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I. Introduction

This article is one of a series, starting with [FKTf1], that provides a construction of a
class of two dimensional Fermi liquids. The concept of a Fermi liquid was introduced by
L. D. Landau in [L1, L2, L3] and has become the generally accepted explanation for the
success of the independent electron approximation. The phenomenological implications
of Fermi liquid theory are derived from the structure of the single particle density nk and
Landau’s quasiparticle interaction and forward scattering amplitude. The single particle
density is constructed as a relatively straightforward limit of the one particle Green’s
function. The quasiparticle interaction and forward scattering amplitude, by contrast,
are defined through two different limits of the transfer momentum flowing through the
particle/hole channel of the two particle Green’s function. This subtlety arises because
the two particle Green’s function is bounded but not continuous at transfer momentum
zero.

In [FKTr2] we showed that the leading contributions to the two particle Green’s
function are the, so-called, ladders. In this paper we extract sufficiently detailed infor-
mation about particle/hole ladders to demonstrate the existence of the limits defining the
quasiparticle interaction and forward scattering amplitude. In fact, in our construction
of the full models, we are forced to this level of detail to formulate hypotheses on the
sequence of effective interactions (see [FKTf2, Def. IX.1 and IX.2]) that enable us to
make an inductive construction. In other words, we would not be able to construct any
of the Green’s functions without the present fine analysis of the particle/hole channel.
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The control of the particle hole channel is in some ways the most subtle part of the argu-
ment in the construction of a Fermi liquid in that it results from a cancellation involving
essentially all scales. Roughly speaking, it is like picking up the singularity of a Fourier
series from its partial trigonometric sums.

Philip Anderson [A1, A2] suggested that, because of an instability arising from the
particle/hole channel, two dimensional Fermi gases should exhibit behavior similar to
a one dimensional Luttinger liquid, with the single particle density nk having a vertical
tangent at the Fermi surface rather than a jump discontinuity. In this series of papers, we
show that this is not the case for the class of models considered here.

This summary article contains the definitions and statements of main results of the
full article, which is available at http:///dx.doi.org/10.1007/s00220-004-1038-2. We use
the same numbering here as in the full article.

Formally, the amputated four–point Green’s function, G4((p1,σ1),(p2,σ2),(p3,σ3),(p4,σ4))

with incoming particles of momenta p1, p4 ∈ R × R
d and spins σ1, σ4 ∈ {↑, ↓} and

outgoing particles of momenta p2, p3 and spins σ2, σ3, can be written as a sum of val-
ues of Feynman diagrams with four external legs. The propagator of these diagrams
is C(k) = 1

ık0−e(k)
, where k = (k0, k) ∈ R × R

d and the dispersion relation e(k)

(into which the chemical potential has been absorbed) characterizes the independent
fermion approximation. The interaction of the model determines the diagram vertices,
V ((k1,σ1),(k2,σ2),(k3,σ3),(k4,σ4)), k1 +k4 = k2 +k3. Here, the incoming momenta are k1, k4
and the outgoing momenta are k2, k3.

V
1

2

3

4

1. Ladders in Momentum Space. The most important contributions to this four–point
function are ladders. The contribution of the particle–hole ladder with � + 1 rungs

k1V V k� VV

(p1, σ1)

(p2, σ2)

(p3, σ3)

(p4, σ4)

is

∑

τi,1,τi,2∈{↑,↓}
i=1,··· ,�

∫

dd+1k1
(2π)d+1 · · · dd+1k�

(2π)d+1 V ((p1,σ1),(p2,σ2),(p1+k1,τ1,1),(p2+k1,τ1,2))C(p1+k1)C(p2+k1)

V ((p1+k1,τ1,1),(p2+k1,τ1,2),···) · · · V (··· ,(p1+k�,τ�,1),(p2+k�,τ�,2))

C(p1+k�)C(p2+k�)V ((p1+k�,τ�,1),(p2+k�,τ�,2),(p3,σ3),(p4,σ4)).

The contribution of the particle–particle ladder with � + 1 rungs

(p1, σ1)

(p4, σ4)

(p2, σ2)

(p3, σ3)
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is
∑

τi,1,τi,2∈{↑,↓}
i=1,··· ,�

∫

dd+1ki

(2π)d+1 · · · dd+1k�

(2π)d+1 V ((p1,σ1),(p1+k1,τ1,1),(p4−k1,τ1,2),(p4,σ4))C(p1+k1)C(p4−k1)

V ((p1+k1,τ1,1),··· ,(p4−k1,τ1,2)) · · · V (··· ,(p1+k�,τ�,1),(p4−k�,τ�,2),···)
C(p1+k�)C(p4−k�)V ((p1+k�,τ�,1),(p2,σ2),(p3,σ3),(p4−k�,τ�,2)).

Ladders with two rungs are called bubbles.The values of the bubbles with dispersion rela-

tion e(k) = |k|2
2m

− µ and interaction V ((p1,σ1),(p2,σ2),(p3,σ3),(p4,σ4)) = λ
(

δσ1,σ2δσ3,σ4 −
δσ1,σ3δσ2,σ4

)

are well–known for d = 2, 3 [FHN]. The particle–particle bubble has a
logarithmic singularity [FKST, Prop. II.1b] at transfer momentum p1 + p4 = 0 which
is responsible for the formation of Cooper pairs and the onset of superconductivity. This
singularity persists in models having dispersion relations that are symmetric about the
origin, i.e. e(k) = e(−k). On the other hand, if e(k) is strongly asymmetric in the sense
of Definition I.10 of [FKTf1] then the particle–particle bubble remains continuous and,
in particular, bounded [FKLT1, p. 297].

For the particle–hole bubble with d = 2 and e(k) = |k|2
2m

− µ,

∫

R3

d3k
(2π)3 C(k + p1) C(k + p2)

=
∫

R3

d3k
(2π)3

1
i(k0+t0/2)−e(k+t/2)

1
i(k0−t0/2)−e(k−t/2)

=











− m
2π

+ m
2π |t|2 Re

√

|t|2(|t|2−4k2
F )−4m2t2

0 −4ımt0|t|2 if t0, |t| �= 0 or |t| ≥ 2kF

− m
2π

if t0 = 0 and 0 < |t| ≤ 2kF

0 if t0 �= 0 and t = 0

,

where t = p1 − p2 is the transfer momentum, kF = √
2mµ is the radius of the Fermi

surface and √ is the square root with nonnegative real part and cut along the nega-
tive real axis. See, for example, [FHN (2.22) or FKST, Prop. II.1a]. This is C∞ on
{

t ∈ R × R
2

∣

∣ t0 �= 0 or |t| > 2kF

}

, is Hölder continuous of degree 1 in a neigh-
bourhood of any t with t0 = 0, 0 < |t| < 2kF , and is Hölder continuous of degree
1
2 in a neighbourhood of any t with t0 = 0, |t| = 2kF , but cannot be continuously
extended to t = 0. However its restriction to t0 = 0 does have a C∞ extension at
the point t = 0. The discontinuity at t = 0 persists for general, even strongly asym-
metric, e(k). For this reason, bounds on particle–hole ladders in position space are not
straightforward.

That the restriction of the particle–hole bubble to t0 = 0 does have a C∞ extension
for a large class of smooth dispersion relations may be seen by the following argument,
which was shown to us by Manfred Salmhofer [S]. A generalization of this argument is
used in Prop. III.27 of the full article.

Lemma I.1. Choose a “scale parameter” M > 1 and a function ν ∈ C∞
0

([ 1
M

, 2M
])

that takes values in [0, 1], is identically 1 on
[ 2

M
, M

]

, is monotone on
[ 1

M
, 2

M

]

and
[M, 2M], and obeys

∞
∑

j=0

ν
(

M2jx
)

= 1 (I.1)
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for 0 < x < 1. Set ν
[0,j ]
0 (k0) = ∑j

�=0 ν(M2�k2
0) and let u(k, t) be a bounded C∞

function with compact support in k and bounded derivatives. Let e(k) be a C∞ function
that obeys lim

|k|→∞
e(k) = +∞. Assume that the gradient of e(k) does not vanish on the

Fermi surface F =
{

k ∈ R
d

∣

∣ e(k) = 0
}

. Then

B(t) = lim
j→∞

∫

dk
ν

[0,j ]
0 (k0)u(k, t)

[ik0 − e(k)][ik0 − e(k + t)]

is C∞ for t in a neighbourhood of 0.

Proof. Write

Bj (t) =
∫

dk
ν

[0,j ]
0 (k0)u(k,t)

[ik0−e(k)][ik0−e(k+t)]

=
∫

dk
ν

[0,j ]
0 (k0)u(k,t)
e(k)−e(k+t)

[

1
ik0−e(k)

− 1
ik0−e(k+t)

]

=
∫

dk
ν

[0,j ]
0 (k0)u(k,t)
e(k)−e(k+t)

∫ 1

0
ds d

ds
1

ik0−E(k,t,s)

=
∫

dk

∫ 1

0
ds

ν
[0,j ]
0 (k0)u(k,t)

[ik0−E(k,t,s)]2 ,

where

E(k, t, s) = se(k) + (1 − s)e(k + t).

Make, for each fixed s and k0, the change of variables from k to E and d − 1 variables
θ on F . Denote by J (E, t, θ, s) the Jacobian of this change of variables and set

f (k0, E, θ, t, s) = u
(

(k0, k(E, θ, t, s)), t
)

J (E, θ, t, s).

Because u has compact support in k, f vanishes unless |E| ≤ E , for some finite E . Thus

Bj (t) =
∫ 1

0
ds

∫

dθ

∫

dk0

∫

E

−E

dE
ν

[0,j ]
0 (k0)f (k0,E,θ,t,s)

[ik0−E]2 .

Set

B ′
j (t) =

∫ 1

0
ds

∫

dθ

∫

dk0

∫

E

−E

dE
ν

[0,j ]
0 (k0)f (k0,0,θ,t,s)

[ik0−E]2 .

Since
∣

∣

∣
∂α

t
[ ν

[0,j ]
0 (k0)f (k0,E,θ,t,s)

[ik0−E]2 − ν
[0,j ]
0 (k0)f (k0,0,θ,t,s)

[ik0−E]2

]

∣

∣

∣
≤ constα

|E|
k2

0+E2

is integrable on R × [−E, E], lim
j→∞

Bj (t) − B ′
j (t) exists and is C∞ by the Lebesgue

dominated convergence theorem. So it suffices to consider

B ′
j (t) = −2E

∫ 1

0
ds

∫

dθ

∫

dk0
ν

[0,j ]
0 (k0)f (k0,0,θ,t,s)

k2
0+E2 .
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Since
∣

∣

∣
∂α

t
ν

[0,j ]
0 (k0)f (k0,0,θ,t,s)

k2
0+E2

∣

∣

∣
≤ constα

1
k2

0+E2

is integrable on R, lim
j→∞

B ′
j (t) exists and is C∞ by the Lebesgue dominated convergence

theorem. ��

2. Scales and Sectors. In this paper, we derive position space bounds for general-
ized particle–hole ladders in two space dimensions as they arise in a multiscale anal-
ysis. The main result is Theorem I.20, which is used in [FKTf2], under the name
Theorem D.2, to help construct a Fermi liquid. We assume that the dispersion rela-
tion e(k) is Cre+3 for some re ≥ 6, that its gradient does not vanish on the Fermi curve
F =

{

k ∈ R
2

∣

∣ e(k) = 0
}

and that the Fermi curve is nonempty, connected, compact
and strictly convex (meaning that its curvature does not vanish anywhere). We also fix
the number r0 ≥ 6 of derivatives in k0 that we wish to control.

We introduce scales as in [FKTf1, Def. I.2] and [FKTo2, §VIII]:

Definition I.2. i) For j ≥ 1, the j th scale function on R × R
2 is defined as

ν(j)(k) = ν
(

M2j (k2
0 + e(k)2)

)

,

where ν is the function of (I.1). It may be constructed by choosing a function ϕ ∈
C∞

0

(

(−2, 2)
)

that is identically one on [−1, 1] and setting ν(x) = ϕ(x/M)−ϕ(Mx)

for x > 0 and zero otherwise. By construction, ν(j) is identically one on

{

k = (k0, k) ∈ R × R
2

∣

∣

√

2
M

1
Mj ≤ |ik0 − e(k)| ≤

√
M 1

Mj

}

.

The support of ν(j) is called the j th shell. By construction, it is contained in
{

k ∈ R × R
2

∣

∣

1√
M

1
Mj ≤ |ik0 − e(k)| ≤

√
2M 1

Mj

}

The momentum k is said to be of scale j if k lies in the j th shell.
ii) For j ≥ 1, set

ν(≥j)(k) = ∑

i≥j

ν(i)(k)

for |ik0 −e(k)| > 0 and ν(≥j)(k) = 1 for |ik0 −e(k)| = 0. Equivalently, ν(≥j)(k) =
ϕ
(

M2j−1(k2
0 + e(k)2)

)

. By construction, ν(≥j) is identically 1 on

{

k ∈ R × R
2

∣

∣ |ik0 − e(k)| ≤
√

M 1
Mj

}

.

The support of ν(≥j) is called the j th neighbourhood of the Fermi surface. By con-
struction, it is contained in

{

k ∈ R × R
2

∣

∣ |ik0 − e(k)| ≤
√

2M 1
Mj

}

.

The support of ϕ
(

M2j−2(k2
0 + e(k)2)

)

is called the j th extended neighbourhood. It
is contained in

{

k ∈ R × R
d

∣

∣ |ik0 − e(k)| ≤
√

2M 1
Mj

}

.
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To estimate functions in position space and still make use of conservation of momen-
tum, we use sectorization. See [FKTf1, Example A.1]. The following definition is also
made in [FKTf2, §VI] and [FKTo3, §XII].

Definition I.3 (Sectors and sectorizations).

i) Let I be an interval on the Fermi surface F and j ≥ 1. Then

s =
{

k in the j th neighbourhood
∣

∣ πF (k) ∈ I
}

is called a sector of length |I | at scale j . Here k → πF (k) is a projection on the
Fermi surface. Two different sectors s and s′ are called neighbours if s′ ∩ s �= ∅.

ii) A sectorization of length l at scale j is a set  of sectors of length l at scale j that
obeys
– the set  of sectors covers the Fermi surface
– each sector in  has precisely two neighbours in , one to its left and one to its

right
– if s, s′ ∈  are neighbours then 1

16 l ≤ |s ∩ s′ ∩ F | ≤ 1
8 l.

Observe that there are at most 2 length(F )/l sectors in .

In the renormalization group map of [FKTf1] and [FKTo3], we integrate over fields
whose arguments (x, σ, s) lie in B� × , where B� = (R × R

2) × {↑, ↓} is the set of
all “(positions, spins)”. On the other hand, we are interested in the dependence of the
two and four–point functions on external momenta. To distinguish between the set of all
positions and the set of all momenta, we denote by M = R × R

2, the set of all possible
momenta. The set of all possible positions shall still be denoted R×R

2. Thus the external
variables (k, σ ) lie in B̌� = M × {↑, ↓}. In total, legs of four–legged kernels may lie
in the disjoint union Y

�
 = B̌� ∪· (B� × ) for some sectorization . The four–legged

kernels over Y
�
 that we consider here arise in [FKTf2, §VII] as particle–hole reductions

(as in Definition VII.4 of [FKTf2]) of four–legged kernels on X = B̌∪· (B×), where
B̌ = B̌� × {0, 1} and B = B� × {0, 1} and {0, 1} is the set of creation/annihilation indi-
ces. Particle–hole reduction sets the creation/annihilation index to zero for legs number
one and four and to one for legs number two and three. To simplify the notation in this
paper, we shall eliminate the spin variables so that the legs lie in

Y = M ∪·
(

(R × R
2) × 

)

.

Sometimes a four–legged kernel will have different sectorizations , ′ on its two left
hand legs and on its two right-hand legs. Therefore, we introduce the space

Y
(4)

,′ = Y2
 × Y2

′ .

Since Y is the disjoint union of M and (R×R
2)×, the space Y

(4)

,′ is the disjoint
union

Y
(4)

,′ =
⋃

·
i1,i2,i3,i4∈{0,1}

Yi1, × Yi2, × Yi3,′ × Yi4,′ , (I.2)

where Y0, = M and Y1, = (R × R
2) × . If f is a function on Y

(4)

,′ , we denote

by f
∣

∣

(i1,··· ,i4) its restriction to Yi1, × Yi2, × Yi3,′ × Yi4,′ under the identification
(I.2).



186 J. Feldman, H. Knörrer, E. Trubowitz

Definition I.4 (Translation invariance). Let  and ′ be sectorizations.

i) Let y ∈ Y and t ∈ R × R
2. We set

Tty =
{

k if y = k ∈ M

(x + t, s) if y = (x, s) ∈
(

R × R
2
)

× 
.

ii) Let i1, · · · , i4 ∈ {0, 1}. A function f on Yi1, × Yi2, × Yi3,′ × Yi4,′ is called
translation invariant, if for all t ∈ R × R

2,

f (Tty1, · · · , Tty4) =
(

∏

1≤µ≤4
iµ=0

eı(−1)bµ<yµ,t>−
)

f (y1, · · · , y4),

where

bµ =
{

0 if µ = 1, 4
1 if µ = 2, 3

(I.3)

and < k, x >−= −k0x0 + k1x1 + k2x2. This choice of bµ reflects our image of f

as a particle–hole kernel, with first and fourth, resp. second and third, arguments
being creation, resp. annihilation, arguments.

iii) A function f on Y
(4)

,′ is translation invariant if f
∣

∣

(i1,··· ,i4) is translation invariant
for all i1, · · · , i4 ∈ {0, 1}.

A function f on
(

Y
�


)4
is translation invariant if f (( · ,σ1),( · ,σ2),( · ,σ3),( · ,σ4)) is translation

invariant for all σ1, · · · , σ4 ∈ {↑, ↓}.
Definition I.5 (Fourier transform). Let , ′ be sectorizations. Set Y2, = M × .

i) Let i1, · · · , i4 ∈ {0, 1, 2} and 1 ≤ µ ≤ 4 such that iµ = 1. The Fourier transform of
a function f on Yi1, × Yi2, × Yi3,′ × Yi4,′ with respect to the µth variable is
the function on Yi′1,

× Yi′2,
× Yi′3,′ × Yi′4,′ with

i′ν =
{

iν if ν �= µ

2 if ν = µ

defined by

(�µf )(y1,··· ,yµ−1,(k,s),yµ+1,··· ,y4) =
∫

eı(−1)bµ<k,x>−f (y1,··· ,yµ−1,(x,s),yµ+1,··· ,y4) d3x.

ii) Let i1, · · · , i4 ∈ {0, 1} with iµ = 1 for at least one 1 ≤ µ ≤ 4. The total Fourier
transform f̌ of a translation invariant function f on Yi1, ×Yi2, ×Yi3,′ ×Yi4,′
is defined by

f̌ (y1, y2, y3, y4) (2π)3δ(k1 − k2 − k3 + k4) =
(

∏

1≤µ≤4
iµ=1

�µ f

)

(y1, y2, y3, y4),

where yµ = kµ when iµ = 0 and yµ = (kµ, sµ) when iµ = 1. f̌ is defined on
the set of all (y1, y2, y3, y4) ∈ Y2i1, × Y2i2, × Y2i3,′ × Y2i4,′ for which
k1 − k2 = k3 − k4.
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Definition I.6 (Sectorized functions). Let  and ′ be sectorizations.

i) Let i1, · · · , i4 ∈ {0, 1}. A translation invariant function f on Yi1,×Yi2,×Yi3,′×
Yi4,′ is sectorized if, for each 1 ≤ µ ≤ 4 with iµ = 1, the total Fourier transform
f̌ (y1,··· ,yµ−1,(k,s),yµ+1,··· ,y4) vanishes unless k is in the j th extended neighbourhood
and πF (k) ∈ s.

ii) A translation invariant function f on Y
(4)

,′ is sectorized if f
∣

∣

(i1,··· ,i4) is sectorized
for all i1, · · · , i4 ∈ {0, 1}.

A translation invariant function f on
(

Y
�


)4
is sectorized if f (( · ,σ1),( · ,σ2),( · ,σ3),( · ,σ4))

is sectorized for all σ1, · · · , σ4 ∈ {↑, ↓}.

Remark I.7. If f is a function in the space F̌4, of Definition XIV.6 of [FKTf2] (or Def-
inition XVI.7.iii of [FKTo3]), then its particle–hole reduction is a sectorized function
on

(

Y
�


)4.

3. Particle–Hole Ladders.

Definition I.8. i) A (spin independent) propagator is a translation invariant function
on

(

R×R
2
)2

. If A(x, x′) is a propagator, then its transpose is At (x, x′) = A(x′, x).
ii) A (spin independent) bubble propagator is a translation invariant function on

(

R ×
R

2
)4

. If A and B are propagators, we define the bubble propagator

A ⊗ B(x1, x2, x3, x4) = A(x1, x3)B(x2, x4).

We set

C(A, B) = (A + B) ⊗ (A + B)t − B ⊗ B t

= A ⊗ At + A ⊗ B t + B ⊗ At

=
A

A

+
A

B

+
B

A
iii) Let , ′, ′′ be sectorizations, P be a bubble propagator and F be a function on

Yi1,′′ × Yi2,′′ × (R × R
2)

2
. If K is a function on Y × Y × Y1,′ × Y1,′ ,

we set

(K • P)(y1,y2;x3,x4) = ∑

s′
1,s

′
2∈′

∫

dx′
1dx′

2 K(y1,y2,(x
′
1,s

′
1),(x

′
2,s

′
2)) P (x′

1,x
′
2;x3,x4).

If K is a function on Y1, × Y1, × Yi3,′ × Yi4,′ , we set, when i1, i2, i3, i4 are
not all 0,

(F • K)(y1,y2,y3,y4) = ∑

s1,s2∈

∫

dx1dx2 F(y1,y2;x1,x2)K((x1,s1),(x2,s2),y3,y4)

and when i1, i2, i3, i4 = 0,

(F • K)(k1,k2,k3,k4)(2π)3δ(k1−k2−k3+k4)

= ∑

s1,s2∈

∫

dx1dx2 F(k1,k2;x1,x2)K((x1,s1),(x2,s2),k3,k4).
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Observe that K • P is a function on Y2
 × (R × R

2)2 and F • K is a function on

Y
(4)

,′ . If K ′ is a function on (Y
�
)4 and F ′ is a function on (Y

�
)2 × (B�)2 we set

(K ′ • P)(( · ,σ1),( · ,σ2),( · ,σ3),( · ,σ4)) = K ′(( · ,σ1),( · ,σ2),( · ,σ3),( · ,σ4)) • P

and

(F ′ • K ′)(( · ,σ1),( · ,σ2),( · ,σ3),( · ,σ4))

= ∑

τ1,τ2∈{↑,↓}
F ′(( · ,σ1),( · ,σ2),( · ,τ1),( · ,τ2)) • K ′(( · ,τ1),( · ,τ2),( · ,σ3),( · ,σ4)).

iv) Let � ≥ 1 . Let, for 1 ≤ i ≤ � + 1, (i), 
′(i) be sectorizations and Ki a function

on Y
(4)

(i), 
′(i) . Furthermore, let P1, · · · , P� be bubble propagators. The ladder with

rungs K1, · · · , K�+1 and bubble propagators P1, · · · , P� is defined to be

K1 • P1 • K2 • P2 • · · · • K� • P� • K�+1.

If  is a sectorization and K ′
1, · · · , K ′

�+1 are functions on
(

Y
�


)4
, the ladder with

rungs K ′
1, · · · , K ′

�+1 and bubble propagators P1, · · · , P� is defined to be

K ′
1 • P1 • K ′

2 • P2 • · · · • K ′
� • P� • K ′

�+1.

Remark I.9. We typically use C(A, B) with A being the part, ν(j)(k)C(k), of the prop-
agator, C(k), having momentum in the j th shell and B being the part, ν(≥j+1)(k)C(k),
of the propagator having momentum in the (j + 1)st neighbourhood. The bubble prop-
agator C(A, B) always contains at least one “hard line” A and may or may not contain
one “soft line” B. The latter are created by Wick ordering. See [FKTf1, §II, Subsect. 9].

Remark I.10. If F1, F2 are functions on
(

X

)4 and A, B are propagators over B in the
sense of Definition VII.1.i of [FKTf2], then the particle–hole reduction of F1 •C(A, B)•
F2 (with the C(A, B) of Definition VII.1.i of [FKTf2]) is equal to

−F
ph
1 • C

(

A(( · 1),( · 0)), B(( · 1),( · 0))
)

• F
ph
2

(with the C of Definition I.8) since B((x,σ,0),(x′,σ ′,1)) = −B(( · 1),( · 0))t ((x,σ ),(x′,σ ′)).

4. Norms. In the momentum space variables, we take suprema of the function and its
derivatives. In the position space variables, we will apply the L1–L∞ norm of Defini-
tion I.11, below, to the function and to the function multiplied by various coordinate
differences.

Definition I.11. Let f be a function on
(

R × R
2
)n

. Its L1–L∞ norm is

|||f |||1,∞ = max
1≤j0≤n

sup
xj0 ∈R×R2

∫

∏

j=1,··· ,n
j �=j0

dxj |f (x1, · · · , xn)|.

Multiple derivatives are labeled by a multiindex δ = (δ0, δ1, δ2) ∈ N0 × N
2
0. For such a

multiindex, we set |δ| = δ0+δ1+δ2, δ! = δ0! δ1! δ2! and xδ = x
δ0
0 x

δ1
1 x

δ2
2 for x ∈ R×R

2.
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Definition I.12. Let  be a sectorization and A a function on
(

(R × R
2) × 

)2
. For a

multiindex δ ∈ N0 × N
2
0, we define

|A|δ1, = max
i=1,2

max
si∈

∑

s3−i∈

∣

∣

∣

∣

∣

∣(x − y)δ A
(

(x, s1), (y, s2)
)∣

∣

∣

∣

∣

∣

1,∞.

Variables for four–point functions may be momenta or position/sector pairs. There-
fore we introduce differential–decay operators that differentiate momentum space vari-
ables and multiply position space variables by coordinate differences. We again use the
identification

Y
(4)

,′ =
⋃

·
i1,i2,i3,i4∈{0,1}

Yi1, × Yi2, × Yi3,′ × Yi4,′

of (I.2).

Definition I.13 (Differential–decay operators). Let  and ′ be sectorizations, δ =
(δ0, δ1, δ2) ∈ N0 × N

2
0 a multiindex and µ, µ′ ∈ {1, 2, 3, 4} with µ �= µ′.

i) Let i1, · · · , i4 ∈ {0, 1} and f be a function on Yi1, × Yi2, × Yi3,′ × Yi4,′ .
If iµ = 0, multiplication by the δth power of the position variable dual to kµ (see
Definition I.5) is implemented by

Dδ
µf (· · · , kµ, · · · ) = (−1)δ1+δ2(−1)bµ|δ|ı|δ| ∂δ0

∂k
δ0
µ,0

∂δ1

∂k
δ1
µ,1

∂δ2

∂k
δ2
µ,2

f (· · · , kµ, · · · ).

In general, set

Dδ
µ;µ′f =



















(

Dδ
µ − Dδ

µ′
)

f if iµ = iµ′ = 0
(

Dδ
µ − xδ

µ′
)

f if iµ = 0, iµ′ = 1
(

xδ
µ − Dδ

µ′
)

f if iµ = 1, iµ′ = 0
(

xδ
µ − xδ

µ′
)

f if iµ = iµ′ = 1

.

Here, when iµ = 1, the µth argument of f is (xµ, sµ).

ii) If f is a function on Y
(4)

,′ , then
(

Dδ
µ;µ′f

)∣

∣

(i1,··· ,i4) = Dδ
µ;µ′

(

f
∣

∣

(i1,··· ,i4)
)

for all
i1, · · · , i4 ∈ {0, 1}.

Definition I.14. Let , ′ be sectorizations.

i) Let i1, · · · , i4 ∈ {0, 1} and f be a function on Yi1, × Yi2, × Yi3,′ × Yi4,′ .
For multiindices δl, δc, δr ∈ N0 × N

2
0, we define

|f |(δl,δc,δr)

,′ = max
sν∈
ν=1,2

with iν=1

max
sν∈′
ν=3,4

with iν=1

sup
kν∈M

ν=1,2,3,4
with iν=0

max
µ=1,2
µ′=3,4

∣

∣

∣

∣

∣

∣Dδl
1;2Dδc

µ;µ′D
δr
3;4 f

∣

∣

∣

∣

∣

∣

1,∞.

Here, the νth argument of f is kν when iν = 0 and (xν, sν) when iν = 1. The
||| · |||1,∞ of Definition I.11 is applied to all spatial arguments of Dδl

1;2Dδc
µ;µ′D

δr
3;4 f .

ii) If f is a function on Y
(4)

,′ , we define

|f |(δl,δc,δr)

,′ =
∑

i1,i2,i3,i4∈{0,1}

∣

∣f
∣

∣

(i1,··· ,i4)
∣

∣

(δl,δc,δr)

,′ .
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In this definition, the system (δl, δc, δr) of multiindices indicates, roughly speaking, that
one takes δl derivatives with respect to the momentum flowing between the two left legs,
δr derivatives with respect to the momentum flowing between the two right legs and δc
derivatives with respect to momenta flowing from the left-hand side to the right-hand
side.

In [FKTf1, FKTf2, FKTf3] and [FKTo1, FKTo2, FKTo3, FKTo4], we combine the
norms of all derivatives of a function in a formal power series. We denote by N3 the
set of all formal power series X = ∑

δ∈N0×N2
0

Xδt
δ in the variables t = (t0, t1, t2) with

coefficients Xδ ∈ R+∪{∞}. See DefinitionV.2 of [FKTf2] or Definition II.4 of [FKTo1].
A quantity in N3 characteristic of the power counting for derivatives in scale j is

cj =
∑

δ1+δ2≤re
|δ0 |≤r0

Mj |δ| tδ +
∑

δ1+δ2>re
or |δ0 |>r0

∞ tδ. (I.4)

Definition I.15. Let  be a sectorization.

i) For a function A on
(

(R × R
2) × 

)2
, we define

|A|1, =
∑

δ∈N0×N2
0

1
δ! |A|δ1, tδ.

ii) For a function f on Y4
 = Y

(4)
, , we define

|f | =
∑

δ∈N0×N2
0

1
δ!

(

max
δl+δc+δr=δ

|f |(δl,δc,δr)
,

)

tδ.

iii) For a function f on
(

Y
�


)4
, we define

|f | =
∑

σ1,··· ,σ4∈{↑,↓}
|f (( · ,σ1),( · ,σ2),( · ,σ3),( · ,σ4))| .

The following lemma, whose proof follows immediately from the various definitions
and Lemma D.2.ii of [FKTo3], compares these norms with the norms of Definition VI.6
of [FKTf2].

Lemma I.16. Let  be a sectorization.

(i) Let f be a sectorized, translation invariant function on
(

Y
�


)4
and Vph(f ) its parti-

cle–hole value as in Definition VII.4 of [FKTf2]. Let | · |∼3, be the norm of Definition
XIII.12 of [FKTf3] (or Definition XVI.4 of [FKTo3]). Then there is a constant const,
that depends only on r0 and r , such that

|Vph(f )|∼3, ≤ const |f | +
∑

δ1+δ2>r

or δ0>r0

∞ tδ.

(ii) Let g be a function in the space F̌4, of Definition XIV.6 of [FKTf2] (or Definition
XVI.7.iii of [FKTo3]) and gph its particle–hole reduction as in Definition VII.4 of
[FKTf2]. Then there is a universal const such that

|gph| ≤ const |g|∼3, .
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5. The Propagators. The propagators we use in the multiscale analysis of [FKTf1,
FKTf2, FKTf3] are of the form

C(j)
v (k) = ν(j)(k)

ik0−e(k)−v(k)
C(≥j)

v (k) = ν(≥j)(k)
ik0−e(k)−v(k)

with functions v(k) satisfying |v(k)| ≤ 1
2 |ık0 − e(k)|. Their Fourier transforms are

C(j)
v (x, y) =

∫

d3k
(2π)3 eı<k,x−y>−C(j)

v (k)

C(≥j)
v (x, y) =

∫

d3k
(2π)3 eı<k,x−y>−C(≥j)

v (k),

C(j)
v (y) =

∫

d3k
(2π)3 e−ı<k,y>−C(j)

v (k)

C(≥j)
v (y) =

∫

d3k
(2π)3 e−ı<k,y>−C(≥j)

v (k).

The function v(k) will be the sum of Fourier transforms of sectorized, translation invari-

ant functions p
(

(x, s), (x, s′)
)

on
(

(

R × R
2
)

× 
)2

for various sectorizations . The

Fourier transform of such a function is defined as

p̌(k) =
∑

s,s′∈

∫

d3x eı<k,x>− p((0,s),(x,s′)).

6. Resectorization. We now fix 1
2 < ℵ < 2

3 and set lj = 1
Mℵj . Furthermore, we select,

for each j ≥ 1, a sectorization j of length lj at scale j and a partition of unity
{

χs

∣

∣ s ∈ j

}

of the j th neighbourhood which fulfills Lemma XII.3 of [FKTo3] with
 = j . The Fourier transform of χs is

χ̂s(x) =
∫

e−ı<k,x>− χs(k) d3k
(2π)3 .

Definition I.17 (Resectorization). Let j, j ′, jl, j
′
l , jr, j

′
r ≥ 1.

i) Let p be a sectorized, translation invariant function on
(

(

R × R
2
)

× j

)2
. Then,

for j ′ �= j , the j ′–resectorization of p is

pj ′ ( (x1,s1),(x2,s2)) = ∑

s′
1,s

′
2∈j

∫

dx′
1 dx′

2 χ̂s1(x1−x′
1) p((x′

1,s
′
1),(x

′
2,s

′
2)) χ̂s2(x

′
2−x2).

It is a sectorized, translation invariant function on
(

(

R × R
2
)

× j ′
)2

. If j = j ′,
we set pj ′ = p.

ii) Let i1, · · · , i4 ∈ {0, 1} and f be a function on Yi1,jl
×Yi2,jl ×Yi3,jr ×Yi4,jr

that is sectorized and translation invariant. Then the (j ′
l , j

′
r )–resectorization of f is

the sectorized, translation invariant function on Yi1,j ′
l
×Yi2,j ′

l
×Yi3,j ′

r
×Yi4,j ′

r

defined by

fj ′
l
,j ′

r
( y1,y2,y3,y4)=

∑

s′µ∈jl
µ∈{1,2}∩S

∑

s′µ∈jr
µ∈{3,4}∩S

∫

∏

µ∈S

(

dx′
µ χ̂sµ((−1)bµ (xµ−x′

µ))
)

f ( y′
1,y

′
2,y

′
3,y

′
4),
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where

S =
{

µ
∣

∣ iµ = 1
}

∩



















{1, 2, 3, 4} if j ′
l �= jl, j ′

r �= jr

{1, 2} if j ′
l �= jl, j ′

r = jr

{3, 4} if j ′
l = jl, j ′

r �= jr

∅ if j ′
l = jl, j ′

r = jr

and y′
µ = yµ for µ /∈ S and, for µ ∈ S,

yµ = (xµ, sµ) y′
µ = (x′

µ, s′
µ).

iii) Iff is a sectorized, translation invariant function onY
(4)
jl ,jr

, then
(

fj ′
l
,j ′

r

)∣

∣

(i1,··· ,i4)
=

(

f
∣

∣

(i1,··· ,i4)
)

j ′
l
,j ′

r
for all i1, · · · , i4 ∈ {0, 1}. If j ′

l = j ′
r = j ′, we set fj ′ =

fj ′ ,j ′ .

iv) If f is a sectorized, translation invariant function on
(

Y
�
j

)4
, then

fj ′ (( · ,σ1),( · ,σ2),( · ,σ3),( · ,σ4)) =
(

f (( · ,σ1),( · ,σ2),( · ,σ3),( · ,σ4))
)

j ′

for all σ1, · · · , σ4 ∈ {↑, ↓}.

Remark I.18. Let K and H be sectorized translation invariant functions on Y
(4)
il ,jl

and

Y
(4)
ir ,jr

respectively. Let P be a bubble propagator. If the Fourier transform

∫ 4
∏

µ=1
dxµ

4
∏

µ=1
e−ı(−1)bµ<kµ,xµ>− P(x1, x2, x3, x4)

of P is supported on the max{j ′
l , i

′
r}th neighbourhood, then

[

K • P • H
]

i′l
,j ′

r

= Ki′l
,j ′

l
• P • Hi′r ,j ′

r
.

7. Compound Particle–Hole Ladders. Define, for any set Z and any function K on Z4,
the flipped function

Kf (z1, z2, z3, z4) = −K(z1, z3, z2, z4). (I.5)

Definition I.19. Let �F =
(

F (2), F (3), · · ·
)

be a sequence of sectorized, translation

invariant functions F (i) on
(

Y
�
i

)4
and v(k) a function on M such that |v(k)| ≤ 1

2 |ık0 −
e(k)|. We define, recursively on 0 ≤ j < ∞, the compound particle–hole (or wrong
way) ladders up to scale j , denoted by L(j) = L

(j)
v ( �F) , as

L
(0) = 0,

L
(j+1) = L

(j)
j

+
∞
∑

�=1

(

F + L
(j)
j

+ L
(j) f
j

)

• C
(j) • · · · C(j) •

(

F + L
(j)
j

+ L
(j) f
j

)

,

whereF =∑j
i=2 F

(i)
j

and the�th term has�bubble propagatorsC(j) =C
(

C
(j)
v , C

(≥j+1)
v

)

.

Observe that L(1) = L(2) = 0.
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Theorem I.20. For every ε > 0 there are constants ρ0, const 1 such that the following
holds. Let �F =

(

F (2), F (3), · · ·
)

be a sequence of sectorized, translation invariant spin

independent2 functions F (i) on
(

Y
�
i

)4
and �p =

(

p(2), p(3), · · ·
)

be a sequence of sec-

torized, translation invariant functions p(i) on
(

(

R × R
2
)

× i

)2
. Assume that there is

ρ ≤ ρ0 such that for i ≥ 2,

|F (i)|i
≤ ρ

Mεi ci |p(i)|1,i
≤ ρ li

M i ci p̌(i)(0, k) = 0.

Set v(k) = ∑∞
i=2 p̌(i)(k) . Then for all j ≥ 1,

|L(j+1)
v ( �F)|j

≤ const ρ2 cj .

Remark I.21. Theorem I.20 and Theorem D.2 of [FKTf3] are equivalent. If one replaces
the functions F (i) of Theorem D.2 of [FKTf3] by 24 times their particle–hole reductions,
then, by Corollary D.7 of [FKTf3] and Remark I.10, the concepts of compound ladders
of Definition I.19 and Definition D.1 of [FKTf3] coincide. Hence Theorem I.20 and
Theorem D.2 of [FKTf3] are equivalent by Lemma I.16.

Theorem I.20 is proven in the full article following Corollary II.24. The core of the
proof consists of bounds on two types of ladder fragments, that look like

G(i1) H

G1

G2

H

and are called particle–hole bubbles and double bubbles, and a combinatorial result, Cor-
ollary II.12, that enables one to express general ladders in terms of these fragments. The
most subtle part of the bound, Theorem II.19, on particle–hole bubbles is a generaliza-
tion of Lemma I.1. The bound, Theorem II.20, on double bubbles also exploits “volume
improvement due to overlapping loops”. A simple introduction to this phenomenon is
provided at the beginning of §IV of the full article.

Ladders with external momenta have an infrared limit that behaves much like the
model bubble of Lemma I.1.

Theorem I.22. Under the hypotheses of Theorem I.20, the limit

L(q, q ′, t, σ1, · · · σ4) = lim
j→∞

L
(j)
v ( �F)

∣

∣

i1,i2,i3,i4=0((q+ t
2 ,σ1),(q− t

2 ,σ2),(q
′+ t

2 ,σ3),(q
′− t

2 ,σ4))

exists for transfer momentum t �= 0 and is continuous in (q, q ′, t) for t �= 0. The restric-
tions to t = 0 and to t0 = 0, namely, L(q, q ′, (t0, 0), σ1, · · · σ4) and L(q, q ′, (0, t),
σ1, · · · σ4), have continuous extensions to t = 0.

This theorem is proven in the full article following Lemma II.29.

1 Throughout this paper we use “const” to denote unimportant constants that depend only on the
dispersion relation e(k) and the scale parameter M . In particular, they do not depend on the scale j .

2 “Spin independence” is formally defined in Definition II.6 of the full article.
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