting open

problems that warrant further study. Most importantly, we would like to investigate what are

the mathematical relationships between the explicitly solvable case q = 3 and the non-explicitly

solvable case q 6= 3, so that the strong results from the explicitly solvable case can potentially

carry over to the general case.

3.7.2 Open Problems and Future Directions

With regards to our police model, with simple police interaction, studied in this chapter, it

would be interesting to consider the more challenging D = O(1) regime. One key question

would be to investigate whether the police presence can eliminate the peak insertion behaviour

that was found for the basic crime model to lead to the nucleation of new spikes of criminal

activity. In this direction it would be interesting to determine the influence of the police presence

on the global bifurcation of multiple hotspot steady-state solutions.
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A second interesting direction would be to study the effect of police presence on crime

patterns when the police interaction is modelled by the predator-prey dynamics case I(U, ρ) =

Uρ for (1.20). Preliminary results suggest that the NLEP will now have three non-local terms,

which makes a detailed stability analysis very challenging. However, the determination of

the competition instability threshold, corresponding to the zero eigenvalue crossing, should be

readily amenable to analysis.

A third direction would be to consider spatial patterns in more than a simple 1-D spatial

context. In Section 3.6 we studied (3.3) on a closed and bounded two-dimensional domain,

where we observed that a homoclinic stripe can undergo a breakup into a localized hotspot in

two spatial dimensions. An interesting extension of this result would be to study the break-up

instability of a ring pattern, which was numerically observed in [48, 49] to lead to 2-D hotspot

formation. In this context, it would be interesting to extend the 2-D stability results in [29] for

the basic crime model, to study the existence of stability of crime hotspots in 2-D domains in

the presence of police. In particular, we would like to investigate the stability and dynamics of

2-D hotspots, allowing for either of our two different models of police intervention.
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Appendix A

Lemmas and General Formulas

A.1 A Floquet Boundary Condition Approach to Neumann

NLEP Problems on a Bounded Interval

When considering the stability of a symmetric, equally-spaced, K−spike pattern on a one

dimensional interval, we must impose homogeneous Neumann boundary conditions. We observe

two special properties for this class of problem. If we denote the spectral problem as Lφ = λφ,

we see that:

1. Translation-invariance: If φ(x) is a Neumann eigenfunction on the interval [a, b], i.e.

φx(a) = φx(b) = 0, then the translated eigenfunction φ̃(x) = φ(x − x0) is a Neumann

eigenfunction with the translated boundary condition: φ̃x(a+ x0) = φ̃x(b+ x0) = 0.

2. Even symmetry of the linear operator L: The function φ̃(x) = φ(−x) solves Lφ̃ = λφ̃

whenever φ solves the same problem. A sufficient condition for this is that L contains

only even derivatives and the nonlocal term is an integral on the whole domain with an

even kernel.

The spectral problems on one spatial dimension we considered in this thesis satisfy the above

properties. We now show how these simple considerations can be used to reduce a spectral

problem with Neumann boundary conditions for a multiple spike pattern to one for a single

spike with a Floquet-type boundary condition.

The first step is to recognize the Neumann problem as a restriction of a periodic problem.
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A.1.1 Converting a Neumann problem to a Periodic Problem with Twice

the Domain Length

Because of translation invariance, we may translate our domain to wherever we feel convenient.

We describe here a bijective correspondence of Neumann eigenfunctions on a domain of length

L to periodic eigenfunctions on a domain of length 2L.

Suppose φ(x) is a Neumann eigenfunction on [0, L]. Then, if we apply an even extension

φ̃(x) =


φ(x) for 0 ≤ x ≤ L

φ(−x) for − L ≤ x ≤ 0 ,

it follows that φ̃(x) satisfies periodic boundary conditions on [−L,L], i.e. that

φ̃(L) = φ̃(−L), φ̃x(L) = φ̃x(−L) .

Conversely, if φ(x) is a eigenfunction on [−L,L] satisfying periodic boundary conditions,

then since the domain is symmetric about the origin, the function

φ̃(x) = φ(x) + φ(−x) ,

restricted to [0, L] solves Lφ = λφ and it satisfies φ̃x(L) = φx(L)−φx(−L) = 0 by 2L-periodicity

and φ̃x(0) = φx(0)− φx(0) = 0 by construction. Thus, φ̃(x) is a Neumann eigenfunction.

Therefore, we conclude that the spectrum of the Neumann problem on a domain of length L

is exactly the same as the spectrum of the periodic problem on a domain length of 2L (whether

the domain is actually symmetric is irrelevant, because of translation-invariance)

A.1.2 Converting a Periodic Problem to a Floquet Problem

Now, if we have an eigenvalue problem with periodic boundary conditions on a domain [a, b]

with length S, then we can partition the domain into N subintervals of equal length as

[a, b] =
N−1⋃
j=0

[xj , xj+1] ,
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and consider the following complex-valued problem with the following Floquet-type boundary

condition on each subinterval:

z

 φ

φx


∣∣∣∣∣∣∣
x=xj

=

 φ

φx


∣∣∣∣∣∣∣
x=xj+1

, for j = 0, 1, . . . , N − 1 ,

where z is a complex number to be determined.

Then, by collapsing the N conditions, we find that

zN

 φ

φx


∣∣∣∣∣∣∣
x=x0=a

=

 φ

φx


∣∣∣∣∣∣∣
x=xN=b

.

Thus, periodicity requires zN = 1, and hence z is determined by the N -th roots of unity as

zj = e2πij/N , j = 0, 1, . . . , N − 1 ,

which yields N possible choices for the multiplier z.

Finally, if the problems restricted on each subinterval are exactly the same (i.e. the functions

involved defining L are identical on each subinterval), which occurs when we consider the

stability of a symmetric, equally-spaced multiple spike pattern subject to a S-periodic boundary

condition, then we only need consider the Floquet eigenfunction that satisfies

Lφ = λφ , −` < x < ` ; φ(l) = zjφ(−l), φx(l) = zjφx(−l) ,

where 2lN = S, so that l = S/(2N).

A.1.3 The Floquet Eigenvalue Problem for the Stability of a K-spike Sym-

metric Pattern with Neumann Boundary Conditions

For our problem defined on the domain [−L,L] with length 2L with K spikes, we first apply

an even reflection as described above, which yields the periodic problem with S = 4L having
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N = 2K spikes. Therefore, we look for eigenfunctions that satisfy

Lφ = λφ , −` < x < ` ; φ(l) = zjφ(−l), φx(l) = zjφx(−l) ,

with l = S/(2N) = 4L/(4K) = L/K, and

zj = e2πij/N = eπij/K , j = 0, . . . , N − 1 ,

which when solved, gives N different modes depending on j to the original problem.

We end this discussion with a lemma which we use frequently to solve a BVP problem

resulting from imposing Floquet boundary conditions.

Lemma A.1. The following BVP with a jump condition at x = 0 and, subject to Floquet

boundary conditions on the interval [−`, `], formulated as

ηxx = 0 , −` < x < ` ; d0 [ηx]0 = d1η(0) + d2 ,

η(`) = zη(−`), ηx(`) = zηx(−`) ,

is solvable with the central value η0 = η(0) given by

η0 = d2

[
d0
2`

(z − 1)2

z
− d1

]−1

.

In particular, if z = zj = eπij/K , where 0 ≤ j < K is an integer, then

η0 = − d2
d0 (1− cos(πj/K)) /`+ d1

.

Proof: Let η0 = η(0). The solution of the ODE is continuous but not differentiable at x = 0,

with the general form

η(x) =


η0 +A+x if 0 < x < ` ,

η0 +A−x if − ` < x < 0 .
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Upon imposing the Floquet boundary conditions we obtain

A+ = zA− , η0 +A+` = z (η0 −A−`) = zη0 −A+` ,

so that A+ = (z−1)
2` η0. Then, upon imposing the jump condition we get

d1η0 + d2 = d0 [ηx]0 = d0 (A+ −A−) = d0η0
2` (z − 1)

(
1− 1

z

)
,

which determines η(0) = η0 as

η0 = d2

[
d0
2`

(z − 1)2

z
− d1

]−1

, (A.1)

as was claimed. If we set z = eπij/K , we obtain

(z − 1)2

z
= (z − 1)

(
1− 1

z

)
= −(1− z)(1− z̄) = −2− (z + z̄) = −2 (1− cos(πj/K)) .

�

A.2 Properties of the Local Operator L0 in One Spatial Dimen-

sion

Consider positive solutions on −∞ < y <∞ to

w′′ − w + wp = 0 , (A.2)

which vanish as y → ±∞. It is well-known that the unique positive solution to this problem is

w(y) =
((p+ 1)

2 sech2
[(p− 1)y

2

])1/(p−1)
. (A.3)

In particular, for p = 2 we have

w(y) = 3
2sech

2
(
y

2

)
, (A.4)
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while for p = 3, we get

w(y) =
√

2sech(y) . (A.5)

We define the linear operator obtained from linearizing around this solution by

L0[φ] := φ′′ − φ+ pwp−1φ . (A.6)

We refer to L0 as the local operator in the context of our NLEP stability analysis.

First, we recall a few well-known results for the discrete spectrum of L0. By converting

the differential operator to a hypergeometric equation, a more precise statement for the local

eigenvalue problem L0ψ = νψ is that it has exactly two discrete eigenvalues when p ≥ 3 is an

integer, given by

ν0 =
(1 + p

2

)2
− 1, ψ0 = w2 > 0 ; ν1 = 0, ψ1 = w′ , (A.7)

and there are no other discrete eigenvalues in −1 < ν < 0. When p = 2, then ν2 = −3/4 is also

an eigenvalue. The proof of these results is given in Proposition 5.6 of [13].

Secondly, we list several algebraic properties when L0 acts on functions of w.

Lemma A.2. The local operator L0 satisfies the following identities

(i) L0[w] = (p− 1)wp, so L−1
0 [wp] = w

p−1 ,

(ii) L0[yw′] = 2(w − wp), so L−1
0 [w] = 1

2yw
′ + 1

p−1w
p,

(iii) L0[ws] = (s2 − 1)ws , iff s = p+1
2 ,

(iv) L0[ws] =
(
s2 − 1

)
ws + (p+ s)

(
1− 2s

p+1

)
ws+p−1 , for any s > 1.

(v) For s > p− 1 and s 6= p− 1 + p+1
2 , we have the reduction formula

L−1
0 [ws] = p+ 1

(s+ 1)(2s− 3p+ 1)
[
(s− p)(s− p+ 2)L−1

0 [ws−p+1]− ws−p+1
]
.

Proof: (i) and (ii) can be verified readily by calculating

L0[w] = w′′ − w + pwp = (p− 1)wp ,
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as well as

L0[yw′] = 2w′′ + yw′′′ − yw′ + y(pwp−1w′) ,

= 2(w − wp) + y(w′′ − w + wp)′ ,

= 2(w − wp) .

Now we show (iii). We multiply A.2 by w′ and integrate to get

w′2

2 −
w2

2 + wp+1

p+ 1 = 0 ,

which yields that (
w′
)2 = w2 − 2

p+ 1w
p+1 .

Thus, we obtain that

L0[ws] =
(
sws−1w′

)′
− ws + pwp+s−1 ,

= s(s− 1)ws−2 (w′)2 + sws−1w′′ − ws + pwp+s−1 ,

= ws−2
(
s(s− 1)

(
w′
)2 + sww′′ − w2 + pwp+1

)
,

, ws−2Tp,s[w] . (A.8)

Then, using w′′ = w − wp and (w′)2 = w2 − 2
p+1w

p+1, we get

Tp,s[w] = [s(s− 1) + s− 1]w2 + [−2s(s− 1)/(p+ 1)− s+ p]wp+1 ,

=
(
s2 − 1

)
w2 + 1

p+ 1
(
p2 − (s− 1) p− 2s2 + s

)
wp+1 ,

=
(
s2 − 1

)
w2 + (p+ s)

(
1− 2s

p+ 1

)
wp+1 . (A.9)

This shows (iv), and it is now obvious that the second term in (A.9) vanishes iff s = (p+ 1)/2,

which establishes (iii) as claimed.

Finally for (v), we proceed by a direct computation to get

L0[ws−p+1] =
[
(s− p+ 1)2 − 1

]
ws−p+1 − s+ 1

p+ 1(2s− 3p+ 1)ws .
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So taking L−1
0 on both sides and rearranging yields the desired result. Observe that 2s− 3p+

1 = 0 exactly when s = p − 1 + (p+ 1)/2. Moreover, when s = p, we recover (i), given by

L0[w] = (p− 1)wp. �

In other words, (iii) means that for s > 1, the principal eigenvalue for L0 is

ν0 = s2 − 1 > 0 ,

with ws being the corresponding eigenfunction. Since we have neither assumed p and q to

be integers, in fact, for any p > 1, we have s = (p+ 1)/2 and w(p+1)/2 is an eigenfunction

corresponding to the principal eigenvalue ν0 =
(

1+p
2

)2
− 1 > 0. In particular, for the cases

p = 2 and p = 3 we get ν0 = 5
4 and ν0 = 3, respectively.

The identities (i) and (ii) are useful in the analysis of a class of nonlinear function defined

implicitly by L0, given by

F(λ) =
´
wm−1(L0 − λ)−1wp´

wm
,

when m−1 = s. This function appears frequently in the NLEP analysis of spike stability where

the eigenvalues can be found to satisfy the equation

g(λ) = C(λ)−F(λ) = 0 ,

where C(λ) is usually some rational or transcendental function of λ defined in terms of the

model parameters of the reaction-diffusion system.

The identity (iii) turns out to be very powerful and gives tremendous simplifications to the

NLEP analysis, which effectively allows F(λ) to be rewritten explicitly in a closed form. In

this way the study of the roots of g(λ) = 0 will only require finding roots of some explicit

transcendental equation in the eigenvalue parameter.

186



A.2.1 Applications to Explicitly Solvable NLEP

Proposition A.3. Consider the NLEP

L0[Φ]− χwr
ˆ ∞
−∞

wsΦdy = λΦ , −∞ < y <∞ , Φ→ 0 as |y| → ∞ ,

where s = (p+ 1)/2 and r > −s is arbitrary. Then, any unstable eigenvalue must be root of

λ = ν0 − χ
ˆ ∞
−∞

ws+rdy =
[(

p+ 1
2

)2
− 1

]
− χ
ˆ ∞
−∞

w
p+1

2 +rdy . (A.10)

Proof: We apply Green’s identity to ws and Φ, using decay properties of ws and Φ as |y| → ∞

together with integration by parts. This yields

0 =
ˆ ∞
−∞

wsL0[Φ]− ΦL0[ws]dy ,

=
ˆ ∞
−∞

(
ws
[
λΦ + χwr

ˆ ∞
−∞

wsΦdy
]
− Φν0w

s

)
dy ,

=
(ˆ ∞
−∞

wsΦdy
)(

λ− ν0 + χ

ˆ ∞
−∞

ws+rdy

)
.

Therefore, when
´∞
−∞w

sΦdy 6= 0, we obtain λ = ν0 − χ
´∞
−∞w

s+rdy as claimed.

Moreover, the condition
´∞
−∞w

sΦdy 6= 0 fails only if the NLEP was in fact the local eigen-

value problem, given by L0[Φ] = λΦ. Hence
´∞
−∞w

sΦdy = 0 implies that Φ is an eigenfunction

of L0. However, since the principal eigenfunction of L0 is one-signed, the only eigenpairs of L0

that satisfy
´∞
−∞w

sΦdy = 0 are either the translation mode λ = 0 where Φ = w′ or possibly an

eigenfunction whose eigenvalue is in −1 < λ < 0. Therefore, the transcendental equation for

the eigenvalue given above will characterize any unstable eigenvalue of the NLEP. �

A.3 Miscellaneous Formulas

A.3.1 Formulas for the Lq-Norm of the Ground State w(y): p = 3 Case

Lemma A.4. For p = 3, w(y) =
√

2sechy. We have the general formula for its q-th integral:
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Iq =
ˆ ∞
−∞

wq(y)dy = 23q/2−1B(q2 ,
q

2) = 23q/2−1 Γ2(q/2)
Γ(q) , (A.11)

where B(s, t) is a beta function. In addition, we have the reduction formula

Iq+2 = 2q
q + 1Iq . (A.12)

Proof: Iq/2q/2 = 2q
´∞
−∞

dy
(e−y+ey)q = 2q

´∞
−∞

(e−2y)q/2

(e−2y+1)q dy. So we substitute t = e−2y to obtain

Iq/2q/2 = 2q−1
ˆ ∞

0

tq/2−1

(1 + t)q dt = 2q−1B(q2 ,
q

2) ,

where the last identity for the Beta function can by shown from the definition by the substitution

s = 1
1−t − 1 = t

1−t , ds = 1
(1−t)2dt = (s+ 1)2 dt. In this way, we calculate that

B(x, y) =
ˆ 1

0
tx−1 (1− t)y−1 dt ,

=
ˆ 1

0

(
t

1− t

)x−1
(1− t)x+y−2 dt ,

=
ˆ ∞

0
sx−1 (s+ 1)−(x+y−2) (s+ 1)−2 ds ,

=
ˆ ∞

0

sx−1

(1 + s)x+y ds .

The reduction formula can then be seen as a result of the general formula, but can also be

easily obtained from a simple integration by parts. �

The general formula is most useful for real numbers 0 < q < 2 and for general q we can

apply the reduction formula first. For integers q = 1, 2, 3, 4, one can readily recover the following

values, which were frequently used in this thesis: I1 =
√

2π, I2 = 4, I3 =
√

2π, I4 = 16/3.

A.3.2 Formulas for the Lq-Norm of the Ground State w(y): General Case

For general p, the formula of the ground state is:

w(y) =
((p+ 1)

2 sech2
[(p− 1)y

2

])1/(p−1)
.
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Therefore, we compute

Ip,q ≡
ˆ ∞
−∞

wq(y)dy =
(
p+ 1

2

)q/(p−1) ˆ ∞
−∞

(
sech2

[(p− 1)y
2

])q/(p−1)
dy .

Let u = tanh (p−1)y
2 , then du = p−1

2 sech2
[

(p−1)y
2

]
dy. We calculate that

Ip,q =
(
p+ 1

2

)q/(p−1) (p− 1
2

)−1 ˆ 1

−1

(
1− u2

)q/(p−1)−1
du .

With the substitution t = (1 + u)/2, we further obtain that

Ip,q = (p2 − 1)
2

(
p+ 1

2

) q
p−1−1 ˆ 1

0
[4t(1− t)]

q
p−1−1

dt ,

= (p2 − 1)
2 (2p+ 2)

q
p−1−1

ˆ 1

0
t

q
p−1−1(1− t)

q
p−1−1

dt ,

= (p2 − 1)
2 (2p+ 2)

q
p−1−1

B( q

p− 1 ,
q

p− 1) ,

= (p2 − 1)
2 (2p+ 2)

q
p−1−1 Γ2( q

p−1)

Γ
(

2q
p−1

) . (A.13)

This expression also implies a reduction formula:

Ip,q = p2 − 1
2 (2p+ 2)( q−(p−1)

p−1 −1)+1 Γ2( q−(p−1)
p−1 + 1)

Γ
(

2(q−(p−1))
p−1 + 2

) ,
= Iq−(p−1)(2p+ 2)

(
q−(p−1)
p−1

)2(
2(q−(p−1))

p−1 + 1
) (

2(q−(p−1))
p−1

) ,
= Iq−(p−1)(p+ 1) q − p+ 1

2q − p+ 1 . (A.14)

For p = 3, the expression (A.13) simplifies to

I3,q = 4 · 8q/2−1 Γ2( q2)
Γ(q) = 23q/2−1 Γ2( q2)

Γ(q) ,

while (A.14) yields

I3,q = I3,q−2
4(q − 2)
2q − 2 = 2(q − 2)

q − 1 I3,q−2 .
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in full agreement to (A.11) and (A.12).

We remark that the integral Ip,q has a closed form with simple surds and factorials when
q
p−1 is an integer, and also when q

p−1 = n+ 1/2 for some integer n, but with an extra factor of

π (because Γ(1
2) =

√
π). In all cases, Ip,q can be reduced to a formula of surds and factorials

except for a factor of Γ(qc) where qc = mod (q, 1) is the non-integral part of the number q.
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