Chapter 6

Other Code Construction Methods

In Chapter 5, we focused on the state-splitting algorithm which gives a rigorous proof of the
general existence theorems (Theorems 4.1 and 4.8) for constrained code constructions. The
algorithm has other virtues: it is fairly easy to use, it has yielded many codes of practical
interest, and, as stated in Section 5.6, it is a universal method of constructing every sliding-
block decoder. However, as pointed out in Section 5.5, there are lots of choices in the
algorithm: the presentation, the approximate eigenvector, the sequence of out-splittings, the
deletion of excess edges, and the input-tagging assignment. It is not known how to make
these choices to yield optimal encoders/decoders.

There have been many other important and interesting approaches to constrained code
construction—far too many to mention here. In this chapter we review, without proof, some
alternative methods for constructing constrained codes (see also Sections 4.2 and 4.4). Since
these methods are all aimed at the same goal, it is perhaps not surprising that they have a
lot in common. In fact, other methods are probably just as universal as the state-splitting
algorithm. Some of these methods give very useful heuristics for constructing sliding-block
decodable encoders with small decoding window length as well as some rigorous upper bounds
on the smallest possible anticipation (or decoding delay) and decoding window length.

We will focus on constructions of tagged (S,n)-encoders. So, throughout this chapter,
we will always assume that S is an irreducible constrained system with cap(S) > logn. For
rate p : q finite-state encoders for S, one can apply the results and methods of this chapter
by passing to the power S9.

6.1 IP encoders

We start with an encoder construction due to Franaszek that is very closely related to the
state-splitting construction. We need the following notation: for a path v in a labeled graph

173

CHAPTER 6. OTHER CODE CONSTRUCTION METHODS 174

G=(V,E, L), let4 denote the truncation of 7y obtained by deleting the last edge, and for a
set T' of paths in G, let [denote the set {%:~y € T'}.

Now, for each state u € V, let N = N(u) be a positive integer and let ', =
{r), 7@ . TM} be a partition of a set of paths outgoing from wu, of some fixed length
T, subject to the following condition:

IP condition: Whenever e is an edge from state u to state v and v; and 7, are paths that
belong to the same element of ', (in particular, they both have initial state v), then
e, and e¥, belong to the same element of T,.

Note that this is a condition imposed on the entire collection of partitions, {T'y}ucv,
not on an individual partition I',. The IP condition was developed by Franaszek [Fra80a],
[Fra80b], [Fra82], who called the individual partition elements, independent path sets or
IP sets. The IP condition was called the left Markov property in [AM95].

Now suppose that {I', },ecv is a collection of partitions satisfying the IP condition. Con-
struct the following labeled graph G' = (V', E', L'): the states in G’ are the independent

path sets ['()); there is an edge I'{") 2 ') in G' for each edge e labeled b from state u to
state v in G such that
P9 1)

Now, it can be shown that G’ is lossless (Problem 6.1). Moreover, if the vector x defined
by z, = N(u) is an (Ag,n)-approximate eigenvector, then G’ has minimum out-degree at
least n; so, by deleting edges and adding input tags, we obtain an ordinary tagged (S, n)-
encoder, which we call an IP encoder. If G has finite memory M, then this encoder is
sliding-block decodable with decoding window length < M+T+1.

It turns out that any IP encoder can also be constructed by x-consistent out-splittings
(see [AMO95] and [Holl95]). It follows from this result and the state-splitting construction in
Chapter 5 that the IP approach is bound to succeed provided that 7" is taken sufficiently
large. In fact, one can view the state-splitting algorithm as giving a constructive procedure
for manufacturing IP sets. Recently, Franaszek and Thomas [FT93] discovered an algorithm
which reduces the search required for finding IP sets.

6.2 Stethering encoders

Next, we describe a more general framework of encoder construction within which the state-
splitting construction fits. Let G = (V, E, L) be a deterministic labeled graph with S = S(G)
and let x = (zy)yey be an (Ag, n)-approximate eigenvector. As usual, we may assume that

CHAPTER 6. OTHER CODE CONSTRUCTION METHODS 175

the entries of x are all strictly positive. We describe a particular class of (S, n)-encoders &,
built from x, as follows. The set of states of £ is given by

ng{(u,i) ‘ ue Vg and i=0,1,...,xu—1}.

Recall that E, denotes the set of edges outgoing from a state u, and we will use L(E,)
here to denote the set of L-labels of edges in F,. Since G is deterministic, the mapping
E, — L(FE,) defined by e — L(e) is one-to-one and onto. So, it makes sense, for each
u € Vg and a € L(E,), to define 7(u; a) to be the terminal state of the unique edge outgoing
from u with label a. Now, let

A, ={(a,j) : a€ L(E,) and j=0,1,..., 2 (@ue—1} -

By definition of approximate eigenvector we have |A,| > nz,. Thus, we can partition A,
into z,+1 subsets A AW Al«) such that |A¥)| = n for each i, except for i = =,
(A(®«) may be empty). Now, for each i = 0,1,...,2,—1 and (a,5) € AW, we endow £ with
an edge (u,4) — (7(u;a), j). This completely defines £.

It turns out that £ is an (S, n)-encoder (the proof is essentially contained in [AGW77]—
see also [AMR95]); in fact, if G were merely lossless, then one could modify the construction
so that £ would still be an (S, n)-encoder. Also, it is not hard to see that the (S, n)-encoders
constructed by the state-splitting algorithm are of this type. Clearly the construction of this
type of encoder is somewhat easier than the state-splitting construction: there is no iterative
process to go through. However, there are lots of examples of encoders of this type that do
not have finite anticipation; it is not at all clear how to choose the partitions of each A, to
achieve finite anticipation.

On the other hand, if we have sufficient excess capacity and we choose our partitions of
A, with some extra care, then it turns out that £ will have finite anticipation; and if G has
finite memory (more generally, if G is definite), then £ will be definite, and so any tagging
of £ will yield a sliding-block decodable encoder. We describe this special construction as
follows.

The definition of the partitions assumes some ordering on the edges in E, for each
u € Vg—equivalently, in light of the assumption that G is deterministic, an ordering on
the symbols in L(E,). We allow symbols to have different ordering relations in L(E,) for
different states u. For u € Vi and a € L(FE,), define ¢(u;a) by

Slusa) = D Trup

{beEL(E,):b<a}
where the sum is zero on an empty set. For: =0,1,...,x,—1, let
AW ={(a,7) : a € L(E,) and in<¢(u;a)+j<(@+1)n},

and A(®+) is whatever is left over. This means that for each u,v € Vg, 0 < i < 2, 0 < j < o,
and symbol a, we have one edge (u,7) — (v,) in & if and only if

a€ L(E,), v=1(u;a), and in<o¢(u;a)+j<(i+1)n. (6.1)

CHAPTER 6. OTHER CODE CONSTRUCTION METHODS 176

Such an encoder is called a stethering (S, n)-encoder because the elements of each partition
element Ag) form a contiguous interval and thus are ‘stuck together.” This construction is
illustrated in Figure 6.1: there is an edge from each state (u, %) in the first row to each state
in the second row that sits below (u, 7).

0 1 n—1 0 1 n—1 0 1 n—1
(u,0) e (u, zy—1) ‘
@) | ey | o Jewm-)]| @0 | o [@aey-n] @0 | 070 R
(a,0) (a,1) s (a,zy—1) (a’,0) < (a'x,r—1) (a”,0) (a”,1)
— AP — A — .. —

Figure 6.1: Stethering encoders.

Suppose that we have enough excess capacity that cap(S) > log (n+1). Then, using an
(A, n+1)-approximate eigenvector, we can form a stethering (S, n+1)-encoder £. Now, for
each state u, the ordering on L(F,) induces a lexicographic ordering on A,, and hence an
ordering on each A). We tag € by assigning the input tags {0,1,...,n} in an ordering-
preserving way to the outgoing edges specified by each A%, From £ we form an (S, n)-
encoder &' by deleting all edges in £ tagged by the input symbol n. We call such an encoder
a punctured stethering (S,n)-encoder. In [AMR95], it is shown that any punctured stethering
(S,n)-encoder has finite anticipation.

Now, what is the advantage of such an encoder? Well, not only is it easy to construct, but,
as we will discuss in Section 7.4, its anticipation is in some sense ‘small,” especially compared
to the upper bound on anticipation that we gave in Section 5.3. Also, with sufficient excess
capacity, this construction leads to sliding-block decoders with ‘small’ decoding window
length (see the discussion in Section 7.4).

6.3 Generalized tagged (5, n)-encoders

In order to describe some of the other approaches to code construction, we will now formulate
what appears to be a more general notion of tagged (S, n)-encoder. However, these more
general encoders can be transformed to ordinary tagged (S, n)-encoders.

A generalized tagged (S,n)-encoder € = (V,E, L;/Lo) is a finite directed graph (V, E)
endowed with two labelings—input labeling (tagging) L; and output labeling Lo—yielding
two labeled graphs G; = (V, E, L;) and Gp = (V, E, Lo) such that

1. GGy presents the unconstrained system of all n-ary sequences;

CHAPTER 6. OTHER CODE CONSTRUCTION METHODS 177

2. Gy has finite anticipation;
3. S(Go) C S;

4. G is lossless.

As with ordinary tagged encoders, we will use the notation u 4 for an edge from state u
to state v in & with L;-labeling (tagging) s and Lo-labeling b.

The main difference between a generalized tagged encoder and an ordinary tagged en-
coder is that the input tagging is merely required to have finite anticipation, rather than to
be deterministic. However, since G presents all n-ary sequences, it can be shown directly
that (V,E,L;/Lo) can encode unconstrained data into S at the cost of finite delay. Alter-
natively, we can transform any generalized tagged (S, n)-encoder into an (ordinary) tagged
(S,n)-encoder. This fact is implicit in many papers (e.g., [AFKMS86], [Heeg91, p. 770]) and
has recently been made more explicit by Hollmann [Holl95]. However, it is also a simple con-
sequence of an old symbolic dynamics result. The transformation is outlined in Section 6.7.

6.4 Encoders through variable-length graphs

6.4.1 Variable-length graphs and n-codability

In the following, we show how a certain kind of labeled variable-length graph yields a gen-
eralized tagged (S, n)-encoder (and therefore an ordinary tagged (S, n)-encoder).

A (labeled) variable-length graph (in short, VLG) is a labeled finite directed graph G =
(V,E, L) in which each edge e has a length /(e), assumed to be a positive integer, and is
labeled by a word L(e) (in some alphabet) of length ¢(e). An ordinary labeled finite directed
graph is a VLG where each edge has length 1.

Any VLG, G, may be viewed as an ordinary labeled graph by inserting dummy states.
In this way, a VLG presents a constrained system. So, the notation S(G) makes sense for a
VLG, and we can apply the various notions of determinism, losslessness, definiteness, finite
memory, finite anticipation, etc., to VLG’s. An advantage of VLG’s is that they tend to
be more compact representations of constraints. For instance, any (d, k)-RLL constraint
naturally has an ordinary presentation with k+1 states and a VLG presentation with only
one state, as shown in Figure 6.2.

A VLG G is n-codable if at each state u € Vg, the length distribution of the set E, of
outgoing edges satisfies the Kraft inequality with equality, namely, we have

CHAPTER 6. OTHER CODE CONSTRUCTION METHODS 178

0 oY v) W

(e

w; =00...01
N————

Figure 6.2: VLG presentation of (d, k)-RLL constrained system.

Now, suppose that G is an n-codable lossless VLG presentation of a subset of a con-
strained system S. Then, we can select, for each state u € Vg, a prefix-free list X, of n-ary
words whose length distribution matches that of £,. Using any length-preserving correspon-
dence between X, and E,, we endow G with an input tagging L;. It can be shown that
(V,E,L;/L), viewed as an ordinary graph with two labelings—input tagging L; and output
labeling L—is a generalized tagged (S, n)-encoder (Problem 6.2).

6.4.2 Variable-length state splitting

Variable-length state splitting is a code construction technique, due to Adler, Friedman,
Kitchens, and Marcus [AFKM86] (see also Heegard, Marcus, and Siegel [Heeg91]), which
adapts the state-splitting algorithm to variable-length graphs. In this method, we begin
with an ordinary lossless presentation G = (V, E, L) of a constrained system S, and we
select a subset V' C V of states such that every sufficiently long path in G meets some state
of V'. We then convert G into a VLG G' = (V', E',L'), where E' is the set of paths in
G which start and terminate in V', but do not contain any states of V' in their interior,
with the naturally inherited labeling (the length of an edge in G’ is, of course, the length of
the path in G that it represents). The assumption on V' guarantees that every bi-infinite
path in G can be parsed into edges of G’, and so we do not really lose anything in passing
from G to G'. We remark that if we view G’ as an ordinary labeled graph (by inserting
dummy states), then, while G’ may not exactly reproduce G, it is a lossless labeled graph

with S(G") = S(G).

One can develop notions of state splitting, approximate eigenvectors, etc. for VLG’s, and
see that state splitting preserves finite anticipation and definiteness as in Proposition 5.1.
Then we apply a variable-length version of the state-splitting algorithm to iteratively trans-
form G’ into a new VLG which is n-codable, thereby yielding a generalized tagged (S, n)-
encoder. If the original presentation G has finite anticipation (resp., has finite memory),
then the encoder will have finite anticipation (resp., be sliding-block decodable).

The variable-length state-splitting procedure offers the advantage of a simpler construc-
tion method because there are fewer states to split. In some cases, it also suggests ways to
find codes with reduced complexity (see [AFKM86]|, [Heeg91] for examples).

CHAPTER 6. OTHER CODE CONSTRUCTION METHODS 179

6.4.3 Method of poles

Our next alternative method is the method of poles, due to Béal [Béal90a], [Béal93a],
[Béal90b]. This method is a modification of the method of principal states, developed by
Franaszek [Fra69]. A related method was used in [HorM76] to obtain the first practical rate
2 : 3 finite-state encoder for the (1,7)-RLL constraint.

In this method, we assume that cap(S) > logn, although it does work sometimes even
when cap(S) = logn (see [AB94]). Again, we begin with an ordinary lossless presentation G
of S. Given a positive integer M, we find a subset P of V', called principal states, and, for
each u € P, a collection I'(u) of paths in G satisfying the following four conditions:

(PS-1) each path in I'(u) starts at u;
(PS-2) each path terminates in some element of P;
(PS-8) each path has length at most M,

(PS-4) the reverse Kraft inequality holds at every state u € P, namely,

Z n) > 1.
el (u)

Note that, in contrast to variable-length state splitting, paths in I'(u) are allowed to
visit states of P in their interior (i.e., not just at the beginning or end). In Section 4.4
we presented a special case of this definition, where each I'(u) consisted of paths of length
exactly ¢ = M.

Assuming cap(S) > logn, for sufficiently large M, such a set of principal states always
exists [Béal90a]. There are algorithms which give short-cuts to an exhaustive search for sets
of principal states [Fra69], [Béal90a].

A generalized tagged (S,n)-encoder with sliding-block decoder can be found using the
lists I'(u) as follows. We first extract a subset I'(u) C I'(u) such that the following condition
holds:

(PS'4 ’) z'yEI"(u) n_e(’Y) =1

This can always be done [Béal90a]. We now define a VLG presentation G = (V, E, L) of
a subset of S = S(G) as follows. For each principal state u € P, we endow G with a state
u, called a pole state, and for each path v € I'(u) in G terminating in a state v € P, we
endow G with an edge ¥ = @ — ¥ of length £(7y). The edge 7 in G is labeled with the word
generated by the corresponding path v in G.

CHAPTER 6. OTHER CODE CONSTRUCTION METHODS 180

Clearly, S(G) C S(G) = S, and it is not hard to see that since G is lossless, so is G.
Moreover, the VLG G is n-codable. So, as described in Section 6.4.1, we can endow G with
an input tagging to obtain a generalized tagged (S, n)-encoder.

Now, the presentation G need not be definite even if G' has finite memory. However,
Béal [Béal90a] showed that if G does have finite memory and the lists I'(u) satisfy an
optimization condition (condition (PS-5) below), then G will be definite. Namely, she showed
that if G has finite memory and P C Vg is a set of states such that for each u € P, the
list [(u) satisfies conditions (PS-1)—(PS-3), (PS-4’), and (PS-5), then G is definite, and so
any tagging of the resulting (S, n)-encoder will be sliding-block decodable. The additional
condition (PS-5) is as follows:

(PS-5) for each state u € P, the list I'(u) minimizes the sum >, ¢, £(7), among all
possible lists satisfying conditions (PS-1)-(PS-3) and (PS-4’).

We note that Béal [Béal93b] has found other optimality conditions that can replace
condition (PS-5) for guaranteeing sliding-block decodability.

6.5 Look-ahead encoders

Next, we discuss some methods, due to Franaszek [Fra79], [Fra82], [Fra89], which predate
the state-splitting approach, but involve some very closely related ideas. In our description,
we adopt the viewpoint of Hollmann [Holl95], whose terminology is somewhat different from
that of Franaszek.

We begin with look-ahead encoding, a variation of ordinary finite-state coding. At each
state u of the encoder, the allowable input tag sequences are not arbitrary; namely, there
is a list of n-ary words W (u), all of the same length K, such that an input tag sequence
labeling a path from u is allowable if and only if its K-prefix belongs to W (u). So, when we
encode an input tag (an input symbol), we do so with the commitment to encode thereafter
only a certain specified collection of input tag sequences. The encoded input tag and the
next encoder state are dictated by the upcoming sequence of input tags, subject to the
requirement that each edge in the encoder graph is associated with exactly one input tag.

In order to describe look-ahead encoding precisely, we will make use of the following
notation: for sets U and V of (finite) words, we denote by UV the set of all concatenations
uv such that v € U and v € V. We will use the notation B,, for the n-ary set {0,1,...,n—1}.

A look-ahead encoder (or more precisely, a K-tag look-ahead encoder with input alphabet
B,,) for a lossless graph G = (V, E, L) is defined by an input tagging L; : E — B, of the
edges of G and subsets W (u) of (B,)¥X for each state u € V such that the following two
conditions hold:

CHAPTER 6. OTHER CODE CONSTRUCTION METHODS 181

(LA-1) for at least one state u € V' we have W (u) # 0;

(LA-2) for each u € V we have

W (1) B, C Usen, Li(e)W (1a(e)) -

Now, we can transform a look-ahead encoder into a generalized tagged (S(G), n)-encoder
(and therefore an ordinary tagged (S(G),n)-encoder) as follows. For each state u € V,
s € W(u), and b € B, use condition (LA-2) above to choose a particular outgoing edge
e = e(u,sb) from u in G such that sb = as', a = L;(e), and s' € W(7g(e)). Now, construct
a new graph & = (V', E', L/ L},) with two labelings—input labeling L’ and output labeling
L,—as follows. The states of £ are all pairs [u, s|, where u € V and s € W (u). We draw an

edge [u, s] N [u',s'] (with L’-labeling a and L{,-labeling c¢) if and only if the following three
conditions hold:

(a) sb = as’, where a is the first B,-symbol in s and b is the last B,-symbol in s'.
(b) v' = 1¢(e(u, sb)).
(¢) ¢ = L(e(u, sb)).

It can be shown that & is a generalized tagged (S, n)-encoder (Problem 6.5). Moreover,
if G has finite anticipation (resp., has finite memory), then £ has finite anticipation (resp.,
is sliding-block decodable). In particular, if G has finite memory M, then £ is sliding-block
decodable with decoding window length < M+1: any word of length M+1 in S(G) uniquely
determines an edge e of G and the decoded input tag in £ is then L’ (e). So, if G has memory
zero, then the decoding window length is 1 (note that this does not mean that the encoder
is block decodable, i.e., (0,0)-sliding-block decodable).

A very special case of the main result in [AM95] is that for any K-tag look-ahead encoder
for a labeled graph G, there is an equivalent encoder (in the sense that the encoding function
is the same modulo a shift) obtained from G by at most K rounds of out-splitting. Now, if
G has memory M, then the upper bound in Section 5.5.2 given for the smallest decoding
window length of a sliding-block decoder is M+K+1. However, as mentioned above, such an
encoder is sliding-block decodable with window length at most M+1. So, here is an instance
where the bound on the decoding window length given by the state-splitting algorithm is
much larger than the actual decoding window length.

Lempel and Cohn [LemCo82] proposed a generalization of the look-ahead encoding
method. Their method differs from look-ahead encoding in several respects. First, at each
state, the set of input words is allowed to have variable lengths (this is not really an essential
difference, and this possibility was already considered by Franaszek [Fra80a]). Second, the
outgoing edge dictated by an input tag is allowed to depend on the sequence of previous
input tags (as well as following input tags). Third, an edge in the encoder graph may be
associated with more than one input tag. While this still gives a well-defined encoder, it

CHAPTER 6. OTHER CODE CONSTRUCTION METHODS 182

may not have finite anticipation, and so decoding can be problematic. Nevertheless, by a
series of examples, Lempel and Cohn showed that this method works very well in many
circumstances.

6.6 Bounded-delay encoders

The bounded-delay method is a generalization of look-ahead encoding. Let G = (V, E, L)
be a labeled graph. The T'th order Moore form of G, denoted G{'}, is the labeled graph
defined as follows. The states of G{"} are the paths of length 7—1 in G, and for each path
eiey...er of length T in G, there is an edge ejey...er 1 — eges...er in GIT} labeled L(er).
The labeled graph G1?} is the ordinary Moore form of G, as was defined in Section 2.2.7.

Let G = (V, E, L) be a lossless presentation of a constrained system S, and let K and T
be positive integers. A bounded-delay encoder (or more precisely, a K-tag, delay-T bounded-
delay encoder with input alphabet By) for a lossless graph G is a K-tag look-ahead encoder
with input alphabet B,, for the Tth order Moore form G{T} of G. Observe that if G has finite
memory M, then such an encoder is sliding-block decodable with decoding window length
M+T+1. We remark that Franaszek [Fra82] originally framed his IP approach (discussed
in Section 6.1) in terms of bounded-delay encoding.

Hollmann [Holl95] has recently developed an approach which combines features of the
bounded-delay method and the state-splitting method. The idea is to first split states suffi-
ciently until one obtains a graph which is amenable to a certain variation of the bounded-
delay method. In many cases, the result of this procedure is a sliding-block decodable encoder
whose decoder has smaller window length than would be expected. Several very nice codes
for specific constraints of practical importance were constructed in [Holl95].

Hollmann’s approach was influenced by earlier work of Immink [Imm92], as well as by
Franaszek’s bounded-delay encoding method. Immink showed that in many situations, while
there may be no block decodable tagged (S, n)-encoder, it may still be possible to construct
a tagged (S, n)-encoder which is (—1, 1)-sliding-block decodable. The decoder produces a
decoded input tag at time ¢, by examining only the output symbol at time i+1; in other
words, it decodes by looking into the future and ignoring the present. What does this
mean in terms of the input tagging of an (S,n)-encoder £7 Well, suppose, for simplicity,
that £ has memory 1 and at each state, the input tags on the incoming edges are all
the same. Then, any output symbol uniquely determines a state v in £ and is decoded
to the input tag which is written on the incoming edges to v. Of course, it is not at all
obvious how to construct such encoders. However, useful heuristics, illustrated by several
examples, were given in [Imm92|, as well as in subsequent papers by Immink [Imm95a] and
Hollmann [Holl94]. In [Holl95], [Holl96], Hollmann develops codes that look ‘further’ into
the future: in his construction, he aims for (—m, a)-sliding-block decodable encoders, where
0 < m < a; that is, the decoder produces a decoded input tag at time ¢ by examining only

CHAPTER 6. OTHER CODE CONSTRUCTION METHODS 183

the output symbols w; mW;itm—1 - .- Wita.

6.7 Transforming a generalized encoder to an ordinary
encoder

Here, we outline how to transform a generalized tagged (S, n)-encoder to an ordinary tagged
(S, n)-encoder.

Let G be a labeled graph with finite anticipation A. We define the induced labeled graph
G' = (V',E', L") of G in the following manner. The states of G' are all pairs [u, s|, where
u € Vg and s is a word of length A that can be generated from u in G. We draw an edge

[u,s] % [«, 8] if and only if the following two conditions hold:
(a) sb = as’, where a is the first symbol in s;

(b) u' is the terminal state of the first (unique) edge u — v/, denoted e(u,sb), in any
path of length A+1 that is labeled by the word sb = as' in G starting at state u.

Kitchens [Kit81] (see also [BKMS85]) showed that whenever G = (V, E, L) is a labeled
graph with finite anticipation, then the corresponding induced labeled graph G’ is determin-
istic and S(G) = S(G') (Problem 6.6).

Now, given a generalized tagged (S, n)-encoder £ = (V, E, L;/Lo), we apply the preced-
ing result to & = (V, E, L;), yielding a deterministic induced tagged graph & = (V', E', L)
(i.e., the labels given by L) are regarded as “input tags”). We form a generalized tagged
(S,n)-encoder &' = (V',E',L}/L,) by endowing £; with an output labeling L, to re-
flect the labeling Lo: namely, the Lj,-label, ¢, of the edge [u,s] e, [/, 8] in & is set
to ¢ = Lo(e(u, sb)).

Clearly, both &£; and &] present the set of all n-ary words through their labelings L; and
L',. Hence, since &} is deterministic, there is an (input-)labeled subgraph £/ = (V" E", L) of
&; with constant out-degree n which still presents the unconstrained system of n-ary words.
Now, by the losslessness of £ = (V, E, Lo) we have that the labeled graph &, = (V', E', L},)
and, therefore, also £ = (V", E", L})), is an (S, n)-encoder. The tagging L’ then converts
it into an (ordinary) tagged (S,n)-encoder £" = (V" E" L}/L})). In this way, we have
transformed the generalized tagged (S, n)-encoder & = (V, E, L;/Lo) to the ordinary tagged
(S,n)-encoder £ (although the encoding mapping is shifted in the process). Moreover, if
Eo has finite anticipation, then the resulting (S, n)-encoder £/, will have finite anticipation,
and if £p has finite memory, then the resulting tagged (S, n)-encoder £” will be sliding-block
decodable. Therefore, the notions of finite anticipation and sliding-block decodability can
be applied to generalized encoders.

The induced labeled graph described above resembles that produced by the determinizing

CHAPTER 6. OTHER CODE CONSTRUCTION METHODS 184

construction of Section 2.2.1. However, it is different: the determinizing construction yields
a labeled graph which is ‘too small’ to allow the definition of a well-defined labeling Ly, that
reflects the labeling Lo.

Problems

Problem 6.1 Show that the graph G, constructed in Section 6.1, is lossless.

Problem 6.2 Show that (V,E,L;/L), as described at the end of Section 6.4.1, is a generalized
tagged (S, n)-encoder (when viewed as an ordinary graph with two labelings—input tagging L; and
output labeling L).

Problem 6.3 Let G = (V, E, L) be a variable-length graph (VLG). Denote by Qg(z) the |V|x |V]|

matrix in the indeterminate z, with entries given by
(Qc(2))up = Zz—e(e) ,
€

where u,v € V and the summation is taken over all edges e in G that originate in u and terminate
in v.

Define the ordinary form of G as the ordinary graph H obtained from G by replacing each edge
e, of length £(e), with a chain of £(e) edges connected through £(e)—1 new states.

1. Show that if G is an ordinary graph (i.e., £(e) = 1 for every e € E), then
Qg(z) = ZﬁlAG ,

where Ag is the adjacency matrix of G.
2. Show that if H is the ordinary form of a VLG G, then p is a nonzero eigenvalue of Ay if and
only if
det(Qa(p) —1) =0.
In particular, the largest real solution of det(Qg(z) —I) = 01is z = A(Ag).

Problem 6.4 A finite set I' of words over an alphabet ¥ is called exhaustive if every word w over
¥ is either a prefix of a word in I or there is a word in I" that is a prefix of w. Denote by £(w) the
length of the word w.

1. Let I" be an exhaustive set of words over an alphabet of size n. Show that

Z n W) > 1.

wel

Hint: Let .« be the largest length of any word in I'; show that

Z nzmaxfz(w) Z nemax .
wel

CHAPTER 6. OTHER CODE CONSTRUCTION METHODS 185

2. Let m1,mo, ..., ms be nonnegative integers that satisfy

t
Zn_mi >1.

=1

Show that there exist integers 41,42, ..., #; such that £; > m; and
t
Zn_zi =1.
i=1

3. A finite set T" of words over am alphabet ¥ is called prefiz-free is no word in I' is a prefix of
any other word in I'. Show that if I' is prefix-free, then

Z ntW) <1,

wel

4. Let £1,4s,...,4; be nonnegative integers that satisfy the equality

t
Zn_z" =1
i=1
Suggest an efficient algorithm for constructing a set I' of ¢ words over an alphabet of size n

such that the following three conditions hold:

(a) T is exhaustive;
(b) T is prefix-free; and —
(c) the ith word in T" has length ;.

Problem 6.5 Let £ be the encoder, based on a lossless graph G, described in Section 6.5.

1. Show that £ is a generalized tagged (S, n)-encoder.

2. Show that if G has finite anticipation (resp., has finite memory), then £ has finite anticipation
(resp., is sliding-block decodable).

Problem 6.6 Let G be a labeled graph with finite anticipation, and let G’ be the induced labeled
graph described in Section 6.7.

1. Show that G’ is deterministic.

2. Show that S(G) = S(G").

