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The following is not the Strong Duality Theorem since it assumes x∗ and y∗ are both optimal.

Theorem Let x∗ be an optimal solution to the primal and y∗ to the dual where

primal
max c · x

Ax ≤ b
x ≥ 0

dual
min b · y

ATy ≥ c
y ≥ 0

.

Then c · x∗ = b · y∗.

Proof: Let A be an m×n matrix. We obtain the Revised Simplex Formulas (our dictionaries!) by

first writing Ax ≤ b as [AI]
[
x
xS

]
= b where we have n original variables (typically our decision

variables) and m slack variables. Then considering the variables split into the m basic variables and
the n non basic variables for some column basis B of [AI] we obtain the Revised Simplex Formulas.

xB = B−1b−B−1ANxN

z = cTBB
−1b + (cTN − cTBB

−1AN)xN

Assume that the Simplex Method has pivoted to an optimal solution given by a basis B. Thus
the current basic feasible solution x has c · x = c · x∗ and x is given as xB = B−1b and xN = 0.
The value of the objective function for x is equal to cTBB

−1b = c · x = c · x∗ since x and x∗ are
asserted to be optimal. The simplex method terminates if the coefficients in the z row are all ≤ 0
and so we assert

cTN − cTBB
−1AN ≤ 0.

We can readily assert that
cTB − cTBB

−1B ≤ 0

since of course cTB − cTBB
−1B = 0. But now we have a symmetric expression for all variables,

namely for all variables xi

ci − cTBB
−1Ai ≤ 0

where Ai denotes the column of [AI] indexed by xi. We regroup the variables into the original
variables x and the slack variables xS to obtain

cT − cTBB
−1A ≤ 0

and
0T − cTBB

−1I ≤ 0

If we let
cTBB

−1 = yT ,

we obtain
cT − cTBB

−1A ≤ 0 implies cT ≤ yTA implies ATy ≥ c

and
0T − cTBB

−1I ≤ 0 implies 0T ≤ yT implies y ≥ 0.

This means that y is a feasible solution to the dual. Also we compute

b · y = yTb = cTBB
−1b = c · x



and so by Weak Duality x (as given above) is optimal to the primal and y is optimal to the dual.

The book has essentially this same standard proof but the proof above has the virtue of showing
the power of the matrix notation. Students will use the Revised Simplex formulas in the Revised
Simplex method and become familiar with it both in plugging in numbers and also as a matrix
formula. We use it below in the result concerning marginal values.

It is useful to apply this theorem with real numbers. In particular, in any final dictionary
(yielding an optimal solution) you may read off the optimal dual solution by reading the negatives
of the coefficients of the slack variables in the z row. This is what we called the ‘magic’ coefficients
in an earlier lecture. That the dual solution or ‘magic’ coefficients behave as promised can be shown
by a theorem of the alternative.

The full version of the Strong Duality Theorem is the following: If either
i) the primal has an optimal solution or the dual has an optimal solution
or
ii) there exists feasible solutions to both the primal and the dual

then there exists an optimal solution x∗ to the primal and an optimal solution y∗ to the dual with

c · x∗ = b · y∗.

Proof: If an optimal solution x∗ to the primal is found by the simplex method then our proof
above yields that there is an optimal solution x∗ to the primal and an optimal solution y∗.

If the dual has an optimal solution y∗ then we can consider it as the primal and, using the fact
that the dual of the dual is the primal we can apply our previous proof.

If there exists feasible solutions to both the primal and the dual then we know the primal is not
infeasible and also is bounded (by Weak Duality by b · y) and so by the Fundamental Theorem
of Linear Programming, the primal has an optimal solution x∗ and we proceed as in our previous
proof.

Recall that for the Fundamental Theorem of Linear Programming to hold, we need to have the
Simplex Algorithm terminate which requires an anti-cycling rule such as Bland’s Rule. We will
prove that Bland’s Rule avoids cycling at some point in the course.


