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Abstract. A simple matrix is a (0,1)-matrix with no repeated columns. For a (0,1)-matrix F ,
we define that a (0,1)-matrix A has F as a configuration if there is a submatrix of A which is a
row and column permutation of F (trace is the set system version of a configuration). Let ‖A‖
denote the number of columns of A. We define

forb(m,F ) = max{‖A‖ : A is m-rowed simple matrix and has no configuration F}.
We extend this to a family F = {F1, F2, . . . , Ft} and define

forb(m,F) = max{‖A‖ : A is m-rowed simple matrix and has no configuration F ∈ F}.
We consider products of matrices. Given an m1 × n1 matrix A and an m2 × n2 matrix B,
we define the product A × B as the (m1 + m2) × n1n2 matrix columns consist of all possible
combinations obtained from placing a column of A on top of a column of B. Let Ik denote
the k × k identity matrix, let Ick denote the (0,1)-complement of Ik and let Tk denote the
k × k upper triangular (0,1)-matrix with a 1 in position i, j if and only if i ≤ j. We show
forb(m, {I2× I2, T2× T2}) is Θ(m3/2) while obtaining a linear bound when forbidding all 2-fold
products of all 2 × 2 (0,1)-simple matrices. For two matrices F, P , where P is m-rowed, let
f(F, P ) = maxA{‖A‖ : A is m-rowed submatrix of P with no configuration F}. We establish
f(I2 × I2, Im/2 × Im/2) is Θ(m3/2) whereas f(I2 × T2, Im/2 × Tm/2) and f(T2 × T2, Tm/2 × Tm/2)
are both Θ(m). Additional results are obtained. We use the results on patterns due to Marcus
and Tardos and generalizations due to Klazar and Marcus, Balogh, Bollobás and Morris.
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1. Introduction

The investigations into the extremal problem of the maximum number of edges in an n
vertex graph with no subgraph H originated with Erdős and Stone [11] and Erdős and
Simonovits [10] . There is a large and illustrious literature. There are several ways to
generalize to the hypergraph setting. Typically we consider simple hypergraphs, namely
those with no repeated edges. One can consider a r-uniform hypergaph H and forbid a
given subhypergraph H ′, itself a r-uniform hypergraph. One can consider a r-uniform
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hypergraph H and forbid a given trace. Or one can extend to general hypergraphs and
forbid a given trace. This latter problem in the language of matrices is our focus. We
say a matrix is simple if it is a (0,1)-matrix and there are no repeated columns. Given a
(0,1)-matrix F , we say a matrix A has F as a configuration denoted F ∈ A, if there is a
submatrix of A which is a row and column permutation of F . Let ‖A‖ denote the number
of columns in A. We define

forb(m,F ) = max{‖A‖ : A is m-rowed simple matrix with no configuration F}.
We recall an important conjecture from [5]. Let Ik denote the k × k identity matrix, Ick
denotes the (0,1)-complement of Ik, and Tk denotes the k × k upper triangular matrix
whose ith column has 1’s in rows 1, 2, . . . , i and 0’s in the remaining rows. For p matrices
m1×n1 matrix A1, an m2×n2 matrix A2,. . . , an mp×np matrix Ap we define A1×A2×
· · · ×Ap as the (m1 + · · ·+mp)× n1n2 · · ·np matrix whose columns consist of all possible
combinations obtained from placing a column of A1 on top of a column of A2 on top of a
column of A3 etc. For example the vertex-edge incidence matrix of the complete bipartite
graph Km/2,m/2 is Im/2 × Im/2. Define 1k to be the k × 1 column of 1’s and 0` to be the
`× 1 columns of 0’s. We can define 1k0` to be the (k + `)× 1 column 1k × 0`.

Conjecture 1. [5] Let F be a k × ` matrix with F 6= 1101. Let X(F ) denote the largest
p such that there are choices A1, A2, . . . , Ap ∈ {Im/p, I

c
m/p, Tm/p} so that F /∈ A1 × A2 ×

· · · × Ap, then forb(m,F ) = Θ(mX(F )).

We are assuming p divides m which does not affect asymptotic bounds. We obtain
evidence that supports the conjecture while also indicating some potential difficulties.
We will be considering F that are products of 2-rowed matrices. The following are the
maximal 2-rowed simple submatrices of the matrices I, T, Ic of the conjecture. Let

E1 =

[
0 1 0
0 0 1

]
, E2 =

[
0 1 1
0 0 1

]
, E3 =

[
1 0 1
0 1 1

]
For an m-rowed matrix P , we define

f(F, P ) = max{‖A‖ : A is m-rowed submatrix of P with no configuration F}.

Let Km denote the m×2m simple matrix consisting of all possible different columns. Then
forb(m,F ) = f(F,Km).

Theorem 1. f(E1 × E1, Im/2 × Im/2) is Θ(m3/2).

Theorem 2. f(E1 × E2, Im/2 × Tm/2) ≤ 2m.

Theorem 3. f(E2 × E2, Tm/2 × Tm/2) ≤ 2m.

The bound of Theorem 1 is perhaps unexpected in view of Conjecture 1 but it is not a
counterexample. The remaining three cases (E1×E3 in Im/2×Icm/2 , E2×E3 in Tm/2×Icm/2

and E3 × E3 in Icm/2 × Icm/2) follow by taking appropriate (0,1)-complements. The proof
of Theorem 3 is in Section 3, the proof of Theorem 1 is in Section 4 and the proof of
Theorem 2 is in Section 5. Related results such as f(E1×E2×E2, Im/3× Tm/3× Tm/3) is
Θ(m2) being Θ(m2) (Lemma 6) are proved in Section 3,Section 4,Section 5.

A central idea to many of our proofs is to encode columns of a p-fold product A1 ×
A2 × · · · × Ap as 1’s in a p dimensional (0,1)-array whose ith coordinate is indexed by
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the columns of Ai. In Section 2 we use results about patterns including the fundamental
result of Marcus and Tardos [16]) and generalizations of Klazar and Marcus [14], Balogh,
Bollobás and Morris [8]. We establish some exact bounds for some small cases. We relate
patterns to forbidden configuration results in Section 3. The following basic result is
proven in Section 3.

Proposition 1. Let p, q, r, u, v, w be given positive integers. Define x+ = max{0, x}. The

configuration given by the product F =

u︷ ︸︸ ︷
E1 × · · · × E1×

v︷ ︸︸ ︷
E2 × · · · × E2×

w︷ ︸︸ ︷
E3 × · · · × E3 is

contained in the a-fold product

p︷ ︸︸ ︷
Im/a × · · · × Im/a×

q︷ ︸︸ ︷
Tm/a × · · · × Tm/a×

r︷ ︸︸ ︷
Icm/a × · · · × Icm/a

(where we have set a = p+ q + r) if and only if

2
(
(u− p)+ + (v − q)+ + (w − r)+

)
≤ (p− u)+ + (q − v)+ + (r − w)+.

For example with u = 2, q = 3 and the rest being 0, Proposition 1 yields that E1×E1 /∈
T × T × T and hence forb(m,E1 × E1) is Ω(m3).

We now consider forbidden families of configurations. We have noted (in [3]) that
forb(m, {E1, E2, E3}) = 2. Balogh and Bollobás [7] have the much more general result
that for a given k, there is a constant ck such that forb(m, {Ik, Tk, Ick}) = ck.

Let {E1, E2, E3} × {E1, E2, E3} denote the 6 possible 2-fold products whose terms are
chosen from {E1, E2, E3}. We would like to compute forb(m, {E1, E2, E3}×{E1, E2, E3})
but in the interest of a more tractable proof we consider I2 as a replacement for both
E1 and E3 (Ic2 is the same configuration as I2) and T2 as replacement for E2. We note
forb(m, {I2, T2}) = 2 and the bounds of Theorem 1, Theorem 2 and Theorem 3 apply. In
Section 6 we prove:

Theorem 4. forb(m, {I2 × I2, T2 × T2}) is Θ(m3/2).

I2 × I2 =


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

 , T2 × T2 =


1 1 1 1
0 0 1 1
1 1 1 1
0 1 0 1

 . (1)

We make novel use of our standard decomposition (4) that has been useful studying
forbidden configurations in the past. We also prove the following exact bound in Section 7,
which contrasts with Theorem 4. The following four matrices are all 2×2 simple matrices
(up to row and column permutations). Let

I2 =

[
1 0
0 1

]
T2 =

[
1 1
0 1

]
U2 =

[
0 0
0 1

]
V2 =

[
1 0
1 0

]
.

We note forb(m, {I2, T2, U2, V2}) = 1. Define {I2, T2, U2, V2} × {I2, T2, U2, V2}
= {X × Y : X, Y ∈ {I2, T2, U2, V2}} as the 10 possible products of these matrices.

Theorem 5. We have forb(m, {I2, T2, U2, V2} × {I2, T2, U2, V2}) = m+ 3.

The following definitions are used. Let [n] = {1, 2, . . . , n}. We discuss d-dimensional
(0,1)-arrays B. We define σ1(B) to be the number of 1’s in B. Thinking of the positions
in B as elements of [n]d, we let the coordinates of B be x1, x2, . . . , xd and for a position
y ∈ [n]d we define xi(y) to be the value of coordinate xi in y. Let proji(B) denote the
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[n]d−1 (d − 1)-dimensional (0,1)-array obtained from B by projecting in the direction ei
(where ei is the d-dimensional (0,1)-vector with a single 1 in coordinate xi). For each
position y ∈ [n]d we form yī in [n]d−1 by deleting the ith coordinate of y. If B has a 1
in position z, then we place a 1 in position zī in proji(B). We repeat for all entries of B.
All other entries in proji(B) are 0. For example if B is a 2 × 2 × 2 3-dimensional array
with 1’s in positions (1, 1, 2), (1, 2, 1), (2, 2, 1) and then proj1(B) has two 1’s in positions
(1, 2), (2, 1) while proji2(B) has three 1’s in positions (1, 2), (1, 1), (2, 1).

2. Splits

We are going to consider the maximum number of 1’s in a n1×n2 (0,1)-matrix A subject
to some property. The problems in this section are close relatives of Zarankiewicz’ problem
[15],[12] and indeed the investigations of patterns [13],[16],[17],[14] and have the slightly
geometric flavour of points in space.

For any subset R(1) ⊂ [n1] and R(2) ⊂ [n2] we define A|(R(1),R(2)) as the submatrix
of A formed of the entries contained in the rows R(1) and in the columns R(2). In this
section we will be considering cases where both R(1) and R(2) consist of consecutive
integers. Let p1, p2 be given with 1 ≤ pj ≤ nj for j = 1, 2. Assume we are given I(j) =
{r1(j), r2(j), . . . , rp−1(j)} with 0 < r1(j) < r2(j) < · · · < rpj−1(j) < nj for j = 1, 2. Define
R1(j) = {1, 2, . . . , r1(j)}, Ri(j) = {ri−1(j) + 1, ri−1(j) + 2, . . . , ri(j)} for 1 < i < pj and
Rpj(j) = {rpj−1(j) + 1, rpj−1(j) + 2, . . . , nj}. We observe that ∪pji=1Ri(j) = [nj]. We say
that A has a p1, p2 split if there are choices I(1), I(2) and hence Ri(1) for 1 ≤ i ≤ p1 and
Rj(2) for 1 ≤ j ≤ p2 so that A|(Ri(1),Rj(2)) is a non zero matrix for all choices 1 ≤ i ≤ p1

and 1 ≤ j ≤ p2. Let g(m,n; k, k) denote the maximum number of 1’s in a m × n (0,1)-
matrix that does not have a k, k split. Below is an example of a 3,3 split where a 1 from
each block is indicated

R1(2) R2(2) R3(2)
R1(1)

R2(1)

R3(1)


1

1
1

1 1 1

1
1 1


A 3,3 split

Theorem 6. Marcus and Tardos [16]. Let k be given. Then there exists a constant ck
such that g(n, n; k, k) ≤ ckn.

The result in [16] involving forbidden permutation patterns implies the above result
by choosing the permutation appropriately. Moreover the proof directly extends to the
above result. While the constants involved in [16] are not optimal, we can produce best
possible constants for small values:

Theorem 7. Let m,n be given with m,n ≥ 2. Then g(m,n; 2, 2) = m + n − 1 and
g(m,n; 3, 3) = 2m+ 2n− 4.

Proof: An m × n matrix B with (p1 − 1)m + (p2 − 1)n − (p1 − 1)(p2 − 1) 1’s can be
constructed with 1’s in the first p1 − 1 rows and the first p2 − 1 columns. Then B has no
p1, p2 split.
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The following graph theory argument proves the upper bound for p1 = 2 and p2 = 2.
Consider the bipartite graph on m + n vertices r1, r2, . . . , rm, c1, c2, . . . , cn given by the
matrix A where a 1 in entry i, j joins vertex ri to cj. If σ1(A) ≥ m+n, then the bipartite
graph has a cycle. If we consider the smallest column index c1 of a vertex of the cycle
which joins two vertices r1 < r2, then setting I(1) = {r1} and I(2) = {c1} yield a 2,2 split
of A.

Now consider p1 = p2 = 3. LetA be a givenm×n (0,1)-matrix with σ1(A) > 2m+2n−4.
Now create a new matrix A′ from A by deleting, if possible, the topmost 1 and bottommost
1 in each column and so σ1(A′) ≥ σ1(A) − 2n. Note that we use deleting a 1 to refer to
replacing a 1 by a 0. Now create a new matrix A′′ from A′ by deleting, if possible, the two
remaining rightmost 1’s in each row and so σ1(A′′) ≥ σ1(A′) − (2m − 4) where we note
that A′ has no 1’s in the first or last row. By hypothesis, σ1(A′′) > 0. Say there is a 1 in
A′′ in position r2, c1. By construction there are two entries in A′ to the right of that 1,
say in positions r2, c2 and r2, c3. By construction for each of these three entries there are
1’s above and below in A in columns c1, c2, c3. We now identify a 3, 3 split in A by setting
I(1) = {r2 − 1, r2} and I(2) = {c1, c2}. We conclude that g(m,n; 3, 3) ≤ 2m + 2n − 4.
�

This proof technique was introduced to the authors by Jozsef Solymosi as a curling
technique (the winter sport of curling uses a strategy called ‘peeling’).

The papers [14],[8] consider Theorem 6 generalized to d-dimensional arrays. The follow-
ing is our notation. Given integers n1, n2, . . . , nd we can consider the positions

∏d
i=1[ni]

in an n1 × n2 × · · · × nd (0,1)-array A. Our main interest is in the case n1 = n2 =
· · · = nd. Let p1, p2, . . . , pd ≥ 2 be given. Assume we have d sets of indices I(j) =
{r1(j), r2(j), . . . , rpj−1(j)} for coordinate j, for j = 1, 2, . . . , d. We can form d sets
R1(j), R2(j), . . . , Rpj(j) with ∪pji=1Ri(j) = [ni] as follows:R1(j) = {1, 2, . . . , r1(j)},R2(j) =
{r1(j) + 1, r1(j) + 2, . . . , r2(j)},..., Rpj(j) = {rpj−1(j) + 1, rpj−1(j) + 2, . . . , nj}. We say
A has a p1, p2, . . . , pd split if we can choose the sets as above and for each j ∈ [d] and
for each possible choice t ∈ [pj] with R(j) = Rt(j), the

∏d
i=1 pj block A|(R(1),R(2),...,R(d))

contains at least one 1. Let g(n1, n2, . . . , nd; p1, p2, . . . , pd) be the maximum number of 1’s
in n1 × n2 × · · · × nd (0,1)-array that has no p1, p2, . . . , pd split. The following yields the
asymptotics.

Theorem 8. Klazar and Marcus [14], Balogh, Bollobás and Morris [8]. Let k, d be given.

Then there exists a constant ck,d so that g(
d︷ ︸︸ ︷

n, . . . , n;

d︷ ︸︸ ︷
k, . . . , k) ≤ ck,dn

d−1.

The easy way to have many 1’s in a d-dimensional array and have no p1, p2, . . . , pd split
is to place 1’s in all positions which, for some choice i ∈ [d] has the ith coordinate less
than pi. There will be

∏d
i=1 pi blocks and the block (Rp1(1), Rp2(2), . . . , Rpd(d)) will have

a 1 and its coordinate in the ith direction will be at least pi. In general this is not optimal.

We may extend the argument in Theorem 7 to

d−1︷ ︸︸ ︷
3, 3, . . . , 3, q splits of d-dimensional arrays.

It is surprising that we get exact results here yet do not have a reasonable bound for
g(m,n; 4, 4) but can conjecture g(m,m; 4, 4) = 7m− 13.

Theorem 9. Let B be the
∏d

i=1[mi] (0,1)-array with 1’s in entries whose j coordinate is
1 or 2 for some j = 1, 2, . . . , d−1 or whose dth coordinate is 1, 2, . . . or q−1. The matrix
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B has no

d−1︷ ︸︸ ︷
3, 3, . . . , 3, q split. Let A be any

∏d
i=1[mi] (0,1)-array with no

d−1︷ ︸︸ ︷
3, 3, . . . , 3, q split.

Then σ1(A) ≤ σ1(B), and hence for q = 3, g(m1,m2, . . . ,md;

d−1︷ ︸︸ ︷
3, 3, . . . , 3, q) = σ1(B).

Proof: Let A be any
∏d

i=1[mi] (0,1)-array with no

d−1︷ ︸︸ ︷
3, 3, . . . , 3, q split. For each direction ei

with i = 1, 2, . . . , d−1, delete from A, if possible, the two 1’s with the smallest and largest
coordinate value xi. Finally in the direction ed, delete from A, if possible, the largest q−1
points in each line in the direction ed. Let A′ be the resulting (0,1)-array.

Now if A′ has a 1 in position (y1, y2, . . . , yd) then we note that A has 1’s in positions
(y1, y2, . . . , yd(j)) for j ∈ [q] where yd = yd(1) and yd(1) < yd(2) < · · · < yd(q). It is now
straightforward to show that choosing indices I(1) = {y1 − 1, y1}, I(2) = {y2 − 1, y2},

..., I(d− 1) = {yd−1 − 1, yd} and I(d) = {yd(1), yd(2), . . . , yd(q − 1)} yields a

d−1︷ ︸︸ ︷
3, 3, . . . , 3, q

split. We can show that σ1(B) ≤ σ1(A) − σ1(A′), hence if σ1(A) > σ1(B), then A would
have the desired split. �

3. Submatrices of T × T

We show how to exploit the results about splits in the context of forbidden configurations
but begin with the following elementary argument.

Proof of Proposition 1: We note that any row from Ei contains [0 1] and we define
K2 = [0 1] × [0 1]. None of our 2-rowed product terms I, T, Ic contain K2. Two rows
of F chosen from two different terms of the (u + v + w)-fold product, will necessarily

contain K2. This implies that if F is contained in the a-fold product

p︷ ︸︸ ︷
Im/a × · · · × Im/a

×
q︷ ︸︸ ︷

Tm/a × · · · × Tm/a ×
r︷ ︸︸ ︷

Icm/a × · · · × Icm/a, then each product term Im/a, Tm/a, I
c
m/a has at

most 2 rows of F and if it has two rows then they come from the same 2-rowed product
term Ei of F . Of the three matrices Im/a, T, I

c, we note that we can find E1 only in Im/a,
E2 only in Tm/a and E3 only in Icm/a. �

Proof of Theorem 3 that f(E2 ×E2, Tm/2 × Tm/2) ≤ 2m. Let F = E2 ×E2. Recall the
ith column of Tk is the column with 1’s in rows 1, 2, . . . , i and 0’s in the remaining rows.
Let A be an m-rowed submatrix of Tm/2×Tm/2. We can create an m/2×m/2 (0,1)-matrix
B from A by placing a 1 in position (r, c) if A contains the column obtained from the rth
column of Tm/2 placed on top of the cth column of Tm/2 namely the column with 1’s only
in rows 1, 2, . . . r and m+ 1,m+ 2, . . . ,m+ c. We note that ‖A‖ is σ1(B).

We claim that A has F as a configuration if and only if B has a 3, 3 split. The only
way for a submatrix of Tm/2 × Tm/2 to be a row and column permutation of F is to lie in
rows r1, r2,m/2+c1,m/2+c2 for some choices 2 ≤ r1 < r2 ≤ m/2 and 2 ≤ c1 < c2 ≤ m/2
(using the argument of Proposition 1 for E2×E2 and noting that first row of Tm/2 is 1’s).
We have that any two rows of the upper triangular matrix Tm/2 (not including the first)
have a copy of E2. We note that the t th column of Tm/2 on rows r1, r2 (with r1 < r2) has

r1

r2

t[
0
0

]
for 1 ≤ t < r1, r1

r2

t[
1
0

]
for r1 ≤ t < r2, and r1

r2

t[
1
1

]
for r2 ≤ t. (2)



Forbidden Configurations and Product Constructions 7

Assume A has a copy of F in the 4 rows r1, r2,m/2 + c1,m/2 + c2. We discover that the
nine columns of F would correspond to nine 1’s, one 1 in each of the nine blocks in the
3, 3 split of B given by I(1) = {r1 − 1, r2 − 1} and I(2) = {c1 − 1, c2 − 1} (notation from
Section 2). Similarly a 3, 3 split of B yields a copy of F in A. We now appeal to the bound
in Theorem 7. �

An immediate generalization is the following.

Lemma 1. f(

d︷ ︸︸ ︷
E2 × E2 × · · · × E2,

d︷ ︸︸ ︷
Tm/d × Tm/d × · · · × Tm/d) is Θ(md−1).

Proof: Let A be an m-rowed submatrix of

d︷ ︸︸ ︷
Tm/d × Tm/d × · · · × Tm/d) . We generalize the

proof of Theorem 7 and encode A as an d-dimension (0,1)-array B where we place a 1 in B
in position (a1, a2, . . . , ad) if A has a column consisting of the a1st column of Tm/d on top
of the a2nd column of Tm/d etc on top of the adth column of Tm/d. As before, ‖A‖ = σ1(B).
We verify that A will have the configuration of the d-fold product E2 × E2 × · · · × E2 if

and only if B has a

d︷ ︸︸ ︷
3, 3, . . . , 3 split. We have an exact bound from Theorem 9 if needed.

�

A further generalization considers the matrix E2(k) = [0k |Tk] (the columns of k-rowed
submatrices of Tm).

Lemma 2. We have that

f(

d︷ ︸︸ ︷
E2(k)× E2(k)× · · · × E2(k),

d︷ ︸︸ ︷
Tm/d × Tm/d × · · · × Tm/d)

is equal to
g(m/d,m/d, . . . ,m/d; k + 1, k + 1, . . . , k + 1),

and so is Θ(md−1).

Proof: We use the d-dimensional generalization of splits Klazar,Marcus [14] and Balogh,
Bollabás, Morris [8] where the d-fold product E2(k)×E2(k)×· · ·×E2(k) will correspond

to a

d︷ ︸︸ ︷
k + 1, k + 1, . . . , k + 1 split. �

A rather interesting version of Theorem 3 and Lemma 1 that uses the idea of ‘peeling’
from Theorem 7 is the following.

Lemma 3. Let p ≥ 3. Then f(E2 × E2, Tm/p × Tm/p × · · · × Tm/p) ≤ m
p
· 4p−1.

Proof: Let F = E2×E2. We will show that f(E2×E2, Tm̂×Tm̂×· · ·×Tm̂) ≤ 4p−1m̂. We
consider A as an m̂× m̂ · · ·× m̂) p-dimensional (0,1)-array B as follows. Let x1, x2, . . . , xp
be the p coordinate directions in B. The entries in coordinate direction xi are indexed by
the columns of Tm/p in the given order. We note that ‖A‖ = σ1(B).

We first handle the case p = 3. By Theorem 3, we have that for i = 1, 2, 3, σ1(proji(B))
is at most 4m̂. In fact if σ1(proji(B)) > 4m̂ then we have a 3, 3 split in proji(B) and that
yields F in A where no rows of F come from the ith term Tm̂ of the product and 2 rows of
F come from another Tm̂ of the product and the other 2 rows of F come from remaining
part Tm̂.
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Now proceed to form a matrix B′ from B by deleting from B in turn the top 1 in each
line in the direction x3 and then deleting the bottom 1 in each line in the direction x2

and finally deleting the top two entries in each line in the direction x1. We have

σ1(B) ≤ σ1(B′) + σ1(proj3(B)) + σ1(proj2(B)) + 2σ1(proj1(B)) ≤ σ1(B′) + 4 · 4m̂,

where we are using the size of the projections to upper bound the number of deleted 1’s.
Let y1 be a 1 of B′. Then, by our construction, there are 2 further 1’s of B in positions
y2,y3 with x1(y1) < x1(y2) < x1(y3), x2(y1) = x2(y2) = x2(y3) and x3(y1) = x3(y2) =
x3(y3). For each yj for j = 1, 2, 3, we will have two 1’s in positions y′j,y

′′
j of B where

y′j agrees with yj except in coordinate x2 where x2(y′j) < x2(yj) and y′′j agrees with yj

except in coordinate x3 where x3(yj) < x3(y′′j ). Then these 9 1’s in B correspond to a
copy of F in A as follows. Note that column t of Tm̂ has a 0 in row r if and only if t < r.
We choose two values a = x1(y2) and b = a+1 for coordinate x1 so that when we consider
the columns of A corresponding to y1 (and y′1,y

′′
1 respectively ), y2 (and y′2,y

′′
2 resp.), y3

(and y′3,y
′′
3 resp.) we have

y1 y2 y3

a
a+ 1

[
0
0

] [
1
0

] [
1
1

]
,

y′1 y′2 y′3
a
b

[
0
0

] [
1
0

] [
1
1

]
,

y′′1 y′′2 y′′3
a
b

[
0
0

] [
1
0

] [
1
1

]
.

Note that for each j = 1, 2, 3, we have x2(y′j) < x2(yj) = x2(y′′j ) and x3(y′j) = x3(yj) <
x3(y′′j ). We can choose a value c = x2(y1) for x2 and a value d = x3(y1) + 1 for x3

(independent of j) so that in A, the columns corresponding to yj,y
′
j,y
′′
j have

y′1 y1 y′′1
c+ m̂
d+ 2m̂

[
0
0

] [
1
0

] [
1
1

]
,

y′2 y2 y′′2
c+ m̂
d+ 2m̂

[
0
0

] [
1
0

] [
1
1

]
,

y′3 y3 y′′3
c+ m̂
d+ 2m̂

[
0
0

] [
1
0

] [
1
1

]
.

This yields a copy of F in A in rows a, b, c+ m̂, d+ 2m̂, a contradiction. We deduce that
σ1(B′) = 0 and hence σ1(B) ≤ 42m̂, concluding the proof for p = 3.

For p ≥ 4, we proceed in a somewhat similar fashion but focussing on the first 4
coordinates. By induction on p, σ1(proji(B)) is at most 4p−2m̂. We form a matrix B′ from
B by deleting from B, if possible, the top 1 in each line in the direction x4 and then
deleting the bottom 1 in each line in the direction x3 and then deleting the top 1 in each
line in the direction x2 finally deleting the bottom 1 in each line in the direction x1. We
have

σ1(B) ≤ σ1(B′) +
4∑

i=1

σ1(proji(B)) ≤ σ1(B′) + 4 · 4p−2m̂ = 4p−1m̂,

using the fact that proji(B) is a (p-1)-dimensional array and induction on p. Let y1 be
an 1 of B′. Then, by our construction, there are 2 further 1’s of B in positions y2,y3 with
x1(y2) < x1(y1) and xi(y2) = xi(y1) for i 6= 1, and x2(y1) < x2(y3) and xi(y1) = xi(y3)
for i 6= 2. For each yj we will have two 1’s in positions y′j,y

′′
j of B where y′j agrees with yj

except in coordinate x3 where x3(y′j) < x3(yj) and y′′j agrees with yj except in coordinate
x4 where x4(yj) < x4(y′′j ). Then these 9 1’s in B correspond to a copy of F . In particular
we can choose values a = x1(y1), b = x2(y1) + 1 so that in A the columns contain

y2 y1 y3

a
b+ m̂

[
0
0

] [
1
0

] [
1
1

]
,

y′2 y′1 y′3
a

b+ m̂

[
0
0

] [
1
0

] [
1
1

]
,

y′′2 y′′1 y′′3
a

b+ m̂

[
0
0

] [
1
0

] [
1
1

]
.
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As above we can choose values c = x3(y1) and d = x4(y1) + 1 and obtain a copy of F in
rows a, b + m̂, c + 2m̂, d + 3m̂ of A from the 9 columns of A given by the 9 1’s of B , a
contradiction.

We deduce that σ1(B′) = 0 and hence σ1(B) ≤ 4p−1m̂ �

Some growth in the bound with respect to p is to be expected since forb(m,E2 × E2)
is Θ(m3).

4. Submatrices of I × I

Proof of Theorem 1 that f(E1×E1, Im/2×Im/2) is Θ(m3/2). Let F = E1×E1. Let A be
a submatrix of Im/2 × Im/2 with no configuration F . We consider A as an (m/2)× (m/2)
(0,1)-matrix B whose rows are indexed by the columns of Im/2 and whose columns are
indexed by the columns of Im/2. Then ‖A‖ = σ1(B). Note that the rth row of Im/2 has a
1 in column r of Im/2 and 0’s in all other columns. Thus a 2× 2 submatrix of 4 1’s in B
in rows r1, r2 and columns c1, c2 will yield I2× I2 in the associated 4 columns of A (we let
(r, c) label the column of A associated with the 1 in position (r, c) of B ):

r1

r2

c1

c2


(r1, c1) (r1, c2) (r2, c1) (r2, c2)

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1


The remaining 5 columns of E1 ×E1 are less structured. Four rows of A contains F if

and only if 2 rows of A (say r1, r2 chosen from the first m/2 rows of A) contain the first two
rows of F corresponding to a copy of E1 in E1×E1 and 2 rows of A (say c1 +m/2, c2 +m/2
chosen from the last m/2) contain the third and fourth rows of F (and the other E1 in
E1×E1). Now A having 9 columns containing F correspond to B having 9 1’s as follows:
a 2 × 2 submatrix of 1’s in rows r1, r2 and columns c1, c2 and one more 1 in each row of
the 2× 2 submatrix and one more 1 in each column of the submatrix and one more 1 in
neither of the two chosen rows or two chosen columns. To see this consider a 1 in position
r1, c of B with c 6= c1, c2. Then column (r1, c) of A will have

[
1
0

]
in rows r1, r2 and

[
0
0

]
in

rows c1 +m/2, c2 +m/2. A 1 in position r, c of B with r 6= r1, r2 and c 6= c1, c2 will yield
a column (r, c) in A that is all 0’s on row r1, r2, c1 +m/2, c2 +m/2.

Assume ‖A‖ = σ1(B) ≥
(
m
2

)3/2
+ 2.5m. We initially process B by deleting any row

or column with at most two 1’s (and hence up to 2 · 2 · m
2

1’s) repeating the deletion

process if necessary so that the resulting matrix B has row and column sums at least

3. We note that σ1(B) ≤ σ1(B) + 2m. Then σ1(B) ≥
(
m
2

)3/2
+ m/2. We now appeal to

Kővari, Sós and Turán [15] for a solution of Zarankiewicz’ problem and deduce that B
has a 2× 2 block of 1’s and then B has the configuration of 9 1’s yielding F in A. Thus

‖A‖ <
(
m
2

)3/2
+ 2.5m.

A construction using projective planes [15] establishes f(E1 × E1, Im/2 × Im/2) is
Ω(m3/2). �

Problem 1. Determine f(E1 × E1 × E1, Im/3 × Im/3 × Im/3).

The crux of this problem would be determining the maximum number of 1’s in a 3-
dimensional (m/3)× (m/3)× (m/3) (0,1)-array which has no 2× 2× 2 subarray of 8 1’s.
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Erdős [9] has obtained a bound O(m11/4) for this but only a Ω(m5/2 construction. Note
the sharp contrast with results such as Theorem 3, Lemma 1, Lemma 3.

5. Submatrices of I × T

It is useful to state a result about arrangements of 1’s in a 2-dimensional array.

Lemma 4. Let B be an m̂ × m̂ matrix with σ1(B) > 4m̂. Then there are 9 1’s in B in
the following configuration consisting of three lines of three 1’s:

Special 3, 3 split:


1←−−−−−−−−−−− 1 −→ 1

↑
1←−−−− 1→ 1

↓
1←− 1 −−−−−−−→ 1

 (3)

If the central 1 is in position (r1, c1) then we have a 3,3 split using I(1) = {r1 − 1, r1}
and I(2) = {c1 − 1, c1} (notation from Section 2) �

Proof: We may argue that σ1(B) ≤ 4m̂ as follows. Form a matrix B′ from B by deleting
from B, if possible, the top and bottom 1 in each row (a line in the direction x2) and
then deleting, if possible, the top and bottom 1 in each column ( a line in the direction
x1). We have that σ1(B) ≤ σ1(B′) + 4m̂.

If σ1(B′) > 0, then select a 1 in B′ in position y1. Then there are two 1’s in B in
positions y2,y3 in the same column as y1, y2 lying below y1 and y3 lying above. Then
for each yi there are two additional 1’s in B positions y′i,y

′′
i lying to the left and to the

right of yi in the same row as yi.

Now y1 = (r1, c1) is the central 1 and this yields a 3,3 split as described. �
Proof of Theorem 2 that f(E1 × E2, Im/2 × Tm/2) ≤ 2m. Let F = E1 × E2. Let A be
an m-rowed submatrix of Im/2 × Tm/2 with no F . We consider A as an (m/2) × (m/2)
(0,1)-matrix B whose rows are indexed by the columns of Im/2 and whose columns are
indexed by the columns of Tm/2 in the usual order. We note that ‖A‖ = σ1(B).

By Lemma 4, if σ1(B) > 2m, we can find an arrangement of 9 1’s as in (3). Let y1

denote the central 1 with y2 denoting the 1 below y1 and y3 denoting the 1 above. Let the
position of the three 1’s be yi = (ri, c1) for i = 1, 2, 3. Now ri = x1(yi) = x1(y′i) = x1(y′′i )
for i = 1, 2, 3 and so in the columns of A corresponding to the 9 1’s we find

r1

r2

r3

y11
0
0


y′11
0
0


y′′11
0
0


y20
1
0


y′20
1
0


y′′20
1
0


y30
0
1


y′30
0
1


y′′30
0
1


We now use the 3,3 split idea. Let c1 = x2(y1) = x2(y2) = x2(y3). Column c1 of Tm/2

has c1
c1+1

[
1
0

]
. Also any column a of Tm/2 with a < c1 has c1

c1+1

[
0
0

]
and any column b of

Tm/2 with c1 < b has c1
c1+1

[
1
1

]
. Note that x2(y′j) < c1 = x2(yj) < x2(y′′j ) for j = 1, 2, 3.

Then we find in A in the 9 columns:
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c1 +m/2
c1 + 1 +m/2

y′1[
0
0

] y1[
1
0

] y′′1[
1
1

] y′2[
0
0

] y2[
1
0

] y′′2[
1
1

] y′3[
0
0

] y3[
1
0

] y′′3[
1
1

]
Thus in rows r1, r2, c1 + m/1, c1 + 1 + m/2 of A we find E1 × E2. This contradiction
establishes the bound.

The construction A = Im/2 × 1m/2 avoids F and has Ω(m) columns. �

It is useful to give one result about arrangements of 1’s in a 3-dimensional array.

Lemma 5. Let C be an m̂ × m̂ × m̂ 3-dimensional (0,1)-array with more than 6m̂2 1’s.
Then there are 27 1’s as follows. There are three values a, b, c for x1 coordinate such that
the three planes x1 = a, x1 = b and x1 = c of C each contains 9 points. The 9 points in
each plane form a special 3,3 split as in (3) with the central 1 in each of the three planes
having the same x2, x3 coordinates.

Proof: Form a matrix C ′ from C by deleting from C, if possible, the top and bottom 1
in each line in direction x3 then the top and bottom 1 in each line in the direction x2 and
then the top two 1’s in each line in the direction x1. We obtain

σ1(C) ≤ σ1(C ′) + 6m̂2.

If C ′ has a 1 in position y1, we can find 27 1’s yielding a special 3,3,3 split as follows.
There are 2 1’s of C in positions y2,y3 with x1(y1) < x1(y2) < x1(y3), x2(y1) = x2(y2) =
x2(y3) and x3(y1) = x3(y2) = x3(y3). Then there are 1’s of C in positions xj, zj for
j = 1, 2, 3, where x2(xj) < x2(yj) < x2(zj) and x1(xj) = x1(yj) = x1(zj), x3(xj) =
x3(yj) = x3(zj). Now for each choice v ∈ {x,y, z}, we obtain positions v′j,v

′′
j for j = 1, 2, 3

with x3(v′j) < x3(vj) < x3(v′′j ) and x1(v′j) = x1(vj) = x1(v′′j ), x2(v′j) = x2(vj) = x2(v′′j ).
In particular there are three planes x1 = a, x1 = b, x1 = c each with 9 1’s and each
plane has a special 3,3 split as in (3) with the central 1’s of each plane (namely y1,y2,y3)
having the same x2, x3 coordinates. The horizontal direction in (3) corresponds to the x3

direction. �

Lemma 6. f(E1 × E2 × E2, Im/3 × Tm/3 × Tm/3) is Θ(m2).

Proof: Let A be an m-rowed submatrix of Im/3 × Tm/3 × Tm/3 with no configuration
E1×E2×E2. As above, we translate A into a 3-dimensional array B with ‖A‖ = σ1(B).

Now by Lemma 5, if σ1(B) > 6(m/3)2 there will be 27 1’s in B as described and we use
the notation of the proof. This will yield a copy of E1×E2×E2 in A. Let the central 1 in
each plane be in position yi for i = 1, 2, 3 with x1(y1) = r1 < x1(y2) = r2 < x1(y3) = r3.
Then there are 1’s of B in positions xj, zj for j = 1, 2, 3, where x2(xj) < x2(yj) <
x2(zj) and x1(xj) = x1(yj) = x1(zj), x3(xj) = x3(yj) = x3(zj). Now for each choice
v ∈ {x,y, z}, we obtain positions v′j,v

′′
j for j = 1, 2, 3 with x3(v′j) < x3(vj) < x3(v′′j ) and

x1(v′j) = x1(vj) = x1(v′′j ), x2(v′j) = x2(vj) = x2(v′′j ). Now ri = x1(v′i) = x1(vi) = x1(v′′i )
for i = 1, 2, 3 and also all choices v ∈ {x,y, z}. In the columns of A corresponding to the
27 1’s we find

r1

r2

r3

v11
0
0


v′11
0
0


v′′11
0
0


v20
1
0


v′20
1
0


v′′20
1
0


v30
0
1


v′30
0
1


v′′30
0
1


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Note that in rows r1, r2, we see copies of E1. Now let c2 = x2(y1), c3 = x3(y1). Recall
that x2(y1) = x2(y2) = x2(y3) = x2(y′j) = x2(y′′j ) for all j = 1, 2, 3. These 9 1’s lie
on the plane with x2 coordinate c2. The same need not be true if we replace y by x
or z but, for each choice of j ∈ {1, 2, 3}, we have x2(xj) = x2(x′j) = x2(x′′j ) < c2 and

c2 < x2(zj) = x2(z′j) = x2(z′′j ). Column c2 of Tm/2 has c2
c2+1

[
1
0

]
. Also any column a

of Tm/2 with a < c2 has c2
c2+1

[
0
0

]
and any column b of Tm/2 with c2 < b has c2

c2+1

[
1
1

]
.

Recalling that x2(xj) < c2 = x2(yj) < x2(zj), we have for each j = 1, 2, 3 in A in rows
c2 +m/1, c2 + 1 +m/3 the following in the columns of corresponding to the 27 1’s while
letting j = 1, 2, 3:

c2 +m/3
c2 + 1 +m/3

xj[
0
0

] yj[
1
0

] zj[
1
1

] x′j[
0
0

] y′j[
1
0

] z′j[
1
1

] x′′j[
0
0

] y′′j[
1
0

] z′′j[
1
1

]
We use the same ideas noting that x3(v′) < x3(v) < x3(v′′) for each j = 1, 2, 3 and

each choice v ∈ {x,y, z}. In this case there are 9 1’s with the same x3 coordinate as y1

(the positions vj for all choices j = 1, 2, 3 and v ∈ {x,y, z}). With c3 = x3(y1) we have
the following in the columns corresponding to the 27 1’s while letting j = 1, 2, 3:

c3 + 2m/3
c3 + 1 + 2m/3

x′j[
0
0

] xj[
1
0

] x′′j[
1
1

] y′j[
0
0

] yj[
1
0

] y′′j[
1
1

] z′j[
0
0

] zj[
1
0

] z′′j[
1
1

]
.

We now have a copy of E1 × E2 × E2 in A, a contradiction and so ‖A‖ ≤ 6(m/3)2.
Let α being first column of Im/3. Using Proposition 1, the construction α×Tm/3×Tm/3

avoids F and has Θ(m2) columns. �

Using an analogous argument one obtains

Lemma 7. f(E1 ×
p−1︷ ︸︸ ︷

E2 × · · · × E2, Im/p ×
p−1︷ ︸︸ ︷

Tm/p × · · · × Tm/p) is Θ(mp−1). �

6. Proof of the unexpected bound

Proof of Theorem 4. Let A be an m-rowed simple matrix with no configurations
{I2 × I2, T2 × T2}. Our standard decomposition on row r considers deleting row r from
A and reordering the columns as below with Cr consisting of the columns which are
repeated in the matrix obtained from A by deleting row r.

A =
r →

[
00 · · · 0 11 · · · 1
Br Cr Cr Dr

]
(4)

Our typical use of this is to note that [BrCrDr] is simple with no configurations
{I2 × I2, T2 × T2} and Cr is simple with no configurations F4, F5:

F4 =

1 1
1 1
0 1

 , F5 =

1 1 0 0
1 0 1 0
0 1 0 1

 . (5)

In particular if Cr has F4, then A has T2 × T2, and if Cr has F5, then A has I2 × I2,
both forbidden configurations. We deduce by induction (on m) that ‖A‖ = ‖[BrCrDr]‖+
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‖Cr‖ ≤ forb(m − 1, {I2 × I2, T2 × T2}) + forb(m − 1, {F4, F5}). We would be done if we
could show that ‖Cr‖ ≤ 20m1/2 for some r. The choice of 20 is an artifact of our proof.
We may now assume ‖Cr‖ ≥ 20m1/2 for all r and will arrive at a contradiction. Our
proof will show that for each r ∈ [m], we can choose a set of rows S(r) ⊆ [m]\r where
|S(r)| ≥ ‖Cr‖/4 ≥ 5m1/2. Note that S(r) is a set so |S(r)| denotes cardinality while
‖Cr‖ denotes the number of columns. Choose one row r. We show that there is a subset
K ⊆ S(r), of size |S(r)|/3, every pair of rows ri, rj ∈ K satisfying

|S(ri) ∩ S(rj)| ≤ 5. (6)

Then if we let t = m1/2 we can choose r1, r2, . . . , rt ∈ K ⊆ S(r) and obtain t disjoint sets

S(r1), S(r2)\S(r1), S(r3)\(S(r1) ∪ S(r2)), . . . , S(rt)\(S(r1) ∪ S(r2) ∪ · · · ∪ S(rt−1)).

This yields that S(r1) ∪ S(r2) ∪ S(r3) · · · ∪ S(rt) is of size at least

5m1/2 + (5m1/2 − 5) + (5m1/2 − 10) + · · · > m,

a contradiction given that we have m rows.
Consider the following operation on Cr. Delete as many rows as we can while preserving

simplicity of the remaining matrix. Doing this may involve some choices. The remaining
set of rows is denoted R(r) and so Cr|R(r) is simple and ‖Cr‖ = ‖Cr|R(r)‖. Now by Lemma 8
found below, ‖Cr|R(r)‖ ≤ 2|R(r)| and so |R(r)| ≥ ‖Cr‖/2.

We consider the standard decomposition applied to Cr|R(r)

Cr|R(r) =
s→

[
00 · · · 0 11 · · · 1
Es Gs Gs Hs

]
(7)

Given our choice for R(r), we deduce that 1 ≤ ‖Gs‖. As in the proof of Lemma 8, we note
that Gs does not have the configurations

[
1
1

]
, I2. We deduce that 1 ≤ ‖Gs‖ ≤ 2 where Gs

will either consist of a column of 0’s or a column of sum 1 or both. If Gs has a column of
0’s then Cr|R(r) has a column of sum 1 with a 1 in row s. If Gs has a column of sum 1 with
a 1 in row t, then Cr|R(r) has a column of sum 2 with 1’s in rows s, t and also a column
of sum 1 with a 1 in row t. In this latter case record a directed arc s → t and in this
way form a directed graph D on the rows R(r) with at most |R(r)| arcs. We now indicate
how to find a set S(r) ⊆ R(r) so that Cr|S(r) has I|S(r)| and |S(r)| ≥ |R(r)|/2. First let T
denote the set of rows t ∈ R(r) for which Cr|R(r) has a column of sum 1 with a 1 in row
t. Let U = R(r)\T . Then for each u ∈ U , there is exactly one arc u → v in D and, by
our choice of T , v ∈ T . Let V = {v ∈ T : there is a u ∈ U with u → v}. We may now
form S(r) = U ∪ (T\V ). We see that Cr|S(r) has I|S(r)| since for each t ∈ T\V , we take
the column of sum 1 with a single 1 in row t and for u ∈ U , we take the column with sum
2 with 1’s in rows u, v. In this latter case we have u → v and so v ∈ V hence v /∈ S(r).
We may verify |S(r)| ≥ |R(r)|/2 by noting that |S(r)| = |R(r)| − |V | and |V | ≤ |U |.

We need more detailed information and begin by computing what happens on quadru-
ples of rows {i, j, k, `} of A in order to avoid the two 4 × 4 configurations I2 × I2 and
T2 × T2. There are 5 cases Q0, Q1, . . . , Q4. These cases were computed using a C++ pro-
gram (can be downloaded at[2]) that had many test runs checking correctness and was
also independently checked by a program written in sage (public code that uses Python).
In each case one may easily check that, if the case is satisfied, indeed our three matrices
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of (1) aren’t present as configurations. But checking completeness of the list without a
computer would require an enormous amount of work. In general we would write

no
i
j
k
`


a
b
c
d

 ,
to denote that in A we do not have the specified vector (a, b, c, d)T on rows {i, j, k, `} in
that order. In what follows, the row order is not specified but is the same for each column
for a given case Qi. In each case, either 3 or 4 or 5 or 6 columns must not be present on
a quadruple of rows in order to not contain the configurations {I2 × I2, T2 × T2}.

Q0 =

no no no
0
1
0
1




0
0
1
1




1
1
1
1

, Q1 =

no no no no no
0
1
0
1




1
1
0
1




0
0
1
1




1
0
1
1




0
1
1
1

, Q2 =

no no no no
1
1
1
0




0
1
0
1




0
0
1
1




1
0
1
1

,

Q3 =

no no no no
1
1
1
0




1
0
0
1




0
1
0
1




0
0
1
1

, Q4 =

no no no no no no
1
1
0
0




1
0
1
0




0
1
1
0




1
0
0
1




0
1
0
1




0
0
1
1

.
In what follows we analyze closely each of the 5 cases above to deduce that the columns

of [Br Cr]|S(r) form a laminar family in order to help prove (6).
If we are missing (a, b, c, d)T on the quadruple of rows r, i, j, k, then we are missing

(b, c, d)T on the triple of rows i, j, k in Cr else A has both (0, b, c, d)T and (1, b, c, d)T on
rows r, i, j, k, a contradiction. Thus it is possible to determine what is missing in Cr|R(r)

on the triple of rows i, j, k ∈ R(r) by considering what is missing on the quadruple of
rows r, i, j, k. We also obtain a contradiction, based on the choice of R(r), if we find a
copy of ‘K2’ in what is missing, namely if on the triple i, j, k there is a pair of rows i, j
with all 4 columns of K2 appearing as follows:

i
j
k

no0
0
a


no0
1
b


no1
0
c


no1
1
d

 ,
where a, b, c, d ∈ {0, 1}. Perhaps other columns are missing on rows i, j, k. Note that we
could delete row k from Cr|R(r) and preserve simplicity, contradicting our choice of R(r).
The reason for this is that on the three rows i, j, k, the columns present would possibly
be

i
j
k

0
0
a

 0
1

b

 1
0
c

 1
1

d

 ,
where x denotes the (0,1)-complement of x. We can see that deleting row k will not result
in repeated columns assuming Cr|R(r) has no repeated columns.
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Consider the quadruple of rows r, i, j, k. We note that Q3, Q4 each contain 3 rows
(rows 1, 2, 3 in each case), each pair of rows of which ‘has a K2’ in what is missing and
so any choice for r, will leave that on the remaining triple of rows in Cr ‘has a K2’. For
{i, j, k} ⊆ R(r), the quadruple of rows r, i, j, k cannot be in cases Q3 or Q4. Case Q0 ‘has
no K2’ and so if Q0 applies to a quadruple of rows, then apparently any row of Q0 as
given could be row r. Case Q1 has ‘has a K2’ on rows 1,2 and also on rows 1,3 and so row
r would have to be row 1 of Q1 as given. Case Q2 ‘has a K2’ on rows 1,2 and so row r
must either be row 1 or row 2 of Q2 as given. This produces the following cases. We use
Pi to denote a triple arising from the quadruple Qi in these ways.

P0 =

no no no1
0
1

 0
1
1

 1
1
1

 or

no no no0
0
1

 0
1
1

 1
1
1

 or

no no no0
1
1

 0
0
1

 1
1
1

 or

no no no0
1
0

 0
0
1

 1
1
1

,

P1 =

no no no no no1
0
1

 1
0
1

 0
1
1

 0
1
1

 1
1
1

, P2 =

no no no1
1
0

 1
0
1

 0
1
1

 or

no no no1
1
0

 0
1
1

 1
1
1

.
These then, are the only cases we need consider for what is missing on a triple of rows

of R(r) in Cr. Because we know that the columns of Cr|S(r) contain an identity matrix
I|S(r)| on the rows S(r), we know that the final three cases of P0 and the second case of
P2 cannot be what is missing on a triple of rows in S(r). Thus r would have to be the
first row in Q0, Q1 or Q2 as given.

Among the remaining options for what is missing (P1, the first case for P2 and the
first case for P0), by looking at Q0, Q1 and Q2, we see that below the zeroes in row r, all
triple of rows in S(r) are missing two columns of sum 2. This means that the columns in
[BrCr]|S(r) must form a laminar family. We will use this fact in what follows.

Let rj ∈ S(r). The columns of Crj must correspond to columns of A which appear with
a 1 and 0 in row rj and are the same elsewhere, in particular, on the rows (r ∪ S(r)) \ rj.
We thus have pairs of columns in A|S(r)∪r from Crj as follows:

rj
S(r) \ rj{

r

 0 1
α α
a a

 . (8)

We begin with the case where a = 0 by considering [BrCr]|S(r). Suppose there exist
two non-zero choices for α, say β 6= γ. We have the following situation for columns in
A|S(r)∪r from Crj :

rj
S(r)\rj {

r

 0 1 0 1
β β γ γ
0 0 0 0

 . (9)

We know that the columns of [BrCr]|S(r) form a laminar family. Thus the columns from
(9) must form a laminar family. Columns 2 and 4 have 1’s in common on row rj and so
the columns as sets are not disjoint so one must be contained in the other. We deduce
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without loss of generality that β ≤ γ. Now, considering columns 2, 3, and the fact that
β 6= 0, we violate the laminar property, a contradiction. Thus there is only one non-zero
choice for α in (8) when a = 0 but since Crj |S(r) need not be simple, the column with α
could be repeated. If α has column sum at least 2 with 1’s on rows a, b ∈ S(r), and it is
repeated, it creates a T2 × T2 as follows. This happens because A is a simple matrix and
so on some row r′ (r′ /∈ S(r)) the columns must differ, yielding the following, with T2×T2

on rows rj, a, b, r
′.

rj
a
b

S(r) \ {rj, a, b}
r′


0 0 1 1
1 1 1 1
1 1 1 1
α′ α′ α′ α′

0 1 0 1

 .
Thus if any α is repeated, it must have column sum 1. We now consider the second case

when a = 1 in (8). This case will be simpler since columns with a = 1 will automatically
yield a row of ones on row r, and T2×T2 has a row of 1’s. Suppose there are two non-zero
columns β, γ in Crj |S(r)\rj . Since Crj |S(r)\rj need not be simple, we do not require β 6= γ.
In some columns of A|S(r)∪r from Crj we have

rj
S(r)\rj {

r

 0 0 1 1
β γ β γ
1 1 1 1

 .
Now suppose β and γ both have entry 1 on some row r′ ∈ S(r) \ rj. Also, as above,

because A is a simple matrix, there is some row r′′ (r′′ need not be in S(r)) where the
columns differ. The situation is then as follows:

rj
r′

S(r) \ {rj, r′, r′′}
r′′

r


0 0 1 1
1 1 1 1
β′ γ′ β′ γ′

0 1 0 1
1 1 1 1

 .
This creates T2×T2 in A. Therefore for any pair of non-zero columns α in Crj |S(r)\rj , with
1’s in row r, there cannot be a row in S(r)\rj where both are 1’s.

We have shown that for the columns in Crp |S(r)∪{r} which are 0 in row r , then those
columns can be 0 and/or a single non-zero column α. If α is of column sum 1 it may be
repeated, otherwise there is only one copy in Crp |S(r)∪{r}. We have also shown that for the
columns in Crp |S(r)∪{r} which are 1 in row r, that there is no row in S(r)\rp where more
than one of the columns have 1’s.

Let rp ∈ S(r) be given. We say that row rs ∈ S(r)\rp is a bad row for rp if more than
two columns in Crp |S(r) have 1’s in row rs. By our case analysis above, we see that there
is at most one bad row for a given row rp which will arise from columns which are 0’s in
row r and have a column α of sum 1 repeated plus possibly with a column which is 1 in
row r. For all rows rq ∈ S(r) \ rp, except possibly a single bad row, there is at most one
column of the columns of Crp with a 0 in row r, which also has a 1 in row rq and there is
at most one column of the columns of Crp with a 1 in row r, which also has a 1 in row rq.
Thus for all rows in S(r) \ rp with the exception of the previously described bad row, the
remaining rows will have at most two 1’s on the columns of Crp |S(r)\rp .
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Now given a pair rp, rq, for which neither is a bad row for the other, we can now show
that |S(rp)∩ S(rq)| ≤ 5. Assume the contrary, that |S(rp)∩ S(rq)| ≥ 6. We decompose A
first using rp and then using rq. In each case we only show those column of A arising from
Crp (respectively from Crq) which yield the identity matrix on the rows S(rp)∩S(rq). Let
t = |S(rp) ∩ S(rq)| ≥ 6.

Crp Crp Crq Crq

rp
rq

S(rp) ∩ S(rq){

 1 0
βT βT

It It

 rp
rq

S(rp) ∩ S(rq){

γT γT1 0
It It


Let β = (b1, b2, . . . , bt)

T and γ = (g1, g2, . . . , gt)
T and let J = {j : bj = gj = 0}. By

assumption, βT and γT each can contain at most two 1’s and so |J | ≥ t − 4. We now
consider the columns indexed by J and the rows indexed by {1, 2}∪J ′ where J ′ = {j+2 :
j ∈ J} for each of the following (t+ 2)× t matrices:

Crp Crq

rp
rq

S(rp) ∩ S(rq){

 1
βT

It

 rp
rq

S(rp) ∩ S(rq){

γT1
It


This yields I2×It−4 and hence I2×I2 in A, a contradiction. Therefore |S(rp)∩S(rq)| ≤ 5.

It remains to show that we can choose sufficient rows from S(r) such that each row rq is
not a bad row for all other rows chosen. However, this is straightforward when interpreted
as a graph theory problem. We create a graph with |S(r)| vertices and assign each row
of S(r) to a vertex. We assign an arc ri → rj if rj is a bad row for ri. Because for each
row ri there can only be one bad row rj, the out-degree of any vertex ri is at most one. A
set of rows that has our desired property is equivalent to choosing an independent set in
our graph. By Lemma 9 we know that it is possible to choose such a set that is at least
a third of the remaining rows. Thus we can choose at least |S(r)|/3 rows where for any
chosen rows rp, rq, neither row is a bad row for the other and so |S(rp) ∩ S(rq)| < 6. We
then generate the series of disjoint sets described at the beginning of this proof and arrive
at our contradiction. �

Lemma 8. We have that forb(m, {F4, F5}) ≤ 2m.

Proof: Let A be an m-rowed simple matrix with no configurations F4, F5. We apply the
standard decomposition of (4) and note that Cr does not contain configurations

[
1
1

]
or I2

else A has F4 and F5 respectively. But then ‖Cr‖ ≤ 2 and can either have no columns or
a column of 0’s or a column of sum 1 or two columns consisting of a column of 0’s and a
column of sum 1. Then by induction, ‖A‖ = ‖[BrCrDr]‖+‖Cr‖ ≤ forb(m−1, {F4, F4})+2,
which yields the bound. �

Lemma 9. Given a directed graph D = (V,A) where for all v ∈ V the maximum out-
degree is 1, it is always possible to colour the vertices of D with 3 colours so that if
u→ v ∈ A then u and v have different colours.

Proof: We use induction on the number of vertices. Suppose there exists a v′ ∈ V such
that v′ has in-degree 0. Let D′ be the induced subgraph of D \ v′. Directed graph D′

maintains our property of maximum out-degree 1, so we colour D′ with 3 colors and then
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add v′ back with an appropriate colour. Suppose there is no vertex v ∈ V with in-degree
0. In this case all vertices have in-degree 1 and out-degree 1, and so the edges of D form
the union of disjoint cycles, which we can colour with 3 colours. �

It is likely (but unknown) that forb(m, {E1, E2, E3} × {E1, E2, E3}) is O(m3/2). One
might ask the relationship of Theorem 4 to Conjecture 1. The Conjecture (which applies
only for a single forbidden configuration) says that only product constructions are needed
for best possible asymptotics, but in this case {I2×I2, T2×T2} are simultaneously missing
from all 1-fold products. In particular I × I avoids T2 × T2 but does not avoid I2 × I2

(Proposition 1). Surprisingly there is an O(m3/2) construction contained in I × I and yet
avoiding I2× I2 (Theorem 1). The other 2-fold products I2×T2 (Theorem 2) and T2×T2

(Theorem 3) behave as the conjecture might suggest.

7. A bound for 10 4 × 4 Forbidden Configurations

Proof of Theorem 5: Use the notation F = {I2, T2, U2, V2}×{I2, T2, U2, V2}. We estab-
lish the lower bound by construction. Let α = 1m−101. We construct the m × (m + 3)
matrix A consisting of [0m I α 1m]. Not that each of {I2, T2, U2} has one column of sum 1
and hence each matrix {I2, T2, U2}×{I2, T2, U2} has a column of sum 2 but no column of
A thas at least 2 1’s and 2 0’s. The same observation holds for T2×V2, U2×V2, and V2×V2.
Now I2×V2 has its first two rows containing [I2 | I2] yet no two rows of A have [I2 | I2] and
so A has no I2 × V2. Hence A avoids all configurations in F , thus forb(m,F) ≥ m+ 3.

We use induction on m for the upper bound. Begin by verifying forb(4,F) = 7 using a
C++ program which exhaustively considered all subsets of 8 columns of K4 and verified
that in all of them F is contained as a configuration. To prove the bound for m ≥ 5,
we will proceed by induction on m. For an m-rowed matrix A that doesn’t contain any
configuration in F it suffices by induction to show there exists a row r for which ‖Cr‖ ≤
1, using the standard decomposition as in (7). If this were so, we could delete row r
and perhaps one column (one instance of the column forming Cr) from A, keeping the
remaining matrix simple. This would yield forb(m,F) ≤ 1 + forb(m− 1,F) = 1 + (m−
1) + 3 = m+ 3 as desired.

Let us proceed by contradiction. Suppose then that for every row r, |Cr(A)| ≥ 2. We
then have at least two columns α and β in C1(A). The matrix A would look like this

1
[
0 · · · 0 0 1 1 · · · 1

α β α β

]
.

But α and β must differ in some row. Without loss of generality, assume they dif-
fer on row 2, and suppose α2 = 0 and β2 = 1. We will prove that α and β must be
(0,1)-complements of each other. Suppose otherwise and suppose they had something in
common, say in row 3. The first four rows of A would look like this (where we are not
requiring b 6= c):

1
2
3
4


0 · · · 0 0 1 1 · · · 1

0 1 0 1
a a a a
b c b c

 .
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for some values of a, b, c (we are using the fact that the matrix has at least 4 rows). Then
in rows 1 and 3 and rows 2 and 4 we get that this matrix contains

1
3

[
0 1
a a

]
×

2
4

[
0 1
b c

].

which is a configuration of F (for any a, b, c), so we conclude α = β.

Now C2(A) must have two repeated columns, say γ and δ. As argued above, they must
be (0,1)-complements. Here is part of the matrix A:0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1
α γ α γ α γ α γ

 .
Since α and γ have to differ somewhere, we can assume α3 = a, and γ3 = a. Since α

and γ must differ somewhere, we can assume α4 = b and γ4 = b. Furthermore, since we
have at least 5 rows, we can then write the selected columns of A where the columns are
given labels below to indicate the source of the column.

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
a a a a a a a a

b b b b b b b b

d c d c d c d c


α γ α γ α γ α γ

.

There are two cases. Either d = c or d = c. So we either have

(d = c) :


0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
a a a a a a a a

b b b b b b b b

d d d d d d d d


α γ α γ α γ α γ

or (d = c) :


0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
a a a a a a a a

b b b b b b b b

d d d d d d d d


α γ α γ α γ α γ

.

These yield the following configurations in F respectively:

(d = c) :

2
4

[
0 1

b b

]
×

3
5

[
a a

d d

], (d = c) :

2
3

[
0 1
a a

]
×

4
5

[
b b

d d

].

This is a contradiction to ‖Cr‖ ≥ 2 and hence for m ≥ 5, there must be some row r
for which |Cr(A)| ≤ 1 which then yields the bound by induction. �
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