
Genetic Algorithms applied to

Problems of Forbidden Configurations

R.P. Anstee∗ Miguel Raggi†

Department of Mathematics
University of British Columbia

Vancouver, B.C. Canada V6T 1Z2

anstee@math.ubc.ca mraggi@gmail.com

Submitted: Jun 27, 2011; Accepted: Nov 15, 2011; Published: Dec 5, 2011

Mathematics Subject Classification: 05C88, 05D05

Abstract

A simple matrix is a (0,1)-matrix with no repeated columns. For a (0,1)-matrix
F , we say a (0,1)-matrix A avoids F (as a configuration) if there is no submatrix
of A which is a row and column permutation of F . Let ‖A‖ denote the number
of columns of A. We define forb(m,F) = max{‖A‖ : A is an m-rowed simple
matrix that avoids F}. Define an extremal matrix as an m-rowed simple matrix
A with that avoids F and ‖A‖ = forb(m,F). We describe the use of Local Search
Algorithms (in particular a Genetic Algorithm) for finding extremal matrices. We
apply this technique to two forbidden configurations in turn, obtaining a guess for
the structure of an m × forb(m,F) simple matrix avoiding F and then proving the
guess is indeed correct. The Genetic Algorithm was also helpful in finding the proof.

Keywords: trace, forbidden configurations, extremal set theory, (0,1)-matrices,
Genetic Algorithms

1 Introduction

Define a matrix to be simple if it is a (0,1)-matrix with no repeated columns. Then an
m×n simple matrix corresponds to a simple hypergraph or set system on m vertices with
n edges. For a matrix A, let ‖A‖ denote the number of columns in A. For a (0,1)-matrix
F , we define that a (0,1)-matrix A has F as a configuration, which we write as F ≺ A, if
there is a submatrix of A which is a row and column permutation of F . Let Avoid(m, F)

∗Research supported in part by NSERC
†Research supported in part by NSERC of first author

the electronic journal of combinatorics 18 (2011), #P230 1

denote the set of all m-rowed simple matrices A with F ⊀ A. Our main extremal problem
is to compute

forb(m, F) = max
A

{‖A‖ : A ∈ Avoid(m, F)}.

We say a matrix A ∈ Avoid(m, F) is an extremal matrix if ‖A‖ = forb(m, F). We will
also consider the natural generalizations where we forbid a family F of configurations.

In this paper we describe a new computational approach for finding extremal matrices
using a Genetic Algorithm as described in Section 2. For a general introduction to Genetic
Algorithms one could use [9], [10]. Genetic Algorithms have been applied in a number
of Combinatorial problems such as Graph Colouring [6], Travelling Salesman Problem [8]
and Steiner Tree Problem [7]. It is quite remarkable that this local search strategy has
given such reliable results for us.

We study the following configurations V and W (where forb(m, V) and forb(m, W)
weren’t previously known), and compare to the common submatrix X (where forb(m, X)
was found in [2]).

X =

1 1
1 1
0 0

 , V =

1 1 0 0
1 1 0 0
0 0 1 1

 , W =

1 1 1 1
1 1 0 0
0 0 1 1

 . (1.1)

We use our Genetic Algorithm to seek extremal matrices A ∈ Avoid(m, V) and
A ∈ Avoid(m, W) for small m. From these examples we guess the structure of extremal
matrices in general and then we are subsequently able to prove these matrices are indeed
extremal. Guessing such structures would have been challenging without the help of a
computer. Matrix X above is contained in both V, W and we initially thought (before us-
ing the Genetic Algorithm) that forb(m, V) = forb(m, W) = forb(m, X). Related results
are in [2],[3]. In particular a list of 3 × 4 configurations for which the exact bounds are
not known are listed in [3].

Theorem 1.1. [2] Let m ≥ 3. Then forb(m, X) =
(

m

2

)

+
(

m

1

)

+
(

m

0

)

+ 1.

Theorem 1.2. Let m ≥ 2. Then forb(m, W) =
(

m

2

)

+
(

m

1

)

+
(

m

0

)

+ m − 2.

Theorem 1.3. Let m ≥ 6. Then forb(m, V) =
(

m

2

)

+
(

m

1

)

+
(

m

0

)

+ 3.

The structure of the apparently extremal matrices A generated by the Genetic
Algorithm provided the strategy to tackle the latter two bounds. Interestingly, the
Genetic Algorithm was used again in each example in the inductive proof to guess
forb(m−1, {a collection of smaller matrices}). We establish Theorem 1.2 in Section 4 and
Theorem 1.3 in Section 5. Computer calculations were used during the course of the proof
to compute ‘what is missing?’ on each four rows as described in Section 3. All code (C++)
used in this paper can be freely downloaded from http://www.math.ubc.ca/∼anstee/.

Some helpful notation is the following. Let [m] = {1, 2, . . . , m}. We say a column α
has column sum ℓ if α has exactly ℓ 1’s. Let Kk denote the k × 2k simple matrix that
consists of all 2k possible columns in k rows. Let Kℓ

k
denote a k×

(

k

l

)

simple matrix of all

the electronic journal of combinatorics 18 (2011), #P230 2

columns of sum ℓ. Let 1k denote the k×1 column of 1’s and 0ℓ denote the ℓ×1 column of
0’s. For two given matrices A, B which have the same number of rows, let [A |B] denote
the matrix of A concatenated with B. Let K≤ℓ

k
denote the matrix [Kℓ

k
| Kℓ−1

k
| · · · | K0

k
].

For a set of rows S, let A|S denote the submatrix of A restricted to rows S.
We define B×C as the product of two matrices B, C as follows: Assume B, C have b, c

rows respectively. Then B × C has b + c rows and ‖B‖ · ‖C‖ columns. The columns are
formed from a column of B on top of a column of C in all possible ways. Column 12 ×02

would be (1, 1, 0, 0)T . Also [01] × Kk−1 = Kk. Product constructions were conjectured
in [4] to be the asymptotically best constructions avoiding a configuration. A survey on
Forbidden Configurations can be found in [1].

2 Genetic Algorithm for Finding Extremal Matrices

In this section, we consider F a family of (small) configurations and m a (small) fixed
integer. Suppose we wish to to find (or rather, guess) forb(m,F) using the computer.
The idea is to consider all the 2m columns and add them one by one into a matrix
A ∈ Avoid(m,F), making sure at each step we don’t create any F ∈ F as a configuration.
The order in which to add columns is what will determine the size of ‖A‖ at the end of the
process. To do this, enumerate all the columns and for each permutation of [2m] find the
number of columns that would be added while avoiding all F ∈ F if we were to add them
in that order. So the search space has size (2m)!, which is too big to search exhaustively,
but local search can find the correct answer when m isn’t too large. We’ll describe three
methods.

For each permutation, we can separate the columns into good columns (which together
form a matrix in Avoid(m,F))and bad columns. We wish then to find a permutation
that maximizes the number of good columns. Perhaps this explanation could benefit by
an example. Suppose we wanted to forbid

F =

[

1 0
0 1

]

and suppose m = 3. Consider all eight 3-rowed columns in the following order:

1 2 3 4 5 6 7 8

0
0
0

1
0
0

0
1
0

0
0
1

1
1
0

1
0
1

0
1
1

1
1
1

Then consider the permutation (4, 1, 3, 6, 5, 8, 2, 7). We start adding columns in the order
given by this permutation. If adding a certain column would give rise to a copy of F , then
don’t add it and continue to the next one. Here is how it would work for this particular
permutation:

the electronic journal of combinatorics 18 (2011), #P230 3

• Add column 4.

A =

0
0
1

• Add column 1:

A =

0 0
0 0
1 0

• Can’t add column 3.

• Add column 6:

A =

0 0 1
0 0 0
1 0 1

• Can’t add column 5.

• Add column 8:

A =

0 0 1 1
0 0 0 1
1 0 1 1

• Can’t add column 2.

• Can’t add column 7.

We end up with four good columns, {4, 1, 6, 8} and four bad columns, {3, 5, 2, 7}.

2.1 Brute Force approach

The brute force method does the following:

• Choose a permutation at random.

• Separate into good and bad columns.

• Count the number of good columns.

• Repeat, while keeping track of the “best” so far (i.e. the one with the most number
of good columns)

The strength of this method is that we may do this thousands of times in a relatively short
time. This method is good for small configurations in which there are many different ways
to achieve the bound but, in our experience, there are many cases where this method fails
to find an extremal matrix.

the electronic journal of combinatorics 18 (2011), #P230 4

2.2 Hill Climbing

This is an improvement over the above described method using the idea of Hill Climbing.
Start with some permutation and separate into good and bad columns, and then for each
column b in bad, form a new permutation by putting b at the beginning, but leaving all
others in place. This ensures that the chosen column b is selected when performing the
separation task again for the new permutation. From all possible choices of b, pick the
“best one”; that is, the one which gives rise to the most columns in good. If there are
ties, pick one at random. Repeat this process until there is no improvement for a number
of steps. In the example described before, we would have to consider all the following
permutations:

1. (3, 4, 1, 6, 5, 8, 2, 7)

2. (5, 4, 1, 3, 6, 8, 2, 7)

3. (2, 4, 1, 3, 6, 5, 8, 7)

4. (7, 4, 1, 3, 6, 5, 8, 2)

In this example all these permutations give four good columns, but in general some might
be better than others.

Hill Climbing as described above gets stuck easily, but it does perform better than
brute force.

2.3 Genetic Algorithms

An even better way (in practice, we’ve found) to search the space is using a Genetic
Algorithm. The idea behind Genetic Algorithms is to mimic evolution. We maintain
a population of ‘individuals’ and assign ‘fitness’ to them in some way (in our case, the
number of ‘good’ columns). Then pick two at random, but giving higher probability to
those with higher fitness. Call them father and mother. Then combine them in some way
to produce offspring, hopefully with better results than either father or mother. Do this
for many generations.

There are many ways to combine permutations. One that we found that works well
for Forbidden Configurations is as follows:

1. For both father and mother, separate the numbers (of the columns) into good and
bad.

2. Choose a random number from the good part of mother, and select all numbers (of
columns) from the good part starting from the first good column and going up to
the chosen number.

3. Permute the entries of father so that the numbers selected from the good part of
mother are in the same order as those in mother.

the electronic journal of combinatorics 18 (2011), #P230 5

This is better shown with an example. Suppose we had a father and a mother like this:

father = (2, 3, 6, 1 | 7, 4, 8, 5) and mother = (5, 3, 8, 1, 4 | 7, 2, 6)

with the numbers shown before the vertical line being the good part and the numbers
shown after the vertical line being the bad part. Pick a random entry in the good part
of mother. For example, pick 1 and look at the numbers that appear to the left of the
picked number. In this case, (5, 3, 8, 1). In father, select these numbers.

father = (2, 3, 6, 1|7, 4, 8, 5)

Make child by shuffling the selected entries in father so that they match the order of
mother.

child = (2, 5, 6, 3, 7, 4, 8, 1).

Finally, separate the columns of child into good and bad. This approach has given very
good results in our experience. In particular for the two matrices V and W the Genetic
Algorithm gave us the matrices which were later proved to be extremal. Then by having
the conjectured extremal matrices it was relatively straightforward to construct the proofs.
We discuss these proofs in the following sections.

3 Two Proof techniques for Forbidden Configura-

tions

3.1 Standard Induction

The following induction idea has been very successful for studying Forbidden Configura-
tions. Let A ∈ Avoid(m, F). Consider deleting a row r. Let Cr(A) be the matrix that
consists of the repeated columns of the matrix that is obtained when deleting row r from
A. For example, permute the rows of A so that r becomes the first row. Let A′ be the
matrix obtained from A by deleting row r. Now A′ need not be simple and so let Cr(A)
denote the largest simple (m−1)-rowed submatrix of A′ so that A′ contains [Cr(A)Cr(A)].
After column permutations, we may decompose A as follows:

A =
row r →

[

0 · · · 0 1 · · · 1
Br(A) Cr(A) Cr(A) Dr(A)

]

,

where Br(A) are the columns that appear with a 0 on row r, but don’t appear with a 1,
and Dr(A) are the columns that appear with a 1 but not a 0 and Cr(A) are the columns
that appear with both with a 0 and with a 1 on row r. Thus [Br(A)Cr(A)Dr(A)] is a
simple (m − 1)-rowed matrix in Avoid(m − 1, F). We deduce

‖A‖ ≤ ‖Cr(A)‖ + forb(m − 1, F). (3.1)

This means any upper bound on ‖Cr(A)‖ (as a function of m), automatically yields an
upper bound on ‖A‖ by induction.

the electronic journal of combinatorics 18 (2011), #P230 6

Since Cr(A) consists of the repeated columns, we can deduce extra conditions. In
particular A contains [0 1]×Cr(A). Thus if for example F ′ is obtained from F by deleting
a row then Cr(A) ∈ Avoid(m− 1, F ′). Also if F ≺ [F ′′|F ′′], then Cr ∈ Avoid(m− 1, F ′′).
We search for a row r of A such that ‖Cr(A)‖ is as small as possible. If we could prove
that there always exists a row r such that ‖Cr(A)‖ is small enough, we could proceed by
induction.

3.2 What is Missing?

Suppose F , the forbidden configuration, has s rows and suppose A doesn’t contain F .
Consider all s-tuples of rows from A and for each s-tuple of rows S, consider the submatrix
A|S of A formed from rows S of A. For example, if s = 2 and S = {2, 4} and

A =

0 1 0 0 1 1 0
0 1 1 0 1 0 0
0 1 0 1 0 1 0
0 0 0 1 0 1 1

then

A|S =

[

0 1 1 0 1 0 0
0 0 0 1 0 1 1

]

Without any restriction, AS could have all 2|S| possible columns, each appearing multiple
times. But with the restriction that F ⊀ A, in particular F ⊀ A|S, so some columns have
to be missing; we can’t have all 2s columns appear in A|S as many times as they appear
in F . Some may not appear at all. In our example, the column

[

0

0

]

appears only once in

A|S, while
[

1

0

]

and
[

0

1

]

both appear 3 times, but
[

1

1

]

doesn’t appear at all.
We wrote a program whose input is a configuration F (or even a family of configu-

rations F), and its output is the list of possibilities for columns absent or appearing a
restricted number of times. Studying this list often is often easier than studying F for the
purpose of analyzing what the structure of a matrix in Avoid(m, F) is. Unfortunately, the
program performs doubly exponential (O(22s

)) matrix comparison operations, where s is
the number of rows on which we wish to find what is missing. Furthermore, each matrix
comparison takes O(s!) time. In practice, this means checking ≤ 4 rows is instantaneous,
5 rows takes, depending on the configuration, anywhere from a few minutes to a couple of
hours, and with 6 rows we would have to make ∼ 264 configuration comparison operations,
which is many orders of magnitude more than any computer could handle.

4 Exact bound for W

We’ll prove that forb(m, W) =
(

m

2

)

+
(

m

1

)

+
(

m

0

)

+ m− 2. We can check that the first few
cases (for m ≤ 5) work using a computer. Then we proceed by the Standard Induction:
Let A ∈ Avoid(m, F). If we could find some row r for which ‖Cr(A)‖ ≤ m + 1, then we
could conclude using 3.1 that

the electronic journal of combinatorics 18 (2011), #P230 7

‖A‖ ≤ m + 1 +

(

m − 1

2

)

+

(

m − 1

1

)

+

(

m − 1

0

)

+ (m − 1) − 2

=

(

m

2

)

+

(

m

1

)

+

(

m

0

)

+ m − 2.

So we may assume that ‖Cr(A)‖ ≥ m + 2 for every r.
Since Cr(A) consists of repeated columns of A, note it cannot contain any of the

following three configurations:

G1 =

1 1
1 0
0 1

 , G2 =

[

1 1 0 0
0 0 1 1

]

, G3 =

[

1 1 1 1
1 1 0 0

]

.

Given that Cr(A) ∈ Avoid(m − 1, {G1, G2, G3}), the following Lemma establishes that
‖Cr(A)‖ ≤ (m − 1) + 3 = m + 2.

Lemma 4.1. Let m ≥ 4. Then forb(m, {G1, G2, G3}) = m + 3.

Proof: For the lower bound forb(m, {G1, G2, G3}) ≥ m+3 an example (which was found
again using our Local Search strategies) suffices. Consider the matrix

A = [0m | K1

m | 1m | α],

where α is any other column. Clearly A ∈ Avoid(m, {G1, G2, G3}) and ‖A‖ = m + 3. To
prove the upper bound, we proceed by induction on m. Let A ∈ Avoid(m, {G1, G2, G3}).
Then, if we forbid {G1, G2, G3}, below are the 16 possible cases of what is missing on each
quadruple of rows.

no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 > 1 > 1

1
0
1
0

0
1
1
0

1
0
0
1

0
1
0
1

1
1
0
1

0
0
1
1

1
0
1
1

0
1
1
1

1
1
1
1

1
0
0
0

0
1
0
0

0
0
1
0

1
1
1
0

0
0
0
1

0
0
0
0

1
1
0
0

no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 > 1 > 1

1
0
1
0

0
1
1
0

1
1
1
0

1
0
0
1

0
1
0
1

1
1
0
1

0
0
1
1

1
0
1
1

0
1
1
1

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

1
1
1
1

0
0
0
0

1
1
0
0

no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 > 1 > 1

1
1
0
0

1
0
0
1

0
1
0
1

1
0
1
0

0
1
1
0

1
1
1
0

0
0
1
1

1
0
1
1

0
1
1
1

1
0
0
0

0
1
0
0

0
0
0
1

0
0
1
0

1
1
1
1

0
0
0
0

1
1
0
1

the electronic journal of combinatorics 18 (2011), #P230 8

no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 ≤ 1 > 1 > 1

1
0
1
0

0
1
1
0

1
1
1
0

1
0
0
1

0
1
0
1

1
1
0
1

0
0
1
1

1
0
1
1

0
1
1
1

1
1
1
1

0
1
0
0

1
1
0
0

0
0
1
0

0
0
0
1

0
0
0
0

1
0
0
0

no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 ≤ 1 > 1 > 1

1
1
0
0

1
0
1
0

0
1
1
0

1
0
0
1

0
1
0
1

1
1
0
1

0
0
1
1

1
0
1
1

0
1
1
1

1
1
1
1

0
1
0
0

0
0
1
0

1
1
1
0

0
0
0
1

0
0
0
0

1
0
0
0

no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 ≤ 1 > 1 > 1

1
1
0
0

1
0
1
0

0
1
1
0

1
1
1
0

1
0
0
1

0
1
0
1

1
1
0
1

0
0
1
1

1
0
1
1

0
1
1
1

0
1
0
0

0
0
1
0

0
0
0
1

1
1
1
1

0
0
0
0

1
0
0
0

no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 ≤ 1 > 1 > 1

1
1
0
0

1
0
1
0

0
1
1
0

1
1
1
0

1
0
0
1

0
1
0
1

1
1
0
1

0
0
1
1

1
0
1
1

0
1
1
1

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

0
0
0
0

1
1
1
1

no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 ≤ 1 > 1 > 1

0
0
1
0

1
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

1
0
0
1

0
1
0
1

1
1
0
1

1
0
1
1

0
1
1
1

1
0
0
0

0
1
0
0

0
0
1
1

1
1
1
1

0
0
0
0

1
1
0
0

no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 ≤ 1 > 1 > 1

1
1
0
0

0
0
1
0

1
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

1
0
0
1

0
1
0
1

1
1
0
1

0
1
1
1

1
0
0
0

0
1
0
0

0
0
1
1

1
1
1
1

0
0
0
0

1
0
1
1

no no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 > 1 > 1

0
0
1
0

1
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

1
0
0
1

0
1
0
1

1
1
0
1

1
0
1
1

0
1
1
1

1
1
1
1

0
1
0
0

1
1
0
0

0
0
1
1

0
0
0
0

1
0
0
0

no no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 > 1 > 1

1
1
0
0

0
0
1
0

1
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

1
0
0
1

0
1
0
1

1
1
0
1

0
1
1
1

1
1
1
1

0
1
0
0

0
0
1
1

1
0
1
1

0
0
0
0

1
0
0
0

the electronic journal of combinatorics 18 (2011), #P230 9

no no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 > 1 > 1

1
1
0
0

0
0
1
0

1
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

1
0
0
1

0
1
0
1

1
1
0
1

1
0
1
1

0
1
1
1

0
1
0
0

0
0
1
1

1
1
1
1

0
0
0
0

1
0
0
0

no no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 > 1 > 1

1
1
0
0

0
0
1
0

1
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

1
0
0
1

0
1
0
1

1
1
0
1

1
0
1
1

0
1
1
1

1
0
0
0

0
1
0
0

0
0
1
1

0
0
0
0

1
1
1
1

no no no no no no no no no no no no ≤ 1 ≤ 1 > 1 > 1

0
1
0
0

1
1
0
0

0
0
1
0

1
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

1
0
0
1

0
1
0
1

1
1
0
1

0
0
1
1

1
0
1
1

0
1
1
1

1
1
1
1

0
0
0
0

1
0
0
0

no no no no no no no no no no no no ≤ 1 ≤ 1 > 1 > 1

0
1
0
0

1
1
0
0

0
0
1
0

1
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

1
0
0
1

0
1
0
1

1
1
0
1

0
0
1
1

1
0
1
1

1
0
0
0

0
1
1
1

0
0
0
0

1
1
1
1

no no no no no no no no no no no no ≤ 1 ≤ 1 > 1 > 1

1
0
0
0

0
1
0
0

0
0
1
0

1
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

1
0
0
1

0
1
0
1

1
1
0
1

1
0
1
1

0
1
1
1

1
1
0
0

0
0
1
1

0
0
0
0

1
1
1
1

We easily check this list to see that there are at most seven columns present on four rows
(at least 9 are absent) and so forb(4, {G1, G2, G3}) = 7. Now consider m ≥ 5. It’s easy
to check that in every quadruple there is a row (the final row will always work) and a
column we can delete from A and keep the remaining (m − 1)-rowed matrix A′ simple.
Then by induction, ‖A′‖ ≤ (m − 1) + 3 = m + 2 and then ‖A‖ ≤ ‖A′‖ + 1 ≤ m + 3. To
find such a row and column, look at the columns marked ≤ 1 and > 1, and see that there
is a row we can delete such that the only repeat (if there is one) has one of the columns
marked ≤ 1. We used the help of the free software sage (http://www.sagemath.org/),
but it could also be done by hand. For example, for the first possibility,

i
j
k
ℓ

≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 > 1 > 1

1
0
0
0

0
1
0
0

0
0
1
0

1
1
1
0

0
0
0
1

0
0
0
0

1
1
0
0

,

deleting from A the row ℓ and the column of A corresponding to the fifth column above
is enough to keep the resulting matrix A′ simple. Thus ‖A‖ ≤ m + 3. �

the electronic journal of combinatorics 18 (2011), #P230 10

We need a more detailed lemma about the structure of any m × (m + 3) matrix in
Avoid(m, {G1, G2, G3}). This was predicted using our Genetic Algorithm too.

Lemma 4.2. Let A ∈ Avoid(m, {G1, G2, G3}) with m ≥ 5 and ‖A‖ = m + 3. Then
K1

m ≺ A. Moreover, the remaining three columns are 0m and two additional columns α, β
with α < β (meaning that on each row for which α has a 1, β also has a 1).

Proof: We proceed by induction on m. We checked all cases with m ≤ 5 using a
computer. Assume A ∈ Avoid(m, {G1, G2, G3}) with ‖A‖ = m + 3 and m ≥ 6. The fact
that A has no G1 means the columns, when considered as sets, form a laminar family :
Namely for any two columns α, β, either α < β or β < α or α, β have no row in which
both have 1’s. Sometimes the term noncrossing is used. Viewing the columns as sets, we
are asking that for any two sets A, B, either A ⊂ B, B ⊂ A or A ∩ B = ∅.

From our proof of Lemma 4.1, there is a row and a column from A we can delete to
obtain a (m − 1) × (m + 2) simple matrix A′. We may assume K1

m−1 ≺ A′ by induction.
Assume we deleted the last row from A to obtain A′ and that the deleted column was
the last column of A. If we restrict ourselves to the first m − 1 rows, the deleted column
has to be a repeat of one of the columns of A′, else we would have an (m − 1) × (m + 3)
simple matrix contradicting Lemma 4.1.

At this point the proof is finished save for a case analysis on each of the possible
columns to repeat. In each case we repeat a column and attempt to find either G1, G2

or G3. This case analysis is probably much easier as an exercise for the reader than it is
to either write or read about. Given that no interesting ideas appear in this admittedly
tedious but very straightforward case analysis, we have moved it to Appendix A for the
interested reader.

We are now ready to prove Theorem 1.2.
Proof of Theorem 1.2: We use induction on m. The result is true for m = 3 so we
may assume m ≥ 4. Let A ∈ Avoid(m, W). Apply the decomposition (3.1). If ‖Cr(A)‖ ≤
m + 1, then we apply (3.1) to establish the bound for ‖A‖ by induction. So assume
‖Cr(A)‖ ≥ m + 2 for all choices of r. By Lemma 4.1, we deduce that ‖Cr(A)‖ = m + 2
for every row r, and by Lemma 4.2, we have that K1

m−1 ≺ Cr(A) also for every row r.
Thus K2

m
≺ A, since all columns of column sum 1 in Cr(A) appear with a 1 in row r

(and this happens for every row r). We also have [K1
m

| K0
m

] ≺ A. Now in every triple
of rows of K2

m we have the matrix G1 once in every ordering of the triple. Given that
W = [G1 | G1], the columns of A of column sum at least 3 have no configuration G1. We
appeal to Lemma 4.3 below to deduce that the number of columns in A of column sum
at least 3 is at most m−2. Then ‖A‖ ≤

(

m

2

)

+
(

m

1

)

+
(

m

0

)

+m−2 which yields the desired
bound. �

A quick counting argument reveals the following general result about laminar families
which we use in the proof of Theorem 1.2.

Lemma 4.3. Let m ≥ 3 and let Z be a laminar family of subsets of [m] = {1, 2, ..., m}
with the property that for all Z ∈ Z we have |Z| ≥ 3. Then |Z| ≤ m−2 and furthermore,

the electronic journal of combinatorics 18 (2011), #P230 11

this bound is tight (i.e. there exist a family Z for which |Z| = m − 2). Thus, if A ∈
Avoid(m, F) satisfies that all column sums are at least 3, then ‖A‖ ≤ m − 2.

Proof: Let f(x) denote the size of the largest laminar family of [x] with no sets of size
less than or equal to 2. Assume A ∈ Avoid(m, F) with the property that all column sums
are at least 3. We wish to show that f(m) = m − 2.

The family {[3], [4], . . . , [m]} has size m− 2, which proves f(m) ≥ m− 2. We wish to
prove f(m) ≤ m − 2.

Let Z be such that |Z| = f(m). We may assume [m] ∈ Z: if [m] /∈ Z, observe that
Z∪{[m]} is also a laminar family of bigger size. Suppose then that the next biggest set Z
in Z has size k. We partition [m] into two disjoint sets: Z and [m]\Z. Every set Y ∈ Z
satisfies either Y ⊆ Z or Y ⊆ [m]\Z or Y = [m]. This gives the recurrence

f(m) ≤ 1 + f(k) + f(m − k).

If k 6= m − 1, then by induction f(k) = k − 2 and f(m − k) = m − k − 2, and
so f(m) ≤ 1 + k − 2 + m − k − 2 = m − 3, a contradiction. When k = m − 1 we
have f(m) ≤ m − 2. Moreover if f(m) = m − 2 we observe that Z is “equivalent” to
{[3], [4], . . . , [m]}. �

5 Exact bound for V

Using the computer, we can prove by exhaustively looking at all the possibilities that
forb(3, V) = 8, forb(4, V) = 13, forb(5, V) = 18. Using the Genetic Algorithm of Sec-
tion 2, we obtained large matrices with no subconfiguration V which suggested to us that
forb(6, V) = 25, forb(7, V) = 32, forb(8, V) = 40. For m ≥ 6, this suggests forb(m, V) =
(

m

2

)

+
(

m

1

)

+
(

m

0

)

+ 3, two more than our first guess that forb(m, V) = forb(m, X).
The Genetic Algorithm also predicted the structure of matrices in ext(m, V). Following

from the matrices discovered by the Genetic Algorithm, we will consider the following
matrices in Avoid(m, V): Consider a partition of the m rows into two disjoint sets, say
U = {1, 2, . . . , u} and L = {u + 1, u + 2, . . . , m}. Suppose |U | = u and |L| = ℓ with
u + ℓ = m. Let A′ have the following structure:

A′ =
U

L

0u

×
0ℓ

0u

×
1ℓ

0u

×
Kℓ−1

ℓ

0u

×
Kℓ−2

ℓ

K1
u

×
Kℓ−1

ℓ

1u

×
0ℓ

K1
u

×
1ℓ

K2
u

×
1ℓ

1u

×
1ℓ

 . (5.1)

We easily check that A′ ∈ Avoid(m, V) and for 3 ≤ u, ℓ ≤ m − 3 we have ‖A‖ =
(

m

2

)

+
(

m

1

)

+
(

m

0

)

+3. We will prove that A′ ∈ ext(m, V) and hence establish Theorem 1.3.
To prove this, consider some A ∈ Avoid(m, V) and apply the standard decomposition 3.1.
We deduce that Cr(A) can’t have any of the three following configurations:

H1 =

1 0
1 0
0 1

 , H2 =

[

1 1 0 0
0 0 1 1

]

, H3 =

[

1 1 0 0
1 1 0 0

]

the electronic journal of combinatorics 18 (2011), #P230 12

We use the computer again to conjecture a structure on the (m−1)-rowed Cr(A) when
‖Cr(A)‖ = m + 1 and Cr(A) ∈ Avoid(m − 1, {H1, H2, H3}).

Lemma 5.1. Let m ≥ 4 and A ∈ Avoid(m, {H1, H2, H3}). We have ‖A‖ ≤ m + 2.

Proof: Using the computer, we find that one of the following must hold for each quadruple
of rows of A.

no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 ≤ 1 > 1 > 1

1
1
0
0

1
0
1
0

0
1
1
0

1
1
1
0

1
0
0
1

0
1
0
1

1
1
0
1

0
0
1
1

1
0
1
1

0
1
1
1

0
1
0
0

0
0
1
0

0
0
0
1

1
1
1
1

0
0
0
0

1
0
0
0

no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 ≤ 1 > 1 > 1

0
0
1
0

1
0
1
0

0
1
1
0

0
0
0
1

1
0
0
1

0
1
0
1

0
0
1
1

1
0
1
1

0
1
1
1

1
1
1
1

0
0
0
0

0
1
0
0

1
1
1
0

1
1
0
1

1
0
0
0

1
1
0
0

no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 ≤ 1 > 1 > 1

0
1
0
0

0
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

0
1
0
1

1
1
0
1

0
0
1
1

1
0
1
1

0
1
1
1

0
0
0
0

1
0
1
0

1
0
0
1

1
1
1
1

1
0
0
0

1
1
0
0

no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 ≤ 1 > 1 > 1

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

1
0
0
1

0
1
0
1

1
1
0
1

0
0
1
1

1
0
1
1

0
1
1
1

0
0
0
0

1
0
1
0

0
1
1
0

1
1
1
1

1
1
0
0

1
1
1
0

no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 ≤ 1 > 1 > 1

1
0
0
0

0
1
0
0

1
1
0
0

0
0
0
1

1
0
0
1

0
1
0
1

0
0
1
0

1
0
1
0

0
1
1
0

0
0
1
1

0
0
0
0

1
1
1
0

1
0
1
1

0
1
1
1

1
1
0
1

1
1
1
1

no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 ≤ 1 > 1 > 1

0
0
0
0

0
0
1
0

1
0
1
0

0
0
1
1

0
1
0
0

1
1
0
0

0
1
0
1

0
1
1
0

1
1
1
0

0
1
1
1

1
0
0
0

0
0
0
1

1
1
0
1

1
1
1
1

1
0
0
1

1
0
1
1

no no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 > 1 > 1

1
1
0
0

1
0
1
0

0
1
1
0

0
0
0
1

1
0
0
1

0
1
0
1

1
1
0
1

0
0
1
1

1
0
1
1

0
1
1
1

1
1
1
1

0
1
0
0

0
0
1
0

1
1
1
0

0
0
0
0

1
0
0
0

the electronic journal of combinatorics 18 (2011), #P230 13

no no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 > 1 > 1

0
1
0
0

0
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

0
1
0
1

1
1
0
1

0
0
1
1

1
0
1
1

0
1
1
1

1
1
1
1

1
1
0
0

1
0
1
0

1
0
0
1

0
0
0
0

1
0
0
0

no no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 > 1 > 1

0
0
1
0

1
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

1
0
0
1

0
1
0
1

1
1
0
1

0
0
1
1

1
0
1
1

0
1
1
1

0
0
0
0

0
1
0
0

1
1
1
1

1
0
0
0

1
1
0
0

no no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 > 1 > 1

0
1
0
0

0
0
1
0

0
1
1
0

0
0
0
1

1
0
0
1

0
1
0
1

1
1
0
1

0
0
1
1

1
0
1
1

0
1
1
1

1
1
1
1

0
0
0
0

1
0
1
0

1
1
1
0

1
0
0
0

1
1
0
0

no no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 > 1 > 1

1
0
0
0

0
0
0
1

0
0
1
0

1
0
1
0

0
0
1
1

0
1
0
0

1
1
0
0

0
1
0
1

0
1
1
0

1
1
1
0

0
1
1
1

0
0
0
0

1
1
0
1

1
1
1
1

1
0
0
1

1
0
1
1

no no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 > 1 > 1

0
0
0
0

0
1
0
0

0
0
1
0

0
1
1
0

0
0
0
1

1
0
0
1

0
1
0
1

1
1
0
1

0
0
1
1

1
0
1
1

0
1
1
1

1
0
0
0

1
0
1
0

1
1
1
1

1
1
0
0

1
1
1
0

no no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 > 1 > 1

0
0
0
0

0
1
0
0

1
1
0
0

0
0
0
1

1
0
0
1

0
1
0
1

0
0
1
0

1
0
1
0

0
1
1
0

0
0
1
1

0
1
1
1

1
0
0
0

1
1
1
0

1
0
1
1

1
1
0
1

1
1
1
1

no no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 > 1 > 1

0
0
0
0

1
0
0
0

0
1
0
0

0
0
0
1

0
0
1
0

1
0
1
0

0
1
1
0

1
1
1
0

0
0
1
1

1
0
1
1

0
1
1
1

1
1
0
0

1
0
0
1

0
1
0
1

1
1
0
1

1
1
1
1

no no no no no no no no no no no no ≤ 1 ≤ 1 > 1 > 1

0
0
1
0

1
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

1
0
0
1

0
1
0
1

1
1
0
1

0
0
1
1

1
0
1
1

0
1
1
1

1
1
1
1

0
1
0
0

1
1
0
0

0
0
0
0

1
0
0
0

the electronic journal of combinatorics 18 (2011), #P230 14

no no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 ≤ 1 > 1

0
1
0
0

1
1
0
0

0
0
1
0

1
0
1
0

0
1
1
0

0
0
0
1

1
0
0
1

0
1
0
1

0
0
1
1

0
1
1
1

1
1
1
1

0
0
0
0

1
1
1
0

1
1
0
1

1
0
1
1

1
0
0
0

no no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 ≤ 1 > 1

0
0
0
0

1
1
0
0

1
0
1
0

0
1
1
0

0
0
0
1

1
0
0
1

0
1
0
1

1
1
0
1

0
0
1
1

1
0
1
1

0
1
1
1

1
0
0
0

0
1
0
0

0
0
1
0

1
1
1
1

1
1
1
0

no no no no no no no no no no no no ≤ 1 ≤ 1 > 1 > 1

0
0
0
0

1
0
0
0

0
0
0
1

0
0
1
0

1
0
1
0

0
0
1
1

0
1
0
0

1
1
0
0

0
1
0
1

0
1
1
0

1
1
1
0

0
1
1
1

1
0
0
1

1
1
0
1

1
0
1
1

1
1
1
1

no no no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 > 1

1
0
0
0

0
1
0
0

0
0
1
0

1
1
1
0

0
0
0
1

1
0
0
1

0
1
0
1

1
1
0
1

0
0
1
1

1
0
1
1

0
1
1
1

1
1
1
1

1
1
0
0

1
0
1
0

0
1
1
0

0
0
0
0

no no no no no no no no no no no no ≤ 1 ≤ 1 ≤ 1 > 1

0
0
0
0

1
0
0
0

0
1
0
0

0
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

0
1
0
1

1
1
0
1

0
0
1
1

1
0
1
1

0
1
1
1

1
1
0
0

1
0
1
0

1
0
0
1

1
1
1
1

This verifies in particular that forb(4, {H1, H2, H3}) = 6 (at least 10 columns out of 16
are absent in each of the twenty cases). We proceed as we did in Lemma 4.1 and verify
that each of these possibilities yields one row and at most one column that we can delete
from A, maintaining simplicity. This means that ‖A‖ ≤ m + 2 by induction. �

Lemma 5.2. Assume m ≥ 4. Let A ∈ Avoid(m, {H1, H2, H3}) with ‖A‖ = m + 2. Then
there exists a partition U ⊆ [m] and L = [m]\U with |U | = u ≥ 1 and |L| = ℓ = m−u ≥ 1
(U for Upper and L for Lower) so that if we permute rows,

A =
U

L

0u K1
u

0u 0u

× × × ×
1ℓ 1ℓ Kℓ−1

ℓ
0ℓ

 or A =
U

L

0u K1
u

0u 1u

× × × ×
1ℓ 1ℓ Kℓ−1

ℓ
1ℓ

 (5.2)

Note that in the former case we must have ℓ ≥ 2 and in the latter case u ≥ 2.

Proof: We use induction on m. The result is true for m = 4. Assume m ≥ 5. Let
A ∈ Avoid(m, {H1, H2, H3}). By our argument in Lemma 5.1, there is a row and a single

the electronic journal of combinatorics 18 (2011), #P230 15

column we can delete, leaving the remainder simple. Let A′ be the resulting simple matrix.
We may assume by induction that there exists disjoint sets U ′, L′ such that |U ′| = a ≥ 1,
|L′| = b ≥ 1 where a + b = m − 1 so that after permuting rows and columns,

A′ =
U ′

L′

0a K1
a

0a 0a

× × × ×
1b 1b Kb−1

b
0b

 , or A′ =
U ′

L′

0a K1
a

0a 1a

× × × ×
1b 1b Kb−1

b
1b

 .

Without loss of generality, we may assume b ≥ 2. Assume the last column (m + 2) and
last row (m) of A is deleted to obtain A′. After deleting row m, the last column of A
must be one of the columns of A′ given that ‖A′‖ = forb(m, {H1, H2, H3}). In order to
avoid H1, H2 and H3 in A, we can show that we have the desired structure (5.1) in A with
either a or b one larger.

As in the proof of Theorem 1.2, we must do some tedious but straightforward case
analysis for which column gets repeated. We move the gory details of the case analysis to
Appendix B. Again, this case analysis is much easier to do by oneself than it is to either
write or read about. �

Proof of Theorem 1.3: We use induction on m for m ≥ 6. We established by computer
that forb(5, V) = 18 (which is smaller than the bound of Theorem 1.3). Noting that
forb(5, {H1, H2, H3}) = 7, we deduce using (3.1) that

forb(6, V) ≤ forb(5, V) + forb(5, {H1, H2, H3}) = 18 + 7 = 25

and so forb(6, V) = 25, because of construction (5.1). Thus, we may assume m ≥ 7.
By induction, assume forb(m−1, V) =

(

m−1

2

)

+
(

m−1

1

)

+
(

m−1

0

)

+3. Let A ∈ Avoid(m, V)
with ‖A‖ = forb(m, V). Apply the standard decomposition (3.1) to A for some row r. If
‖Cr(A)‖ ≤ m, we obtain

‖A‖ ≤ ‖Cr(A)‖ + forb(m − 1, V)

≤ m +

(

m − 1

2

)

+

(

m − 1

1

)

+

(

m − 1

0

)

+ 3

=

(

m

2

)

+

(

m

1

)

+

(

m

0

)

+ 3

Thus, we may assume that for every r we have ‖Cr(A)‖ ≥ m+1. Using Lemma 5.1 (with
m replaced by m−1), we may assume ‖Cr(A)‖ = m+1 for each r. Then using Lemma 5.2
we can assume Cr(A) has the structure of (5.2) for every r so that every Cr(A) partitions
[m]\r rows into sets Ur, Lr with |Ur|, |Lr| ≥ 2. Note also that the only difference between
the two possible structures is a column of 0’s or a column of 1’s neither of which is used in
the case analysis below. Furthermore, we will prove that there is a partition of the rows
[m] of A into U, L where Ur = U\r and Lr = L\r.

Take two rows, say s and t. Consider Cs(A) and Ct(A) as determined by (3.1) by
setting r = s and r = t. Applying Lemma 5.2 when considering Cs(A) and Ct(A) we

the electronic journal of combinatorics 18 (2011), #P230 16

obtain the partitions Us, Ls, Ut, Lt of rows. Remember that Cs(A) and Ct(A) both
appear twice in A with 0’s and 1’s in rows s and t respectively. We now define partitions
U ′

s
= Us\t, L′

s
\t, U ′

t
\s, L′

t
\s so that U ′

s
∪ L′

s
= [m]\{s, t} = U ′

t
∪ L′

t
. We assumed m ≥ 7

and so |[m]\{s, t}| ≥ 5. Hence we may assume that at least one of U ′
s and L′

s has size at
least 3. Without loss of generality, assume |U ′

s
| ≥ 3.

Let

X =

1 1
1 1
0 0

 , Y =

0 0
0 0
1 1

 .

Consider the following three cases:

|U ′
s
∩ L′

t
| ≥ 3: We can find V in rows U ′

s
∩ L′

t
in A (since A contains two copies of K1

3 in
each triple of rows of U ′

s
and two copies of K2

3 in each triple of rows of L′
t
).

|U ′
s
∩ L′

t
| = 2: Then |U ′

s
∩ U ′

t
| ≥ 1, and so we can find V in A|U ′

s

by taking two rows of
U ′

s ∩L′
t together with any row in the intersection U ′

s ∩U ′
t . We find Y as a submatrix

in any row order (A contains two copies of K1
3 in each triple of rows of U ′

s
) and we

also have X as a submatrix whose first two rows are from U ′
s
∩ L′

t
and the last one

from U ′
s ∩ U ′

t . This yields V .

|U ′
s ∩ L′

t| = 1: We have |U ′
s ∩ U ′

t | ≥ 2, and so we can find V in A|U ′

s

by taking the row of
U ′

s
∩L′

t
together with two rows in the intersection U ′

s
∩U ′

t
. We find Y as a submatrix

in any row order (A contains two copies of K1
3 in each triple of rows of U ′

s
) and we

also have X as a submatrix whose first row is U ′
s ∩ L′

t and last two rows are from
U ′

s
∩ U ′

t
. This yields V .

This means that |U ′
s
∩ L′

t
| = 0 and so U ′

s
⊂ U ′

t
, but then |U ′

t
| ≥ 3 and so analogously

U ′
t
⊂ U ′

s
. So U ′

s
= U ′

t
, and then L′

s
= L′

t
. The same conclusion will hold if |L′

s
| ≥ 3. Thus

for all s, t ∈ [m], U ′
s

= U ′
t
, and then L′

s
= L′

t
.

Using m ≥ 4, we may now deduce that there is a partition U, L of [m] so that for any
r, Ur = U\r and Lr = L\r. This proves that the partition for each Cr is really a global
partition. Let |U | = u and |L| = ℓ. We know u, ℓ ≥ 2 since for example if |U ′

r
| ≥ 1 and

U ′
r

= {s} then U ′
s
∪ {s} ⊆ U and we have |U | ≥ 2.

Note that for every row r, we have that [0 1]×Cr(A) ≺ A. We deduce A contains the
following columns:

B =
U

L

0u

×
0ℓ

0u

×
1ℓ

0u

×
Kℓ−1

ℓ

0u

×
Kℓ−2

ℓ

K1
u

×
Kℓ−1

ℓ

K1
u

×
1ℓ

K2
u

×
1ℓ

1u

×
1ℓ

 . (5.3)

We have included the column of 0’s and the column of 1’s since such columns can be
added to any matrix without creating V . What other columns might we add to this? For
u ≥ 3, matrix B contains

1 0 0
1 0 0
0 1 1

the electronic journal of combinatorics 18 (2011), #P230 17

in any triple of rows or U in any row order. So (A−B)|U must not contain the configuration
(1, 1, 0)T , else A has subconfiguration V . Similarly for ℓ ≥ 3, (A−B)|L must not contain
the configuration (1, 0, 0)T .

Thus, for u, ℓ ≥ 3, all columns of (A −B) are in [0u | K1
u | 1u] × [0ℓ | Kℓ−1

ℓ
| 1ℓ]. The

only column not already in B is 1u × 0ℓ which is a column of the hypothesized structure
(5.1). Thus, without loss of generality, we need only consider the case u = 2, ℓ ≥ 5. Let
U = {a, b} and consider any two rows c, d ∈ L. We know B contains K1

u
× [1ℓ | Kℓ−1

ℓ
] and

[0u | K1
u
] × Kℓ−1

ℓ
. So B has:

a 0 0 1 0 0 1
b 1 1 0
c 1 1 0 0 0 1
d 1 1 0

.

Note we can interchange a with b and c with d. To avoid V we must not have columns in
(A − B) with

a 1 1
b 0
c 0 1
d 0

.

Thus, the only possible columns of A − B are

a 0 1 0 1 1
b 0 0 1 1 1
L α 1ℓ 1ℓ 0ℓ 1ℓ

.

where α is any column. Recall that since ℓ ≥ 3, any such α must avoid configuration
(1, 0, 0)T . All these columns are already in B, except for 12 × 0ℓ, which together with B
completes the hypothesized structure (5.1). The desired bound follows. �

Interestingly, the structure of (5.1) falls short of the bound in the case u = 2.

References

[1] R.P. Anstee, A Survey of Forbidden Configurations results, http://www.math.ubc.
ca/∼anstee.

[2] R.P. Anstee, F. Barekat and A. Sali, Small Forbidden Configurations V: Exact
Bounds for 4 × 2 cases, Studia Sci. Math. Hun., 48(2011), 1-22.

[3] R.P. Anstee, S.N. Karp, Forbidden Configurations: Exact bounds determined by
critical substructures, Elec. J. of Combinatorics, 17 (2010), R50, 27pp.

[4] R.P. Anstee and A. Sali, Small Forbidden Configurations IV, Combinatorica ,
25(2005), 503-518.

[5] Barricelli, Nils Aall, Symbiogenetic evolution processes realized by artificial methods.
Methodos, 9(1957) 143-182.

the electronic journal of combinatorics 18 (2011), #P230 18

[6] Charles Fleurent and Jacques Ferland, Genetic and hybrid algorithms for graph col-
oring, Annals of Operations Research 63 (1996), 437–461.

[7] A. Kapsalis, V. J. Rayward-Smith, and G. D. Smith, Solving the graphical Steiner
tree problem using Genetic Algorithms, The Journal of the Operational Research
Society 44 (1993), no. 4, pp. 397–406.

[8] P. Larrañaga, C. M. H. Kuijpers, R.H. Murga, I. Inza, and S. Dizdarevic, Genetic
algorithms for the travelling salesman problem: A review of representations and op-
erators, Artificial Intelligence Review 13 (1999), 129–170.

[9] Melanie Mitchell, An introduction to Genetic Algorithms, MIT Press, Cambridge,
MA., 1996.

[10] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee, A field guide to
genetic programming, Lulu Enterprises, UK Ltd, 2008.

A Case analysis for W

Recall that in order to prove Lemma 4.2, only a case analysis for which column was
“repeated” is needed. Let A ∈ Avoid(m, {G1, G2, G3}). We deduced that there is a row
and a column of A that we can delete and maintain simplicity. Without loss of generality,
suppose it is the last row and the last column of A. Let A′ be A without the last row and
the last column, which we are assuming by the induction hypothesis to have the desired
structure (described in Lemma 4.2). Recall that aside from the column of zeros and the
columns of K1

m−1, there are two columns α, β in A′ with α < β. We call α the small
column and β the big column. We consider 3 different types of rows of A′:

• Row type 1: Both α, β has 0 in the row.

• Row type 2: Column β has a 1 and α has a 0 in the row.

• Row type 3: Both α, β has 1 in the row.

There may not be any rows of type 1, but there has to be at least one row of type 2 and at
least two rows of type 3. Consider the generic rows below. We’ve included the appropriate
parts of the copy of K1

m−1 and the column of 0’s. The entries marked c1, c2, . . . , r4 are the
entries of the deleted row and column.

α β
0 1 0 0 0 0 0 r1 type 1
0 0 1 0 0 0 1 r2 type 2
0 0 0 1 0 1 1 r3 type 3
0 0 0 0 1 1 1 r4 type 3
c1 c2 c3 c4 c5 c6 c7 c8

.

Of course there might be many rows of each of the types 1,2,3, but there is no loss of
generality if we focus on these rows. There have to be at least two rows of type 3 so it is

the electronic journal of combinatorics 18 (2011), #P230 19

possible to have two rows which correspond to the entries r3, r4. We have to be careful
because row r1 might not exist.

Case 1: 0m−1 is the repeated column. Then we have

0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 1 1 0
0 0 0 0 1 1 1 0
0 c2 c3 c4 c5 c6 c7 1

.

So either K1
m ≺ A or at least one of c2, c3, c4, c5 is 1. If c2 = 1 then c6 = 0 and c7 = 0

in order to have a laminar family. But then we have G2 in the last and next-to-last
rows. So we may assume c2 = 0. If c3 = 1 then c5 = 0, c6 = 0 and c7 = 1 by the
laminar property and we have then

0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 1 1 0
0 0 0 0 1 1 1 0
0 0 1 c4 0 0 1 1

.

But then we have G2 in the last two rows. We may then assume that c3 = 0. If
c4 = 1 then both c6 and c7 have to be 1, and so we get

0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 1 1 0
0 0 0 0 1 1 1 0
0 0 0 1 c5 1 1 1

,

which has G3 in the last two rows. This completes Case 1.

Case 2: The repeated column has column sum 1. There are three sub-cases, de-
pending on the position of the 1 in the new column. Let r be the row on which,
other than the last row, the new column has a 1.

Subcase 2a: r is of type 1. We have

0 1 0 0 0 0 0 1
0 0 1 0 0 0 1 0
0 0 0 1 0 1 1 0
0 0 0 0 1 1 1 0
c1 0 c3 c4 c5 c6 c7 1

,

which contains G2 in the first two rows.

the electronic journal of combinatorics 18 (2011), #P230 20

Subcase 2b: r is of type 2. We have

0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 1
0 0 0 1 0 1 1 0
0 0 0 0 1 1 1 0
c1 c2 0 c4 c5 c6 c7 1

,

which contains G2 in the second and third rows.

Subcase 2c: r is of type 3. We have

0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 0
c1 0 c3 c4 c5 c6 c7 1

,

which contains G3 in the third and fourth row.

Case 3: The repeated column is the small column α. Then we have this:

0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
c1 c2 c3 c4 c5 0 c7 1

.

So c7 has to be 1 in order to have a laminar family. If either c4 or c5 were 0, then we
would have G3 in the last row together with one of the next-to-last rows. So both
have to be 1. But this contradicts that we have a laminar family.

Case 4: The repeated column is the big column β: Then we have this:

0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 1
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
c1 c2 c3 c4 c5 c6 0 1

.

This yields G3 in the second and third rows. This completes all cases.

Now if K1
m
≺ A, we readily deduce that A has 0m and for any pair of rows i, j, we

have K1
2 in rows i, j of K1

m. Hence to avoid G2, there is no configuration K1
2 in the

remaining columns α, β and so we deduce that either α < β or β < α. �

the electronic journal of combinatorics 18 (2011), #P230 21

B Case analysis for V

Recall that we had a matrix A ∈ Avoid(m, {H1, H2, H3}) and we deduced there was a
row and a column of A we could delete and keep simplicity. Without loss of generality,
suppose the deletable row and column are the last row and last column of A. We let A′

be A without the last row and the last column. By the induction hypothesis, we assume
A′ has the desired structure described in Lemma 5.2.

We can make a few general comments about row m, the deletable row of A. If we
have both a 0 and a 1 in row m under the columns containing K1

a
, then using the two

columns containing the 0 and 1 and two rows of the U ′ (we may assume a ≥ 2 in this case
because of the two columns) together with row m, we obtain a copy of H1, a contradiction.
Similarly we cannot have both a 0 and a 1 in row m under the columns containing Kb−1

b
.

It is also true that in row m we cannot have a 0 under K1
a

and a 1 under Kb−1

b
else

we find a copy of H1 in two columns containing 0 and 1 in row m and in a row of U ′, a
row of L′ and row m.

We will consider the two cases that A′ has either the column 0m−1 or 1m−1 together.
Note that for a = 1, then A′ has both 0m−1 and 1m−1.

Let γ be the last column of A, which we are assuming that, except for row m, γ is
exactly equal to some other column of A′. We analyze all possibilities for γ.

Case 1: γ = 0a × 1b. We deduce that column 0m−1 of A′ (if present) appears with a 0 in
row m else we have a copy of H1 in two rows of L′ and row m. Similarly, if column
1m−1 is present then a ≥ 2 and appears with a 1 in row m else we have a copy of
H1 in two rows of U ′ and row m.

Now if we have 1’s in row m under both K1
a

and Kb−1

b
, then we have the desired

structure with U = U ′ and L = L′ ∪ {m}. Similarly, if we have 0’s in row m under
both K1

a
and under Kb−1

b
then we have the desired structure with U = U ′ ∪ {m}

and L = L′.

Thus we may assume we have 1’s under K1
a

and 0’s under Kb−1

b
. We have two

subcases.

Subcase 1a: A′ has 0m−1 (and so A has 0m). We find a copy of H3 in A in a
row of L′ and row m in the column 0m of A, a column from 0a × Kb−1

b
× 01

with a 0 in the chosen row of L′, the column with 0a × 1b × 01 and a column
from K1

a
× 1b+1.

Subcase 1b: A′ has 1m−1 (and so A has 1m). If a = 1 we have that A′ has
0m−1 and so we use Subcase 1a. Assuming a ≥ 2 we find a copy of H3 in
A in a row of U ′ and row m in the column 1m of A, a column from K1

a × 1b+1

with a 1 in the chosen row of U ′, the column with 0a × 1b × 01 and a column
from 0a × Kb−1

b
× 01.

This completes Case 1.

the electronic journal of combinatorics 18 (2011), #P230 22

Case 2: γ = 0a × βb, where βb ∈ Kb−1

b
. Given that 0a × βb is repeated in A on rows

[m − 1], we deduce that it appears both with a 1 and with a 0 on row m. Assume
any other column 0a × β ′

b
of A′ (with β ′

b
∈ Kb−1

b
) has a 0 in row m. Then we find

a copy of H1 in row m and the two rows of L′ where βb and β ′
b

differ and in the
column of A containing 0a × β ′

b
and one of the two columns of A containing 0a × βb

which differs from the column containing 0a × β ′
b

in row m. If all entries of row m
under Kb−1

b
are 1, then we find H1 by choosing column γ and any other column in

0a ×Kb−1

b
, together with the corresponding rows in L′ (the one where γ has a 0 and

the one where the other column has a 0), together with row m.

Case 3: γ = αa × 1b, where αa ∈ K1
a
. For a ≥ 2 we may follow the argument of the

previous case and find a copy of H1. Given a = 1, we have that A′ contains 0m−1

as well as αa × 1b = α1 × 1m−2 = 1m−1. We deduce that A has 1m and 1m−1 × 01.
Thus we can find a copy of H3 in a row of U ′ together with a row of L′, in the two
columns with 1m−1 in A′, the column with 0m−1 in A′ and a column of 01 × Kb−1

b

selected in order to have a 0 on the chosen row of L′.

Case 4: γ = 0a × 0b. We find H3 in two rows of L′ if b ≥ 2.

Case 5: γ = 1a × 1b. If a ≥ 2, we can find H3 in two rows of U ′. In case a = 1, we know
0m−1 as well as 1m−1 are in A′. We find a copy of H3 using a row of U ′ and a row
of L′ where we choose a column of 0a × Kb−1

b
that has a 0 in the chosen row of L′.

This completes the proof of Lemma 5.2. �

the electronic journal of combinatorics 18 (2011), #P230 23

