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We construct, using fermionic functional integrals, thermodynamic Green’s functions for
a weakly coupled fermion gas whose Fermi energy lies in a gap. Estimates on the Green’s
functions are obtained that are characteristic of the size of the gap. This prepares the
way for the analysis of single scale renormalization group maps for a system of fermions
at temperature zero without a gap.
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I. Introduction to Part 1

Consider a gas of fermions with prescribed, strictly positive, density, together with
a crystal lattice of magnetic ions in d space dimensions. The fermions interact with
each other through a two-body potential. The lattice provides periodic scalar and
vector background potentials. As well, the ions can oscillate, generating phonons
and then the fermions interact with the phonons.

To start, turn off the fermion—fermion and fermion—phonon interactions. Then
we have a gas of independent fermions, each with Hamiltonian

Hy = ﬁ(iv +A(X))? +UX).

Assume that the vector and scalar potentials A, U are periodic with respect to some
lattice T in R?. Note that it is the magnetic potential, and not just the magnetic
field, that is assumed to be periodic. This forces the magnetic field to have mean
zero. Here, bold face characters are d-component vectors. Because the Hamiltonian
commutes with lattice translations it is possible to simultaneously diagonalize the
Hamiltonian and the generators of lattice translations. Call the eigenvalues and
eigenvectors €, (k) and ¢, k(x) respectively. They obey

H0¢u,k(x) =&y (k)¢u,k(x)

, (L.1)
bvx(x+7) = ek vk (x) Vyel.

The crystal momentum k runs over R? /T'# where
I'*# = {b € R?|(b,~) € 27Z for all v € '}

is the dual lattice to I'. The band index v € N just labels the eigenvalues for
boundary condition k in increasing order. When A = = 0, €, (k) = 5 (k—b, k)2
for some b, € I'*#.

In the grand canonical ensemble, the Hamiltonian H is replaced by H — uN
where N is the number operator and the chemical potential p is used to control
the density of the gas. At very low temperature, which is the physically interesting
domain, only those pairs v,k for which ¢, (k) ~ p are important. To keep things
as simple as possible, we assume that ¢, (k) =~ p only for one value vy of v and we
fix an ultraviolet cutoff so that we consider only those crystal momenta in a region
B for which |e,,(k) — | is smaller than some fixed small constant. We denote
E(k) = &g (k) - M

When the fermion—fermion and fermion—phonon interactions are turned on, the
models at temperature zero are characterized by the Euclidean Green’s functions,
formally defined by

Gon(p1s- -+ qn)(27) 15 (Ep; — Bq;)

= ﬁ P ,J) _ f(HZL:1 "r/);l?i &%)‘74(1/171;) Hk,o dwk,od&k,g
i=1 pi Vqi f eAWY) Hk:7o' dwk,odﬂ;k,g .
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The action
dd+1

A 9) = = [ s (o= B+ V(D). (13)

The interaction V will be specified shortly. We prefer to split A = Q + V where
d+1 . - N
Q=- f (gﬂ—dfl (iko — E(k))v¥rtbr and write

S @9 iy g i
<f(¢7¢)> - f@'A(d)’qL) Hk7g dwk,od'l/;k,o

_ @ 0)e" P dpc (v, §)
J e Ddpc (¥, )
where duc is the Grassmann Gaussian “measure” with covariance

B 1
)= iko — E(k)

C(k

We now take some time to explain (I.2). The fermion fields are vectors

Vi o
Vi = Uk = [Yk1 V]

()
whose components ¥y o, Vk.o, k = (ko,k) € R x B, € {1,]}, are generators of
an infinite dimensional Grassmann algebra over C. That is, the fields anticommute
with each other.

- = =) =)

k,o wpﬂ': - wp;r ’lr/)k,o' :
We have deliberately chosen v to be a row vector and v to be a column vector so
that

ke, 19p,1 %,ﬂbm]
Vi Upr VY, Up,)

In the argument k = (ko, k), the last d components k are to be thought of as a
crystal momentum and the first component kg as the dual variable to a temperature
or imaginary time. Hence the /—1 in iky — E(k). Our ultraviolet cutoff restricts
k to B. In the full model, k is replaced by (v,k) with v summed over N and k
integrated over R?/T#. On the other hand, the ultraviolet cutoff does not restrict
ko at all. It still runs over R. So we could equally well express the model in terms of
a Hamiltonian acting on a Fock space. We find the functional integral notation more
efficient, so we use it. The relationship between the position space field ¥4 (xg, %),
with (zg,x) running over (imaginary) time x space, and the momentum space field
Yr,o is really given, in our single band approximation, by

AL )
Yo (20,%) :/Weﬂk”o%mk(x)%,a-

"Z)k¢p = "Z}k,T¢p,T + &k,ﬂﬁp,l "r/)k&p = [
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We find it convenient to use a conventional Fourier transform, so we work in a
“pseudo” space-time and instead define

dd+1k o o)
%(xo,x):/w R

_ det1E
Yo (x0,X) :/W e~ (km) w ho

where (k,z)_ = —koxo + k- x for k = (ko,k) € R x R%. Under this convention, the
covariance in position space is
Claa') = [ w(a)ile!ydnc (b, )
dd+1k ,
_ &M wka—a') -
= Gy / Sy C(h).

Under suitable conditions on ¢, k(x), it is easy to go from the pseudo space-time
¥(x) to the real one.

For a simple spin independent two-body fermion—fermion interaction, with no
phonon interaction,

v=—z Y /dtdxdyv (x = ¥)vo (t, X) 0o (t, X)0r (1, ¥) U (8, ).
ore{T 1}

The general form of the interaction is

V() =/ Vo1, z2, 23, 4) Y (21)1 (22) ¢ (23) (24)dr1 dradrsday
(RxR2x{T1,]})*

where, for x = (z9,%,0), we write ¥(z) = ¥, (x0,%) and ¥(z) = 1, (x0,%). The
translation invariant function V'(z1,z2,23,24) can implement both the fermion—
fermion and fermion—phonon interactions.

This series of four papers provides part of the construction of an interacting
Fermi liquid at temperature zero® in d = 2 space dimensions.” Before we give the
description of the content of these four papers, we outline the main results of the full
construction. For the detailed hypotheses and results, see [5]. The main assumptions
concerning the interaction are contained in

Hypothesis I.1. The interaction is weak and short range. That is, Vj is sufficiently
near the origin in U, which is a Banach space of fairly short range, spin independent,
translation invariant functions Vy(z1, 22, 23, x4). See [5, Theorem 1.4] for U’s precise
norm.

For some results, we also assume that Vj is “kg-reversal real”

Vo(Rx1, Rxo, Rxs, Rry) = Vo(x1, 22, 23, 24) (I.4)

aFor results at strictly positive temperature see [1-3].
bFor d = 1, the corresponding system is a Luttinger liquid. See [4] and the references therein.
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where R(zo,x,0) = (%9, —X,0) and “bar/unbar exchange invariant”
Vo(—z2, —21, —24, —23) = Vo (21, 22, 23, T4) (L5)

where —(z9,%x,0) = (—x0,—x%,0). If Vj corresponds to a two-body interaction
v(xy — x3) with a real-valued Fourier transform, then V; obeys (I.4) and (1.5).

We prove that perturbation expansions for various objects converge. These
objects depend on both E(k) and Vj and are not smooth in Vy when E(k) is
held fixed. However, we can recover smoothness in Vj by a change of variables.
To do so, we split E(k) = e(k) — de(Vp,k) into two parts and choose de(Vy, k)
to satisfy an implicit renormalization condition. This is called renormalization of
the dispersion relation. Define the proper self energy ¥ (p) for the action A by the
equation

| i [y €A T iy o didy,
(ipo — e(p) — X(p)) " (2m)™16(p — g) = fpeiw,@ dYnodns

The counterterm de(Vp, k) is chosen so that ¥(0, p) vanishes on the Fermi surface
F = {ple(p) = 0}. We take e(k) and Vj, rather than the more natural, E(k) and V;
as input data. The counterterm de will be an output of our main theorem. It will lie
in a suitable Banach space £. While the problem of inverting the map e — E = e—de
is reasonably well understood on a perturbative level [6], our estimates are not yet
good enough to do so nonperturbatively. Our main hypotheses are imposed on e(k).

Hypothesis 1.2. The dispersion relation e(k) is a real-valued, sufficiently smooth,
function. We further assume that

(a) the Fermi curve F' = {k € R?|e(k) = 0} is a simple closed, connected, convex
curve with nowhere vanishing curvature.

(b) Ve(k) does not vanish on F.

(c) For each q € R?, F and —F + q have low degree of tangency. (F is “strongly
asymmetric”.) Here —F + ¢ = {-k + qlk € F'}.

Again, for the details, see [5, Hypothesis 1.12].

It is the strong asymmetry condition, Hypothesis I1.2(c), that makes this class of
models somewhat unusual and permits the system to remain a Fermi liquid when
the interaction is turned on. If A = 0 then, taking the complex conjugate of (I1.1),
we see that ,(—k) = €, (k) so that Hypothesis 1.2(c) is violated for g = 0. Hence the
presence of a nonzero vector potential A is essential. We shall say more about the
role of strong asymmetry later. For now, we just mention one model that violates
these hypotheses, not only for technical reasons but because it exhibits different
physics. It is the Hubbard model at half filling, whose Fermi curve is sketched below.
This Fermi curve is not smooth, violating Hypothesis 1.2(b), has zero curvature
almost everywhere, violating Hypothesis 1.2(a), and is invariant under k — —k so
that F' = —F, violating Hypothesis 1.2(c) with q = 0.
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To give a rigorous definition of (I.2) one must introduce cutoffs and then take the
limit in which the cutoffs are removed. To impose an infrared cutoff in the spatial
directions one could put the system in a finite periodic box R2/LI". To impose an
ultraviolet cutoff in the spatial directions one may put the system on a lattice. By
also imposing infrared and ultraviolet cutoffs in the temporal direction, we could
arrange to start from a finite dimensional Grassmann algebra. We choose not to
do so. We prove that formal renormalized perturbation expansions converge. The
coeflicients in those expansions are well-defined even without a finite volume cutoff.
So we choose to start with o running over all R3. We impose a (permanent) ultra-
violet cutoff through a smooth, compactly supported function U (k). This keeps k
permanently bounded. We impose a (temporary) infrared cutoff through a function
ve(k3 + e(k)?) where v (k) looks like

2 K

When ¢ > 0 and v, (k3 +e(k)?) > 0, |iko—e(k)| is at least of order e. The coefficients
of the perturbation expansion (either renormalized or not) of the cutoff Euclidean
Green’s functions

GQTL;E(xlv 01y - ayTLan) = <H ’lr/)Ui (371)1;7-1 (y1)>

i=1
where

<f>a — ff(wv"r/;)ev(w’w)d,ucs (¢a 1;) with Cg(k; 56) _

J e Ddpc, (v,4)

are well-defined. Our main result is

U(k)ve (kg + e(k)?)
iko — e(k) + de(k)

Theorem [5, Theorem I.4]. Assume that d = 2 and that e(k) fulfils Hypo-
thesis 1.2. There is

o a nontrivial open ball B C U, centered on the origin, and
o an analytic® function V€ B de(V) € &, that vanishes for V =0,

°For an elementary discussion of analytic maps between Banach spaces see, for example, [7,
Appendix A].
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such that:

o foranye >0 andn € N, the formal Taylor series for the Green’s functions Gap.e
converges to an analytic function on B,

o as € — 0, Gap,e converges uniformly, in x1,...,y, and V € B, to a transla-
tion invariant, spin independent, particle number conserving function Ga, that
is analytic in V.

If, in addition, V is ko-reversal real, as in (1.4), then de(k; V') is real for all k.

Theorem [5, Theorem 1.5]. Under the hypotheses of [5, Theorem 1.4] and the
assumption that V € B obeys the symmetries (1.4) and (1.5), the Fourier transform

GQ (k()v k) = /dm0d2x €l<k)x>7 GQ((Oa 07 T)v (.fo, X, T))

= /d;vod2X €l<k’x>7G2((Oa 07 l)u ((E07 X, l))

1
= hen U(k) =1
T et~y When Ul
of the two-point function exists and is continuous, except on the Fermi curve
(precisely, except when ko =0 and e(k) = 0). The momentum distribution function

. dkO k b4
k)y=1 — "7 Gy(ko, k
9 = lig, | Gy <7 Galho k)
is continuous except on the Fermi curve F. If k € F, then lim «_x n(k) and
e(k)>0
lim & n(k) exist and obey
e(k)<0
1
lim nk)— lm nk)=1+0(V)> -.
k—k k—k 2
e(k)<0 e(k)>0

Theorem [5, Theorem 1.7]. Let

. k k
G4(k17k2)k37k4): k1> i]{f
4 3

(spin dropped from mnotation) be the Fourier transform of the four-point function
and

4
. . 1
Gi (K, ko, ks, k) = Ga(ky, ko, ks, k4)£1;[1 Gl

its amputation by the physical propagator. Under the hypotheses of [5, Theorem 1.5],
G4 has a decomposition

. 1 ki + ko ks+Ek
Gi‘(kl,kz,kg,k@:N(kl,kz,kg,k4)+§L( 12 2, 32 4,k2—k1)

1 ks + ko ki+ kg
_iL(T’ 2 ”“2"“3)
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with

N continuous

L(q1,q2,t) continuous except at t =0
limy,—o0 L(q1,q2,t) continuous
lim¢—o L(q1, q2,t) continuous.

o O O O

Think of L as a particle-hole ladder

t
q2+§ - A A~ _y—q2+§
L(q1,q2,t) = , )_ )
q2_§ S \(/ q2_§

We now discuss further the role of the geometric conditions of Hypothesis 1.2 in
blocking the Cooper channel. When you turn on the interaction V', the system itself
effectively replaces V' by more complicated “effective interaction”. The (dominant)
contribution

P—__ — >4

()

Pt ~— T~ —q

to the strength of the effective interaction between two particles of total momentum
t=p1+p2=q +qis

/ e stuff .
[iko — e(k)][i(—ko +to) — e(—k + t)]

Note that

[iko—ek)] =0<=ko=0, ek)=0 — ko=0, keF
[i(—ko +tp) —e(-k+t)] =0<=ko=ty, e(-k+t)=0 < ko=tg, ket—F.
We can transform m locally to ﬁ by a simple change of variables. Thus
m is locally integrable, but is not locally L2. So the strength of the effective
interaction diverges when the total momentum ¢ obeys tg = 0 and F = t — F,
because then the singular locus of m coincides with the singular locus of

i(—k0+to)1—8(—k+t)' This always happens when F' = —F' (for example, when F'is a
circle) and ¢ = 0. Similarly the strength of the effective interaction diverges when
F has a flat piece and t/2 lies in that flat piece, as in the figure on the right below.
On the other hand, when F' is strongly asymmetric, F' and t — F' always

t—F F
F,
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intersect only at isolated points. A “worst” case is illustrated below. There the

antipode, a(k), of k € F, is the unique point of F, different from k, such that the
tangents to F' at k and a(k) are parallel.

k+a(k) - /"\
NS

remains locally

F

k a(k)

For strongly asymmetric Fermi curves, o =TI (= k; s e o o
integrable in k for each fixed t and strength of the effective interaction remains
bounded.

The Green’s functions Gg, are constructed using a multiscale analysis and
renormalization. The multiscale analysis is introduced by choosing a parameter
M > 1 and decomposing momentum space into a family of shells, with the jth
shell consisting of those momenta k obeying |iko — e(k)| &~ 1. Correspondingly,
we write the covariance as a telescoping series C(k) = >-72, CU) (k) where, for
i>1,

CV) = Chpy — Cpr-inr

is the “covariance at scale j”. By construction C'/)(k) vanishes unless /&3 + e (k)2
is of order M7, and ||CY) (k)| p~ ~ M.
We consider, for each j, the cutoff amputated Euclidean Green’s functions

G;:l])\/[ ;- They are related to the previously defined Green’s functions by

G2n;a(x17yla .. ~7xn7yn)

/vl_[dm dyz (HO Ti, T yzvy1)> Ggfg(xlvyla e 7xlnvy;7,)

for n > 2, and
G (2,y) — Ce(,y) = /dx’dy’Ca(x,x’)C (v, 9)GP (2", y)

where ¢ = M™7. The amputated Green’s functions are the coefficients in the
expansion of

_ 1 . _
Gump 61 ) = log o [ P05 D, (0,).

J
7, = / SN due  (1,)

in powers of ¢. That is,
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gamp,j (¢7 ¢)

oo n n
1 -
=> CIE / [T dzidy:Gons s (1, nyn) [ ()b (wi) -
n=1"" i=1 i=1

The generating functionals Gamp,; are controlled using the renormalization group
map

Qs(W)(6,6.,5) = log 5 [ WEHHT g0, )

which is defined for any covariance S. Here, W is a Grassmann function and the
partition function is Z = feW(O7O’C’<)du5 (¢,¢). Qs maps Grassmann functions in
the variables ¢, ¢, 1,1 to Grassmann functions in the same variables. Clearly

Gamp.3(9,0) = Q0,,,(V)(0,0,6,6) (16)

where we view V(1), %) as a function of the four variables ¢, ¢, 1,1 that happens
to be independent of ¢, ¢.

The renormalization group map is discussed in a general setting in great detail
in [8, 9]. It obeys the semigroup property

Q51+S2 = QS1 o QS2 .
Therefore

gamp,j (¢v QT)) = QC(J') (gamp,j—l (¢a &))(Ov 07 ¢7 QE) (17)

where we again view Gamp,j—1(%, 1) as a function of ¢, @, 1,1 that happens to be
independent of ¢, ¢. The limiting Green’s functions are controlled by tracking the
renormalization group flow (1.7).

One of the main inputs from this series of four papers to the proof of the
theorems stated above is a detailed analysis, with bounds, of the map Q). This
is the content of the third paper in this series. In this first paper of the series,
we apply the general results of [8] to simple many fermion systems. We introduce
concrete norms that fulfill the conditions of [8, Sec. II.4] and develop contraction
and integral bounds for them. Then, we apply [8, Theorem II.28] and (I.6) to models
for which the dispersion relation is both infrared and ultraviolet finite (insulators).
For these models, no scale decomposition is necessary.

In the second paper of this series, we introduce scales and apply the results of
Part 1 to integrate out the first few scales. It turns out that for higher scales the
norms introduced in Parts 1 and 2 are inadequate and, in particular, power count
poorly. Using sectors (see [5, Sec. II, Subsec. 8]), we introduce finer norms that,
in dimension two,d power count appropriately. For these sectorized norms, passing
from one scale to the next is not completely trivial. This question is dealt with in

dThis is the only part of the construction that is restricted to d = 2. We believe that the difficulties
preventing the extension to d = 3 are technical rather than physical. Indeed, there has already
been some progress in this direction [10, 11].
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Part 4. Cumulative notation tables are provided at the end of each paper of this
series.

II. Norms

Let A be the Grassmann algebra freely generated by the fields ¢(y), ¢(y) with
y € R x R x {1, |}. The generating functional for the connected Greens functions
is a Grassmann Gaussian integral in the Grassmann algebra with coefficients in A
that is generated by the fields ¥(x), v (x) with z € R x R x {1,]}. We want to
apply the results of [8] to this situation.

To simplify notation we define, for

€ = (z0,%x,0,0) = (z,a) € R x R? x {1, |} x {0,1},

the internal fields
_J () ifa=0
¢(£)_{@/J(x) ifa=1"

Similarly, we define for an external variable n = (yo,y,7,b) = (y,b) € R x R? x
{1,1} x {0, 1}, the source fields

_Joly) ifb=0
¢(n)—{¢(y) T

B=RxR?x{1,]} x {0,1} is called the “base space” parameterizing the fields.
The Grassmann algebra A is the direct sum of the vector spaces A,, generated by
the products ¢(n1) -+ d(nm). Let V' be the vector space generated by (§), & €
B. An antisymmetric function C(£,£’) on B x B defines a covariance on V by
C(£),v(&)) = C(£,&). The Grassmann Gaussian integral with this covariance,
[ - duc (), is a linear functional on the Grassmann algebra A , V with values in A.

We shall define norms on A , V' by specifying norms on the spaces of functions
on B™ x B™, m,n > 0. The rudiments of such norms and simple examples are
discussed in this section. In the next section we recall the results of [8] in the
current concrete situation.

The norms we construct are (d + 1)-dimensional seminorms in the sense of [8,
Definition II1.15]. They measure the spatial decay of the functions, i.e. derivatives
of their Fourier transforms.

Definition II.1 (Multi-indices). (i) A multi-index is an element § = (do, 01,
...,64) € Ng x N&. The length of a multi-index § = (J¢, 1, ...,0q) is |6] = o +
01 + -+ + &4 and its factorial is §! = 6gld1!- - - J4!. For two multi-indices &, we
say that 6 < ¢ if §; < 6] for i = 0,1,...,d. The spatial part of the multi-index
§=(60,01,...,04) is 6 = (61,...,0q4) € Nd. It has length |§] = 51 + -+ + 5a.

(ii) Let 6,6, ..., 6 be multi-indices such that § = §() + ... 4+ §("). Then by

definition
Y 5!
PO (Ol B IO TR [T
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(iii) For a multi-index § and = = (wg,x,0), 2’ = (2§,x',0') € R x R? x {1, |}
set

(& —a')’ = (w0 — 25)* (x1 = x1)" -+~ (xa — x7)° .
If £ = (z,a), ¢ = (2',a') € B we define (¢ —¢")? = (z — 2')°.
(iv) For a function f(&1,...,&,) on B", a multi-index §, and 1 < 4, j < n;

i j set
D if(&r, &) = (& — &) f(6r, ... &)

Lemma II.2 (Leibniz’s rule). Let f(&1,...,6n) be a function on B™ and
f'(&,. .., &n) a function on B™. Set

g(fla oo 7§n+m72) = ‘/Bdnf(gla oo 757171777).]0/(7775717 oo ;€n+m72) .

Let § be a multi-index and 1 <i<n—1, n<j<n+m—2. Then

)
,Dg7jg(§1,---7§n+m—2) = Z ((5’,(5—5/) /Bdn

5<6
s’ 5—5' /
X Di,nf(fla ce 7571717 n)Dl,j—n—&-Qf (777 §TL7 ce a€n+m*2) '
Proof. For eachn e B

E=&)P°=(&—n+m-§))°

> <5/’ 55_ 5/> (& =n"(n—&)".

5'<6

|

Definition I1.3 (Decay operators). Let n be a positive integer. A decay oper-
ator D on the set of functions on B”™ is an operator of the form
W

s 5
D =Dy, v, Dup
with multi-indices 61, ..., 6% and 1 < uj, v; < n, u; # v;. The indices uj,v; are

called variable indices. The total order of derivatives in D is
§(D) = s 4.4 5
In a similar way, we define the action of a decay operator on the set of functions

on (R x RY)™ or on (R x R% x {1, | })".

Definition I1.4. (i) On RyU{oc} = {z € R|z > 0}U{+0o0}, addition and the total
ordering < are defined in the standard way. With the convention that 0 - co = oo,
multiplication is also defined in the standard way.
(ii) Let d > —1. For d > 0, the (d + 1)-dimensional norm domain 9144, is the
set of all formal power series
X= Y X5ttty
5eNo xNg
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in the variables tg,t1,...,t; with coefficients X5 € R4 U {oc}. To shorten nota-
tion, we set 10 = tg"t’ls1 x -tgd. Addition and partial ordering on 441 are defined
componentwise. Multiplication is defined by

(X-X)s= Y XpX/.
B+y=6

The max and min of two elements of 91,41 are again defined componentwise.

The zero-dimensional norm domain 91y is defined to be Ry U {c0}. We also
identify Ry U {oo} with the set of all X € Myqy with X5 = 0 for all 6 # 0 =
(0,...,0).

If a > 0, Xo # 0o and a — X > 0 then (a — X)7! is defined as

1 /X —Xo\"
-X)t= — .
(& ) a—XOZ<a—X0>

n=0

For an element X = deNoxNg X5 1% of Myyq and 0 < j < d the formal derivative
(%X is defined as

9

— X = § 54+ D X0 t?

o (05 + 1) X554,
5Ny xNg

where ¢; is the jth unit vector.

Definition IL.5. Let E be a complex vector space. A (d+1)-dimensional seminorm
on Eisamap |- || : E — MNg41 such that

lex + ezl < lleall +[le2ll,  [[Aell = [A]fle]l
for all e,ej,es € E and A € C.

Example I1.6. For a function f on B™ x B™ we define the (scalar valued) L1—Loo-
norm as

max su d€; ooy én ifm=20
ok s / :H Ei1F (Ers- - 60
£l 00 = e
sup / [T deilfom....omm: €16l i m#0
M-omm €8 S 3T

and the (d + 1)-dimensional L1—Lo, seminorm

1
S 5| aamax DFll e | 0t im0
Hf” = I | D decay operator
L.oo ™ §eNo XN with §(D)=5

Al o if m#0
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Here [[| f|ll; ., stands for the formal power series with constant coefficient [|[f|l;
and all other coefficients zero.

Lemma IL.7. Let f be a function on B™ x B™ and f' a function on B™ x B".
Let 1 <u<n, 1 <v<n'. Define the function g on Brtm’ i grAn’=2 py

g(nla-'-anerm’; 517"'75#7176}1,4»17'"7§n7€n+17"'7€n+l/717§n+u+17'"7§n+n’)
:/dCf(Wlaﬂ?mv 517"'af}t—lvé-afu-i-la"'afn)
B

X f/(nerla <oy NMm4m! 3 §n+17 ce 7§n+ufla C7£n+u+1a ce a€n+n’) .
Ifm=0o0orm =0
gl .00 < WAoo WML

lglleo < [1f 100 1 T100 -

Proof. We first consider the norm || - [, ... In the case m # 0,m’ = 0, for all
My, Nm €8
n+n’
/ I d& 9tmo o mms Goe Gty a2 s
j#{t,:nlw
X &nt1y -0 &ntv—1:Entrt 1y - - -5 Engnt)|

<

/dgldé-’n f(7717777m7 glaagn)

77.,

<osup | [T de PG )

ceB|) i
i

1 T

The case m = 0, m' # 0 is similar. In the case m = m’ = 0, first fix jo €
{1,...,n} \ {p}, and fix §;, € B. As in the case m # 0, m' = 0 one shows that

n+n’

/ H dgj g(gl;---;fu—lag,u—i—la---;€n7§n+17---7§n+u—1;€n+v+17---;€n+n’)
=1

J#jo,mmtv

de; F(Er,. 60 del FUED € LGl E

</j1_IlfJf(51, ’“?32/}1 €€ G €l El)
J#Jjo J#v

<M Mo 1 e -
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If one fixes one of the variables &;, with jo € {n +1,...,n+n'} \ {n + v}, the
argument is similar.

We now consider the norm || - ||1,00- If m # 0 or m’ # 0 this follows from the
first part of this lemma and

lgll1.00 = llgll o0 < NS00 IS M1 00 < 1F1100

So assume that m = m’ = 0. Set

1
o= Y 5Xst*  Ifle= 3 5t

5€N0><Nd 5€N0><Nd

o= > 5%t

6€Np XNd

with X5, X5, Vs € Ry U{oo}. Let D be a decay operator of degree § acting on g.
The variable indices for g lie in the set T U I’, where

I={1,...,u—Lpu+1,....,n}
I'={n+1,....n+v—1,n+v+1,....n+n'}.
We can factor the decay operator D in the form
D = +DD,D;
where all variable indices of Dj lie in I, all variable indices of Dy lie in I’, and
B ps® L ps®

U1,v1 Uk, Vk

with uy,...,ux € I, v1,...,vx € I'. Set h = D1 f and b’ = Dy f’. By Leibniz’s rule

Dg = ﬂ:ﬁAdCh(él, --76#-1;(76#-‘1-17" 7671)

h/(gnJrla oo 7§n+u717 Ca €n+u+17 S a€n+n’)

k
=+ d¢ 2
a(’i)+ﬁ2(7;—5(i) (E( © 6”))/ ( 8 >

for i=1,...,k

X (517" 'af#-hCaf}H-la' .. afn)

k
(4)
X (H ng hl) (€n+17 s a€n+1/71;<7 §n+u+1a cee 7§n+n’) .

i=1
By the first part of this lemma, the L1—L-norm of each integral on the right-hand
side is bounded by
k
| J

=1

um/"/

1,00 1,00
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Therefore, setting 6 = §(D) = 61 + . + §#),

k i
Z H g $5(D1)ga® o™
a® 3@

a4 =sH \i=1
for i=1,...,k

IN

&
I1Pgllly oot

(%)
uu/"/ le

$0(D2)y B+ 450 HDB“ (Daf")
uv,

i=1

1,00 1,00

2 W)

a+6=46 a(1)+ﬁ(">:5( )
aM g a®—q
5(1)+..,+[3(k):5

IA

> X5(D1)+o¢t5(D1)+a Xz/S(Dz)+ﬁt6(D2)+5

5
> (a ﬁ) Xoou) 4ot P X, ot P
a+ﬁ:(§ ’

)
= Z ~ (5(7)1) + a, §(D2) +5>

a+pB=46

X Xy +at’ PV Xf pyy 4 5t P (IL.1)

In the equality, we used the fact that for each pair of multi-indices «, 8 with o438 = ¢
and each k-tuple of multi-indices (5@), 1<i<k, with ), 5 =4

2 f[( o ) (5)
a4 =s® i=1 o, g0 a, 8

aM g =g
B 445 =p

This standard combinatorial identity follows from

> <a65> wy’ = (@ +y) = [+

a+p=

Il
o
& =~
VR
e
S
= T
~—
| —
e
+
Q
z
B
iy
+
@
z

by matching the coefficients of z*yP.
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It follows from (II.1) that

1 s 1 w1,y
gVt’ < ) —Xet FiXht
o/ +p3/=6

and

1 / 1 ,
lolhoe <30 30 Xert” Xt = e 1 e
5§ a/+p'=8 ’

Corollary IL.8. Let f be a function on B™, f' a function on B and Cy,Cs func-
tions on B2. Set

h(§47 cee 757175:17 cee 75:1’) = /d<d§2d€éd§3d£éf(<7627537547 e 7571)

X 02(52765)03(£3a€é) f/(<7§§7£é7§4/15 e 761/1’) .
Then

I1ll1.00 < sup ICa(6, €)1 sup |Calm. )] 1o 17 e

n,n’

Proof. Set

9(627"'76717557"'75;1’) = /dCf(C7§27€37£47"'7€n)f/(<7€é7£g3754/17'"76:1’)'

Let D be a decay operator acting on h. Then

Dh:/d§2d§§d§3dféc2(§2,55)03(53,%)779(527-~wfnaféwwffﬂ)-
Consequently
DR} o < sup|Ca| sup |Cs| [[Dgllly o
and therefore
711,00 < sup|Ca| sup|Cs| [Ig]l1,00 -

The corollary now follows from Lemma I1.7. O

Definition II.9. Let F,,(n) be the space of all functions f(n1,...,9m; &1,---,&n)
on B™ x B" that are antisymmetric in the 7 variables. If f(n1,...,%m; &1,.-.,&n)
is any function on B™ x B", its antisymmetrization in the external variables is

1
Anteth(Tha"'vnm.; 517"'5577«): % Z Sgn(ﬂ-)f(nﬂ'(l)v"'vnﬂ(m); flv"'af’ﬂ)'

TESm

For m,n > 0, the symmetric group S,, acts on Fy,,(n) from the right by

fﬂ(nlv-- <5 hms 61)' 76”) = f(7717-- <5 hms €7r(1)7-- 7§ﬂ(n)) form e S, .
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Definition II.10. A seminorm || - || on F,(n) is called symmetric, if for every
f € Fn(n)and T € 5,

Il =111l
and | f||=0if m=n=0.

For example, the seminorms || - ||1,00 of Example II.6 are symmetric.

ITI. Covariances and the Renormalization Group Map

Definition IIT.1 (Contraction). Let C(£,£’) be any skew symmetric function
on Bx B. Let myn > 0and 1 < i < j < n. For f € F,,(n) the contraction
conc ¢ ¢ F,.(n — 2) is defined as

Cong f(is--vsnms 1sevvs §imty &its oo+, =1, 6415+ -+, 6n)
i—j

— (1 / dcdc’ (¢, ¢)

Xf(nla"'anm; 617"'767;7174-751'4*17'"7€jflaglaé_j+la"'7€n)'

Definition IIL.2 (Contraction Bound). Let | - || be a family of symmetric
seminorms on the spaces Fp,,(n). We say that ¢ € Mg41 is a contraction bound for
the covariance C with respect to this family of seminorms, if for all m,n,m’,n’ > 0
there exist 7 and j with 1 <i <mn, 1 < j <n/ such that

COHC (Antext (f ® fl))‘

1—]

< <IN

for all f € Fp(n), f € Fp(n'). Observe that f® f’ is a function on (B™ x B™) x
(Bml X Bn’) o gmtm’ o grtn’ oo that Antex(f @ f') € Fongme (n+1).

Remark ITI.3. If ¢ is a contraction bound for the covariance C with respect to a
family of symmetric seminorms, then, by symmetry,

Conc (Aatex(7 & )| < 1 1]

1—n+)
forall1<i<n, 1<j<n"andall f € F(n), f' € Fmn(n).

Example II1.4. The L1—Lo-norm introduced in Example I1.6 has max{|C|/1,c0,
lICIl} as a contraction bound for covariance C. Here, |||C/,, is the element of
Mg11 whose constant term is supg o [C(&,€’)| and is the only nonzero term. This is
easily proven by iterated application of Lemma I1.7. See also [8, Example I1.26]. A
more general statement will be formulated and proven in Lemma V.1(iii).

Definition II1.5 (Integral Bound). Let ||-|| be a family of symmetric seminorms
on the spaces Fy,,(n). We say that b € R} is an integral bound for the covariance
C with respect to this family of seminorms, if the following holds:



Single Scale Analysis of Many Fermion Systems — Part 1 967

Let m > 0,1 <n’ <n.For f € F,(n) define f' € F,,(n —n’) by

Py mms &gty 6n)
:/An/ d&y -+ - d&p f(Th,...,Um; fl,--.,fn/,fnl+1,...,fn)

X P(&1) - P(Enr)dpc (V) -
Then

1< (b/2)" [IfIl-
Remark ITI.6. Suppose that there is a constant S such that

\ o) vieuet) < v

for all &,...,&, € B. Then 2§ is an integral bound for C with respect to the
L1—Lo-norm introduced in Example II.6.

Definition IIL.7. (i) We define A4,,[n] as the subspace of the Grassmann algebra
A4V that consists of all elements of the form

Gr(f) =/dm---dnmd§1---d5n Fse oo s €1 )
X ) - D )(EL) - (En)

with a function f on B™ x B™.

(ii) Every element of A,,[n] has a unique representation of the form Gr(f) with a
function f(n1,...,Mm; &1,y ..., &n) € Fin(n) that is antisymmetric in its £ variables.
Therefore a seminorm || - || on F,,,(n) defines a canonical seminorm on A,, [n], which
we denote by the same symbol || - ||.

Remark II1.8. For F' € A,,[n]
|F|| < [|f|l forall f e Fp(n) with Gr(f) =F.

Proof. Let f € Fn(n). Then f' = &3 o sgn(m) f™ is the unique element of
Fm(n) that is antisymmetric in its € variables such that Gr(f’) = Gr(f). Therefore

ler=171< = 3 17 == 3 1Al =171
TESh TESn

since the seminorm is symmetric. O

Definition III.9. Let || - || be a family of symmetric seminorms, and let W(¢, 1)
be a Grassmann function. Write

W = Z Wm,n

m,n>0
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with Wy, n, € Ay [n]. For any constants ¢ € Mgq1, b >0 and o > 1 set

NOW: ¢,b,a) = %c S @b Wil
m,n>0
In practice, the quantities b, ¢ will reflect the “power counting” of W with respect
to the covariance C and the number « is proportional to an inverse power of the
largest allowed modulus of the coupling constant.
In this paper, we will derive bounds on the renormalization group map for
several kinds of seminorms. The main ingredients from [8] are

Theorem II1.10. Let ||-|| be a family of symmetric seminorms and let C' be a cova-
riance on V with contraction bound ¢ and integral bound b. Then the formal Taylor
series Qc(:W:) converges to an analytic map on {W|W even, N(W; ¢,b,8a)e <
%2}. Furthermore, if W(¢, ) is an even Grassmann function such that

a2
N(W; ¢, b, 8a)o < —

then
2 N(W; ¢, b,8ax)?
N Qc(:W:)—=W; ¢,b,a) < — .
(e ) @) a?l— %N(W; ¢, b, 8a)
Here, : - : denotes Wick ordering with respect to the covariance C.

In Sec. V we will use this theorem to discuss the situation of an insulator. More
generally we have:

Theorem IIL.11. Let, for k in a neighborhood of 0, Wy (¢, ) be an even Grass-
mann function and Cy, Dy be antisymmetric functions on Bx B. Assume that o > 1
and

N(Wo; ¢,b,32a)0 < o

and that
1
Co has contraction bound ¢ §b is an integral bound for Cy, Dg
d _ , 1., , d
—C has contraction bound ¢’ =b’ is an integral bound for — D,
ds ", 2 dk 0

and that ¢ < %cg. Set

Wi (0,0) 9.0 = Qe (Wi .00 4D, -
Then

d .~
N_ [ rklk=05 ¢, D,
<dﬁ[w Wil cha)

1 N(Wp; ¢, b, 32a) d
— N | —W
2021 — L N(Wo; ¢,b, 32a) (dn

; ¢, b, 8a)
k=0

Ll NOWieb320?  f1 (B
2021 — LNWy; ¢,b,32a) | 4p b '
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Proof of Theorems II1.10 and III.11. If f(n1,...,7%m; &1, - -, &) is a function
on B™ x B™ we define the corresponding element of A,, ® V&" as

Tens(f) = /Hdedsj FOn, . ms &1, )
i=1 j=1

X o) d(Nm)Y(€1) @ - @ Y(&n) -

Each element of A, ® V®" can be uniquely written in the form Tens(f) with a
function f € F,(n). Therefore a seminorm on F,,(n) defines a seminorm on A, ®
V®" and conversely. Under this correspondence, symmetric seminorms on F,(n) in
the sense of Definition 11.10 correspond to symmetric seminorms on A,, @V ®" in the
sense of [8, Definition II.18], contraction bounds as in Definition I11.2 correspond, by
Remark II1.3, to contraction bounds as in [8, Definition I1.25(i)] and integral bounds
as in Definition IIL.5 correspond to integral bounds as in [8, Definition IT.25(ii)].
Furthermore the norms on the spaces A,,[n] defined in Definition II.7(ii) agrees
with those of [8, Lemma II.22]. Therefore [8, Theorem II1.10] follows directly from
[8, Theorem II.28] and Theorem III.11 follows from [8, Theorem IV.4]. |

IV. Bounds for Covariances

Integral bounds

Definition IV.1. For any covariance C' = C(&, ") we define

1/m
S(C) =suwp_sup <‘ [ve) gm)dme .
mEB

mo &y,

Remark IV.2. (i) By Remark III.6, 2 .S(C) is an integral bound for C with respect
to the L1—Ls.-norms introduced in Example II.6.
(ii) For any two covariances C, C’

S(C+C") < S(C)+ S(C).
Proof of (ii). For &,...,&, € B

/¢ &) Y(Em)dporony (@)

- / (B(E) +8(€0) - (B(Em) + &' (€m)dpc (§)dpc (1)

Multiplying out one sees that

m

W(E) +¢' (&) @Em) + Y E) =D > MpI)
p=0 1C{1,...,m}
|1|:p

with

n==+[[veE [[¥&)-

i€l j¢l
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Therefore

'/wa aHMC%ywﬁ< ‘/ M(p, Ddpc (6)dpic ()

p=0 IC{l
1]=p

<>, > SsEpseymr
p=0 IC{1,....,m}
|I|=p
= (S(C) +s(C)™. O
In this section, we assume that there is a function C'(k) such that for £ = (z,a) =

(x0,%x,0,a), & =(2/,d") = (2, x,0',d') € B

dd+1k ,
S / Gy e a0 @' =

27T)d+1
C(¢) = A1 - , (IV.1)
0 if a=da

(as usual, the case xg = z(, = 0 is defined through the limit o — 2, — 0—) and
derive bounds for S(C) in terms of norms of C'(k).

Proposition IV.3 (Gram’s estimate).

(i)
di+1k
<\ [ Gy 0w
(ii) Let, for each s in a finite set &, x5 (k) be a function on RxRY. Set, fora € {0,1},

Xs(r — 2’ a) = /e(l)mk@w/)XS(mﬂ
| (27)d+1

and
Ys(z,a) = /dd+1m’ Xs(x — 2’ a)(a’,a).

Then for all &,...,&m € B and all s1,...,8, €2

\/ﬁﬁ@»~wmemmmwﬂ<ng/ggﬁTwwmamﬂ

sEX

m/2

Proof. Let H be the Hilbert space H = L?(R x R?) ® C2. For o € {1, ]} define
the element w(o) € C? by
{ (1,0) ifo=1
w(o) = .

(0,1) ifo=]
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For each & = (z,a) = (z0,X,0,a) € B define w(§) € H by

—(k,z)

e .
(2m)@tn/2 VICE) @ if a=0
w =
¢ Y () Quw(o) ifa=1
(2m) @D/ /1O (k)] -
Then
dHg
lw(©)I3, = /W |C(k)| forall¢eB
and

C (&) = (w(&), w(€)n

if &€ = (2,0,0),¢ = (¢/,0',1) € B. Part (i) of the proposition now follows from
[8, Proposition B.1(i)].
(ii) For each & = (z,a) = (x0,%X,0,a) € B and s € ¥ define w’' (&, s) € H by

e—z (k,x) )
(2m)@+D/2 VICH] xs (k) @ (o) if a=0

w'(&,s) = e~ukr) - C(k)

(27T)(d+1)/2 |C(/€)|

xs(k)@w(o) ifa=1
Then
d+1
el = [ G ICEIGP
and
[ 6100 nc(€) = (w(e, o)l )

if £ = (20,%,0,0),& = (z,x',0',1) € B. Part (ii) of the proposition now follows
from [8, Proposition B.1(i)], applied to the generating system of fields ¥(€). O
Lemma IV.4. Let A > 0 and U(k) a function on R%. Assume that

U(k)
Zko —A '

Ck) =

Then
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Proof. Fora=0, o’ =1
C((zo,x,0,a), (z(,x',0',a"))

5 /dko e~tholwozo) - gl

—_ 1(k,x—x")
o ko — A ) (2m)d° Ulk)

’ .
e A@o=20) if 3y > x)

ddk ok, x—x’
- —6010//—d6 <k7 >U(k) . ,
(2m) 0 if xop <z

Let H be the Hilbert space H = L?(R%) ® C2. For o € {1,]} define the element
w(o) € C? as in the proof of Proposition IV.3, and for each ¢ = (z9,%,0,a) € B
define w(&) € H by

z(kx
27Td/2 \/ ®w lf(J,ZO
w =
(5) e—(k.x) U(k) ®w( ) I
_ o —1.
(2m)272 /U (k)
Again
1
2 _ - d
(€)1 = 5 /d K |U(K)| forall € € B.

Furthermore set 7(xo,x,0,a) = Azg. Then for £ = (z¢,%,0,0),&" = (z(,x',0',1)
eB

Ccle.e) = {e—“@—“f’” (€)@ i r(6) > 7€)
0 if 7(€) < 7(¢')
The lemma now follows from [8, Proposition B.1(ii)]. |

Proposition IV.5. Assume that C is of the form

_ Uk — x(k)
Clk) = 1ko — e(k)

with real valued measurable functions U(k), e(k) on R? and x(k) on R x R? such
that 0 < x(k) < U(k) <1 for all k = (ko, k) € R x R%. Then

e di+ig Tk U(k) - x(k)
2 <
S(0)" < 9/ (2m) TE / )it = 6/|ko|§E (2m)T fuko = e(k)|

where E = suPyeguppu le(k)]-

Proof. Write
Uk k) (k) — I .
To—E the—F (ko= e(k)) (ko —B) LK) —x(k)).

C(k) =
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By Remark IV.2, Lemma IV.4 and Proposition IV.3(i)
1 9 ddk dk | x(k)
— <

kg — F
. / i+ e(k) — E
(2m)d+1 | (ko — e(k)) (ko — E)
The first two terms are bounded by
dik A1
/ (2n)d tE / o)+l X(k
The contribution to the third term having |ko| < E is bounded by

/ A1 e(k)— E
ko< (2m)4H1

U - x(/f))‘ .

Uk) - x(/f))‘

(tko — e(k))(tko — E)

@k U(K) — x(k)
S2/ @m)T Joko —e(k)|

The contribution to the third term having |ko| > E is bounded by

/ i1, e(k) — E
kol>E (2)4FL | (2ho — e(k))(tho — E)

dd+1k E
<4 k
— / (27T)d+1 |Zk0 _ E|2U( )

Uk) - x(/f))‘

d?k
=2 [ et
Hence
1 ddk diH1
ES(C)Q < 3/( E/ d+1X
At U(k) — x(k)
“’/ B ko — (] 0

Contraction bounds

We have observed in Example III1.4 that the Li—Loo-norm introduced in
Example I1.6 has max{||C||1,, [|C|l|.} as a contraction bound for covariance C.
For the propagators of the form (IV.1), we estimate these position space quantities
by norms of derivatives of C'(k) in momentum space.

Definition IV.6. (i) For a function f(k) on R x R? and a multi-index & we set
850 651 aéd
oK 0K Ok

D’ f(k) = f(k)
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and

POl = 3 5 (s 1) e e o

§€No xNd

0= X 5 ([ a0 7 01) & s

d€Ny XN‘Di

If B is a measurable subset of R x R¢,

- 1
F0les= 3 5 (D@l o
seNoxNd ~ WEB
- 1 d + k
150 = 3 5 ([ o D 5091) €
SENgxNZ (27)
(ii) For > 0 and X € Mgq1
d
1 u o o\ o
" pd+t +d+1z<6to 8td) ot

Remark IV.7. For functions f(k) and g(k) on B C R x R?

1f®E)g()ll15 < 1f )1 5ll9(k) o 5

by Leibniz’s rule for derivatives. The proof is similar to that of Lemma II.7.

Proposition IV.8. Let d > 1. Assume that there is a function C(k) such that for
6 = (x7 a) = (mo)x7 U? &)7 5/ = ($/7 a/) = (x/07x/7 a-/) a/) e B

d+1 ,
50,0'/ / (dfkedk@_aﬂ >_C(k) Z.f a = O, a =1

, 27T)d+1
0(576): 0 ifa:a/
-C(¢,¢) ifa=1,a =0.
Let § be a multi-index and 0 < p < 1.
ARy vol
i Do < | ——|DC(k)| < ——— DYC(k
O IPLClle < [ Gl Cw € v s IDC()
and
. vol .
[Cll1,00 < const T |C(k)[ly < const d+1T 1C(k)
(2m)

where vol is the volume of the support of C(k) in R x RY and the constant const
depends only on the dimension d.
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(ii) Assume that there is an r-times differentiable real valued function e(k) on RY
such that |e(k)| > p for all k € R? and a real valued, compactly supported,
smooth, non-negative function U(k) on R? such that

_ Uk
Clk) = ko —e(k)

Set

1 n

d d

g1 —/ dk—— g2 —/ dk——.
supp U |€(k)| supp U |6(k)|2

Then there is a constant const such that, for all multi-indices § whose spatial
part |6 <r—d—1,

1 5 const g1 Zf |6| =0
ICloo < const < HIPL2CM 00 < {

MdHS\ 2|5|g2 if |5| >1 ’

The constant const depends only on the dimension d, the degree of differ-
entiability v, the ultraviolet cutoff U(k) and the quantities sup, |DYe(k)|,
YENG, [l <

(iii) Assume that C is of the form

Uk) — x(k)

1ko — e(k)

with real valued functions U(k), e(k) on R? and x(k) on R x R? that fulfill

the following conditions:
The function e(k) is r times differentiable. |1k — e(k)| > p for all
k = (ko, k) in the support of U(k)—x(k). The function U(k) is smooth
and has compact support. The function x(k) is smooth and has compact
support and 0 < x(k) < U(k) < 1 for all k = (ko, k) € R x R%.

C(k) =

There is a constant const such that
ICl| o < const. (Iv.2)

The constant const depends on d, p and the supports of U(k) and x.
Let rg € N. There is a constant const such that, for all multi-indices § whose
spatial part |0| < r —d — 1 and whose temporal part |0o| < 19 — 2,

D1 2Cl, oo < const. (IV.3)

The constant const depends on d, r, ro, p, U(k) and the quantities supy |DVe(k)]
with v € N&, |v| < r and supy, |DPx (k)| with 3 € Ng x Nd, o < ro, |B] <7

Proof. (i) As the Fourier transform of the operator D% is, up to a sign, multipli-
cation by [—i(z — z')]*, we have for £ = (z,0,a) and &' = (2/,0’,d’)

"o’ / Ak !
0= )" IDLC(E€) < [ Gty D7Ch).
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In particular

d+1
D806 < | (d)—dfﬁ C(k)) (Iv.4)

and, for j =0,1,...,d,

d
p 2|y — g T les — 2] 1D ,C(E,€)
=0

d+2 dtk Stete;
<t [ g D) (1V.5,)
where e = (1,1,...,1) and ¢; is the jth unit vector. Taking the geometric mean of
(IV.59), ..., (IV.5q) on the left-hand side and the arithmetic mean on the right-

hand side gives

d
1
pit? H | — | |D(15,2C(§7 &)
i=0

AL Sete;
+1Z/ T |D*ete (k)| (IV.6)

Adding (IV.4) and (IV.6) gives

d
1
(1 2 [ o - |> ID840(6.€)

=0

/( >d+1' DGk

Dividing across and using [

dd+1k e,
Z/ e DO (VL)

d+1

Aty

1
1+Md+2 H;‘i:() Iw'i|1+ a+1

1k
D3 ,C(&, )l o <const<udﬂ1 / W' (k)

S const # we get

I Z / e D Ol >|>

The contents of the bracket on the right-hand side are, up to a factor of 2 57, the
coefficient of t° in T},||C(k)||;.
(ii) Denote by

_ % —ikot U(k)
Clt k) = / o © ko — e(k)

_ U(k)e—e(k)t _X(e(k) > 0) ift>0
B xle(k) <0) i t<0
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the partial Fourier transform of C'(k) in the ko direction. (As usual, the case t =0
is defined through the limit t — 0 —.) Then, for |8| + [&'| < 7,

[(x —x')%| DS ,C (€, &)

< / (;“)‘ DY, DOt — ¢/ k)|

< const/ ddk(| —t |50+|5|+‘5 ‘ + |t ¢ |50) le(k)(t—t")|
supp U

< nt/ d'k (31713 + 19] + |&7))! + (20! jeqoe-rys)
o supp U |e(k)|60+|6|+‘6ll |e(k)|60

1 ,
const 299501 dpe_ - —le(k)(t—t")/3]
< t 2 50./SuppUd k|e(k)|\5\+|5'\e .

In particular, [[|C]||, < const and

1
5 d
X—X |/dt|D C§§)|<const2050/ dki,
b2 supp U |e(k)|\5\+|5 I+1
9 if o] + |6'] = 0
S const 26050! g2 . ’
26050| g1 if |6/ =0
< const—,.
ST i8> 0
w
since g; > go. As in Eqs. (IV.4)—-(IV.7), choosing various &'’s with |6’| =d + 1,

1
1 pd [T oy — af i

/dt/ |D(15)2C(§7f/)| < const 26050!

g1 i [5]=0
g2 . :

Integrating x’ gives the desired bound on H|D(1S,QC|H1,OO'
(iii) Write

C(k) = C1(k) — Ca(k) + C3(k)

with
Ci(k) = zk[j(i{)E
Ca(k) = )
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Call) = e (U9~ x(b)

and define the covariances C; by

derlk. wWk,x—x’
%“/ﬁﬁﬁﬁ<’ -5 (k)
Oj(€7§/) = 0

if a=d
-C;(&,¢) ifa=1,d =0
for j=1,2,3. Fora=0, d =1

ifa=0,a =1

Cl((x(hxv g, CL), ($67X', U/a a/))

ddk ! e*E(WO*‘TE))
= —50',17’ / (27‘(‘)de {k, >U(k) {

0
and, for |8| < r, |do| < 7o,

if zg > )
if 2o < )

1
172Gl

const

E‘SD 50' S const

IN

const

W(SO! S const .

A

D2 2C o
By Remark IV.7

1CB; < I [ ——

V e
< n
g <o <n2_0 —En+1to>

so that, for |dp] <19 —2 and |§| <r—d—1,

1D} 4Calll. < const

D922l oo
by part (i).

< const

We now bound Cs. Let B be the support of U(k) — x(k). On B, |tko — e(k)| >
w>0and |e(k)| < E, so we have, for § = (dp,d) # 0 with [§| < r and dg < ro,
‘Dé e(k) — E E
(tko — e(k))(2ko — E)

1 1
=" ko — B (uko —eFT " Tokg - e<k>|)
< 1 E
const ——= .
- (1ol [oko — E| [1ko — pl
Integrating
l/ ARy D e(k) - FE
8! Jp (2m)dtt
It follows that

(tko — e(k))(tko — E) } < const.

ekk)—E
(tko — e(k))(tko — E)

< const Z Tl + Z 0o td
LB |8|<r |8]>r
[d0| <70 or |do|>70
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and, by Remark IV.7, that

ICs(k)ly < const | > '+ > oot’ [ (1T + Ix(R)lls0) -

|8|<r |8|>r
|80 <T0 or |dg|>7r0

By part (i) of this proposition and the previous bounds on C7 and Cs, this concludes
the proof of part (iii). m|

Corollary IV.9. Under the hypotheses of Proposition IV.8(ii), the (d + 1)-
dimensional norm

9]
t 2
<2 (v 3 (2) 00 5

a jo1>1 827~
|6|<r—d—1
const (1 2 191 5 5
S llzd Z ; " + Z oot
[8|<r—d—1 8| >r—d

Under the hypotheses of Proposition IV .8(iii)

5 5
oo =
[IC]11,00 < const E t° + E oot

[8|<r—d—1 [6|>r—d—1
[d0]<r0—2 or [§g|>ro—2

In the renormalization group analysis we shall add a counterterm de(k) to the
dispersion relation e(k). For such a counterterm, we define the Fourier transform¢®

dk
(2m)

IS

5E(6,€) = 60080 (10 — ) / (=11 () 5 1)
for £ = (z,a) = (x0,%,0,a), { = (2/,a') = (z,x',0’,d') € B.

Definition IV.10. Fix rg and r. Let

¢ = Z t[s + Z OOt(S S md+1 .

[8|<r [8]>r
\50|§r0 or ‘50‘>7‘0

The map ¢o(X) = =% from X € Ngy1 with Xo < 1 to Ngy1 is used to implement
the differentiability properties of various kernels depending on a counterterm whose

norm is bounded by X.

Proposition IV.11. Let
U(k) — x(k)
ko — e(k)

ko — e(k) + de(k) Colk) =

¢A comprehensive set of Fourier transform conventions are formulated in Sec. IX.
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with real valued functions U(k), e(k), de(k) on R? and x(k) on R x R? that fulfill
the following conditions:

The function e(k) is r+d+1 times differentiable. |1ko —e(k)| > pe > 0 for
all k = (ko, k) in the support of U(k) — x(k). The function U(k) is smooth
and has compact support. The function x(k) is smooth and has compact
support and 0 < x(k) < U(k) < 1 for all k = (ko,k) € R x R The
function de(k) obeys

I18€l|1,00 < 2+ oot
540

Then, there is a constant uy > 0 such that if p < p1, the following hold

(i) C is an analytic function of de and

ICll[ < const  |[|C' = Collloo < const[|delll;
and
[C]l1,00 < comst eo([|6€][1,00)  [[C'— Coll1,00 < comst eo(]|0€][1,00)[0€]|1,00 -
(i) Let
_ U(k) — x(k)
Cslk) = ko — e(k) + de(k) + sde’ (k)
Then
10 < const|||6¢’|||
ds ° s=011lco B hee
d . A
—C < const eg(||0€]]1,00) [|0€"|1,00 -
ds s=0111,00

Proof. (i) The first bound follows from (IV.2), by replacing e by e — de.

Select a smooth, compactly supported function U(k) and a smooth compactly
supported function Y(k) such that 0 < x(k) < U(k) < 1 for all k = (ko, k) € RxR?,
U(k) — x(k) is identically 1 on the support of U(k) — x(k) and |1ko — e(k)| > L pe
for all k = (ko, k) in the support of U(k) — x(k). Let

= o0 Ulk) = x(k)
Colk) = ko —e(k)
Then
Ck) = Co(k) _ Co(~k) _ Co(k)~
I 20y B 0 1 ae(l) Go(h)

oo

= Colk) 3" (~de() Co ()"

n=0
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Then, by iterated application of Lemma I1.7 and the second part of Corollary IV.9,
with r replaced by r + d 4+ 1 and rg replaced by rg + 2,

o0

100 > (16¢]1.00 1o

n=0

IC1,00 < [|Co

l,oo)n

oo
< const ¢g Z(const’ co|0€]|1,00)™
n=0
‘o
1 — const’ ¢ol|d€]1,00
If 1 < min{3——,1}, then, by Corollary A.5(i), with A = {6 € Ng41|[d] < 7,
|0o] < 7o}, w=const’, A=1and X = |§é||1,00,

= const

Co

Cl1.00 < const ——— .
H ” s 1 ”56”1)00
Similarly

oo

Loo < [Collroe D (1681100 [1C0]11,00)"

n=1

1€ = Col

oo
< const ¢ Z(const’ col|0€1,00)™
n=1
5 19€]|1,00
1 — const’ ¢o|6¢]|1,00

const

IN

col9é][1,00

const ————"——
1—[|6€][1,00

IN

and

oo

IC — Colllo < liCollse D (Illgel

n=1

Lo NICollly, o)™

o0
< const 3 (const'[|5¢]], )"

n=1

19l o

< const ————
1 — const’'p

< const||\5é\||1,oo'
(i) As
p U(k) — x(k)

5B _ = TR — e+ oepE ¢

the first bound is a consequence of Proposition IV.8(i).
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Let U(k) and x(k) be as in part (i) and set
s Uk) — x(k)

Clh) = o= e(k) + oe(k)
Then
Lom| = —cwmomd
s=0
and
d ~ sl
75 Cs(k) < ICl1,00lIC111,00[10€[|1,00
s=0111,00
< const eo(||6€]|1.00)2[16€[11.00
< const eo(]|6€]|1,00)[16€"||1,00
by Corollary A.5(ii). m|

V. Insulators

An insulator is a many fermion system as described in the introduction, for which
the dispersion relation e(k) does not have a zero on the support of the ultraviolet
cutoff U(k). We may assume that there is a constant g > 0 such that e(k) > p
for all k € R%. We shall show in Theorem V.2 that for a sufficiently small coupling
constant the Green’s functions for the interacting system exist and differ by very
little from the Green’s functions of the noninteracting system in the supremum
norm.

Lemma V.1. Let py,., be a sequence of nonnegative real numbers such that pyy.,, <
Pmin for 0’ < n. Define for f € Fp(n)

1£1l = pmin 1 fl1,00
where || f|l1,00 s the L1—Loo-norm introduced in Example IL.6.

(i) The seminorms || - || are symmetric.

(ii) For a covariance C, let S(C) be the quantity introduced in Definition IV.1.
Then 25(C) is an integral bound for the covariance C with respect to the
family of seminorms || - ||.

(iii) Let C be a covariance. Assume that for all m >0 and n,n’ > 1

Pm;ntn/—2 < PminPon’ -
Let ¢ € Myyq obey
¢ > |0l

Pmtm’sntn'—2
> RO

o for all m,m’,n,n' > 1

PminPm’;n’
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where ¢ is the constant coefficient of the formal power series ¢. Then ¢ is a con-
traction bound for the covariance C' with respect to the family of seminorms || - |.

Proof. Parts (i) and (ii) are trivial. To prove part (iii), let f € F,,(n), f’ € Fpr(n')
and1<i<n, 1<j7<n. Set

9(771a- < NImm/ 5 617-- -7£i—17§i+1a' --7§n;€n+1;- e a€n+j—17£n+j+17" '7§n+ﬂ’)
= /d<dclf(nla coy NMm; 517" '751‘7174-751'4*17" 7671)0({’(/)

X f/(Tlm+17 cooy NIm4m/; €n+17 s a€n+j—1a</a€n+j+17 s ,€n+n/) .

Then
Cong Antexi(f ® f') = Antexryg

i—n+j

and therefore

Cong Antex(f @ f')

1—n+J

<gl-

If mym >1
911,00 < [1F 11,00 lICllog 111100

and consequently

COHC Antext(f [ f/)

i—n+j

< st =2 |Clll o [1f 11,00 111,00

IN

cOpm;anHl,oo Pm’n’ ”f/”l,oo

c AL
If m = 0 or m’ = 0, by iterated application of Lemma II1.7

IN

L T N AL LA
< 100 1€ 00 1 111,00
and again
icf,?fj Antexe (f @ f')|| < [l I O
To formulate the result about insulators, we define for a function f(z1,...,zy),

on (R x R? x {1,|}1)", the L;—L-norm as in Example I1.6 to be

IWMm—ggsw/fH%Uqu .
1#
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Theorem V.2 (Insulators). Let r and ro be natural numbers. Let e(k) be a
dispersion relation on R? that is at least r +d+ 1 times differentiable, and let U (k)
be a compactly supported, smooth ultraviolet cutoff on R?. Assume that there is a
constant 0 < p < % such that

e(k) > p  for all k in the support of U.

— d# — max d o i
0= [, o T {LV/de“”gwmn}

where B = max{1, supycqpp v le(k)[}. Let, for 2 = (z0,%,0), 2’ = (20,%,0") €
R x RY x {1, 1}

Set

Aok N UK)
1 — oo w(ko—a')
o) ’ / (2m)aH° ko — e(k)
and set, for £ = (z,a), & = (2/,a’) € B

C(f, gl) = O(Iv I/)(Sa,()(sa’,l - C(ajla Z‘)5(1,15(1’,0 .

Furthermore let

V() =/ dr1dyrdzadys Vo1, y1, w2, y2 )t (21)0 (y1)1h(22)1 (y2)
(RxR2x{1,1})*

be a two particle interaction with a kernel Vi that is antisymmetric in the variables
1,22 and y1,ys separately. Set
v= sp  uPONDY;

D decay operator
with do<rg, |6|<r

H|1,oo :

Then there exists € > 0 and a constant const such that

@) If Vol 0 < %, the connected amputated Green’s functions G5,* (21, y1,
ey T, Yn) exist in the space of all functions on (R x R x {1, | })2™ with finite
I+l o morms. They are analytic functions of Vp.

(ii) Suppose thatv < %. For all decay operators D with 6o(D) < 1o and |6(D)| <r

amp const™ 9767271 2 .
DG, Il o0 — @Y if n>3

am consi&2 g’yQ
IID(GE™ = Vo)llly 00 < R v*

amp const g’y4 2
[ID(G™ — Kl 00 < o ¢

where

lﬂ%w=4/¢ﬂwvﬂ%%5wmﬂwa
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The constants € and const depend on r, ro, U, and the suprema of the k-
derivatives of the dispersion relation e(k) up to order r + d + 1, but not on
woor V.

Proof. By (1.6), the generating functional for the connected amputated Green’s
functions is

Ggen' (0) = Qc(V)(0,0).
To estimate it, we use the norms ||-|| of Lemma V.1 with p,,,;, = 1. By Lemma V.1(ii)
and Proposition IV.5, there is a constant constg such that b = constgy is an inte-

gral bound for the covariance C' with respect to these norms. By Lemma V.1(iii),
Corollary IV.9 and Proposition IV.8(ii), there is a constant const; such that

4]
e conszllg Z (%) an Z )

H 8l<r

9
u
is bounded below by a nonzero constant. As in Definition I11.9, we set for any

Grassmann function W(¢, 1) and any a>0

is a contraction bound for C' with respect to these norms. Here we used that

NW; ¢,ba) = ¢ Z a" b | Whnll -

m,n>0

In particular
N(V; ¢,b,a) = a*b%c||V)

and
84 a4 2
NV b, 8a)o < consts =22 [V o (V.1)

Observe that

C||V0

|91
const] g 5 5
= G 2 <ﬁ> O ) oot

[6|<r [8|>r

1 v 5 5
X —t° + oot
1 ol E:
|8|<r [8]>r
[60|<ro or [do|>70o

gv L s 5
S consty — —t° + oot
/J'd Z Z

[8|>r
[60]<ro or [do|>70

Write V = :V":¢ . By [8, Proposition A.2(i)],

V' = V+/dxdyK z, ) ()Y (y) + const
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and by [8, Corollary I1.32(i)]
N5 ¢,b,a) < N(V; ¢,b,20) = 16a'b? ¢||Vol|1,00

4, 29Y L 5 )
S const3 Q7Y F Z —t + Z oot
[8|>r
[60|<T0 or &o|>ro

We set a = 2 and € = s;7———. Then

217 consts

2
1
NV ¢,b,16) < gry Z g — 04 g ot?

3]
e [6|<r p [6|>r
|60 <70 or do|>ro
and, by (V.1)
97?

N(V/; C,b, 16)0 < W'H‘/OMLOO .

Therefore, whenever [[Vol; ., < %, V' fulfills the hypotheses of Theorem III.10
and GaP (¥) = Qo (:V":)(0, 1) exists. Part (i) follows.
If, in addition, v < %, then

1 NOV;¢,b16)? 1 (g%, [t
N(Gamp _ /. 9) < = ) Y M < = —
(ggen 1% ) C,b, ) =91 _ N(V/§ C,b, 16) - 2 2€/sz f 12

where

2
(Z |8|<r t6+2 |6]>r Oot’;)
f(t) — [801<7ro or §g|>rg
1_1(2 18] <r t5+2 16> oot‘;)

2 [601<m0 or §g|>rg

S hee Y
[6|<r [8|>r
[60]<ro or §o|>70o

with Fj finite for all |§] <7, |do| < 7. Hence

2
N(GX™P —V': ¢ b,2) < const <972“> 3 Ly S oot
gen s Yy Yy > constg o]

d
e
H 3<r 3>
[60|<7T0 or &o|>ro

with constq = %max 18] <r F6~ As
[6p1<70

N(GemP =V'5 ¢,b,2)

= c<4IIGSmp — K|+ 160 GE™ — Vol + 4(2b)2”2||G3?p|>

n=3
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4 const] g

1,00)
n=3

('lazmp — K100 + 4 const? 72| GF™ = Vol|1,00

o0
3 (eomsto )2 |G

we have
IGE™ — K|1,00 + 4 consty [ GF™ = Voll1,00
o0
2n—2
+ > (consto 1) 2G5 11,00
n=3
4,2
gy L s 5
< ty ———————— —=t oot
< consty Leonsty 22710 Z P + Z
|18|<r |8]>r
[60]<r0 or §o|>7o
The estimates on the amputated Green’s functions follow. O

Remark V.3. (i) In reasonable situations, for example if the gradient of e(k) is
bounded below, the constants v and g in Theorem V.2 are of order one and log i
respectively.

(ii) Using Example A.3, one may prove an analog of Theorem V.2 with the
constants € and const independent of g and

8(d + 1))‘“'5“’)' )

DA, . < const” 6<D>!m“n( ; 2 03

d+1))d+|s<o)| P

am 8
D™ — Vo), oo < const? 5(@)!972( ( -

d+6(D)|
ID(GE™ — Kl oo < const 5(D)gr" (@)

(iii) Roughly speaking, the connected Green’s function are constructed from the
connected amputated Green’s functions by appending propagators C. The details
are given in Sec. VI in Part 2. Using Proposition IV.8(ii), one sees that, under the
hypotheses of Theorem V.2(i), the connected Green’s functions exist in the space
of all functions on (R x R? x {1, |})?" with finite ||| - 1,00 and [ - [Il, norms.

Appendices
A. Calculations in the norm domain

Recall from Definition II.4 that the (d 4 1)-dimensional norm domain Mgy; is the
set of all formal power series
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X= > Xt -tt= > X5t
§€No xNg 5€No xNd

in the variables tg, t1,...,tq with coefficients X5 € Ry U {oo}.

Definition A.1. A nonempty subset A of Ny x N is called saturated if, for every
0 € A and every multi-index 8" with ¢’ < §, the multi-index ¢’ also lies in A. If A
is a finite set, then

N(A) =min{n € Njnd ¢ A for all 0 # ¢ € A}
is finite.

For example, if 7,79 € N then the set {§ € Ng x N¢|dp < 7o, |6] < r} is saturated
and N(A) = max{ro+ 1,7 + 1}.

Lemma A.2. Let A be a saturated set of multi-indices and X,Y € Mgyq.
Furthermore, let f(to,...,tq) and g(to,...,tq) be analytic functions in a neigh-
borhood of the origin in C4t1 such that, for all § € A, the §th Taylor coefficients of
f and g at the origin are real and nonnegative. Assume that g(0) < 1 and that, for
all § € A,

1 (& 8%
Xs < 5 H o0 f(to, ... ta)
=0 7 t():"':td:O
1 %
}/5 < 5 <H 8t61> g(t07 7td)
=0 7" to=-=tq=0
Set Z = 125 and h(t) = L9 Then, for all 6 € A,
d
1 %
Z§ S 5 <H (‘%51) h(t07 7td)
i=0 2 to=--=tq=0
Proof. Trivial. |

Example A.3. Let A be a saturated set and a >0, 0 < \ < % Then

2
Ssen aldltd + 37 oot?
( seA sgA ) <1—62(4(d+1)a)|5| t5+Zoot5.

1- /\(EéeA aldltd + 3750 n 00756) - 35 SEA
Proof. Set
2 > 1
_ 61,6 P _ AT
X =Y a4+ oot f(t)-(Za t) _H(l—ati)Q
sen SZA 5 i=0

d
Y= [ S a 3 oot g(t) = A <;a5t5> - Al}) 1 —1ati '

seA N
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Set
f@) 1 1

T1-g() O -—at) T —at) — A

h(t)

a

By the Cauchy integral formula, with p = 1(1 — d*{/g)

d
1 0%
5 Hﬁ h(to, ... tq)
=09 to=r=tq=0
d
1 dz;
:/ / h(Z)H(&—HQﬁ>
lzo|=p lzal=p =0 Zj] m
< h)
< — sup z
plol |z0|="-=l|za|=p
11 1
= Pl (1 —ap)dtt (1 —ap)ttt — A
< aldl 4 1
== @/ D) 33/1—1/2

< ?(4(d + 1)a)

Lemma A.4. (i) Let X, Y € MNyp1 with Xo+ Yo < 1

N 1
- X1-Y " 1-(X+Y)’

(ii) Let A be a finite saturated set and X,Y € Mqy1 with Xo + Yo < 5. There
s a constant, const depending only on A, such that

1 11 5
7<Con3 U — t .
- (X1Y) -~ TRy T oot € M
S¢A
Proof. (i)
1 1 - 2 &
[ — myn __ my p—m
1-Xx1 Y m;:0X i ;;OmZ:OX '
© P »
<S> (L)xmyrn
p=0m=0
e R —
I—-(X+Y)
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(i) Set X = X — Xg and Y =Y — Yp. Then

1 1 1
frng = e S ~ ~
1-(X+Y) 1-(Xo+Yo)—(X+Y) - (X+Y)
N(A)—1
<2 > @X+2V)"+ ) oot
n=0 SEA
N(A)-1 n
n n - my,sn—m )
=2
Sy )Rnr Yot
n=0 m=0 SEA
N(A)-1 n
< 22]\7 A)—1 Z Zmen m+zoot6
n=0 m=0 S¢A
< 92N@)-1__ 1 sot?
<22N(A) 1 )
< 1_X1_ -i-Zoot a
S¢A

Corollary A.5. Let A be a finite saturated set, pi, A > 0. Set ¢ = Y 5\ A1 4
ZseA oot®. There is a constant, const depending only on A and u, such that the
following hold.

(i) For all X € Myy1 with Xo < min{g;, 1}.

; < const L .

1 peX = 1-X

(ii) Set, for X € May1, ¢(X) = 5= If p+ AXo < 1, then
e(X)

Q(X)2 S const Q(X) m

S const B(X) .

Proof. (i) Decompose X = Xo + X. Then, by Example A.3 and Lemma A 4,

c C
1—peX 1—luX0c—,LLCX
< c 1
t =
< cons 1—ILLX0C1_IMCX
¢ 1
S const

1—¢/21— peX

S const ——= .
1— peX
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Expanding in a geometric series

N(A)—1
¢

7<C0n8 X7L
1—pex = omte HZ:O (e X)

N(A)-1
< const CN(A) 1 + 1% A) Z Xn

S const =

S const ﬁ .
(ii) The first claim follows from the second, by expanding the geometric series.

By Lemma A.4(ii) and part (i),

e(X) _ T—AX _ ¢
T—pe(X) 1—p=%x¢ 1-AX—puc
c 1 c
< const ——————— T — < const —————F — cons X .
St T T AX T A ve(X) a

Remark A.6. The following generalization of Corollary A.5 is proven in the same
way. Let A be a finite saturated set, p, A, A > 0. Set ¢ = > 5.1 PRCNCITLE
> s¢A oot?. There is a constant, const depending only on A and p, such that the
following hold.

(i) For all X € 9441 with Xo < min{ﬁ7 1}.

C C
< const

1—peX — 1-X

(i) Set, for X € Mypq, e(X) = =55 If p+ AXo < 3, then

e(X)

Q(X)Q S const Q(X) m

S const Q(X) .

Lemma A.7. Let A be a finite saturated set and

X =) Xst* + ) oot € Nyy1.
seA S5¢A

Let f(2) be analytic at Xo, with f(™(Xq) > 0 for all n, whose radius of convergence
at Xg is at least r > 0. Let 0 < 0 < XLO Then there ezists a constant C, depending
only on A, B, r and max|._x,|= | f(2)| such that

1

f(X)SOm-
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Proof. Set a =

=% and X = X — Xo. Then

FX) =30 O (Xo) X"

n

< > %f(")(XO)X” +> oot

n<N(A) S¢A
<C Z oz”X”—|—2:oot‘S
n<N(A) SEA
where
F(Xo) F™(Xo)
C = max ———— > max —————.
n<N(A) n!pm n<N(A) nla™
Hence
C
FX) < ——+> oot
l-—aX
¢A
_ C
- 1-— a(X — Xo)
C(1 —BXo)
1- X
C
S1-8x°
Notation
Norms
Norm Characteristics Reference
M1l s no derivatives, external positions, acts on functions Example 11.6
Il 11,00 derivatives, external positions, acts on functions Example 11.6
I oo derivatives, external momenta, acts on functions Definition IV.6
1/ no derivatives, external positions, acts on functions Example I11.4
Iy derivatives, external momenta, acts on functions Definition IV.6
Il 5 derivatives, external momenta, B C R x R? Definition IV.6
-1 5 derivatives, external momenta, B C R x R? Definition IV.6
-1l Pm:,n” : ||1,oo Lemma V.1
N(W; ¢,b,a) R > "Wl Definition IIL.9
) 60, b2 m,n .

m,n>0

Theorem V.2




Single Scale Analysis of Many Fermion Systems — Part 1 993

Other notation

Notation Description Reference
QV(6w) oz [ VT Vs () before (1.6)
1/m
S(C) sup  sup (‘/ Y(&1) - Y(Em)duc (w)D Definition IV.1
m o £1,..., EmeEB
B R x R% x {1, |} x {0,1} viewed as position space beginning of Sec. II
Fm(n) functions on B™ x B, antisymmetric in B arguments  Definition I1.9
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