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Abstract

Balogh and Bollobás [Combinatorica 25, 2005] prove that for any k there is a
constant f(k) such that any set system with at least f(k) sets reduces to a k-star,

an k-costar or an k-chain. They proved f(k) < (2k)2
k
. Here we improve it to

f(k) < 2ck
2

for some constant c > 0.
This is a special case of the following result on the multi-coloured forbidden

configurations at 2 colours. Let r be given. Then there exists a constant cr
so that a matrix with entries drawn from {0, 1, . . . , r − 1} with at least 2crk

2

different columns will have a k× k submatrix that can have its rows and columns
permuted so that in the resulting matrix will be either Ik(a, b) or Tk(a, b) (for
some a 6= b ∈ {0, 1, . . . , r − 1}), where Ik(a, b) is the k × k matrix with a’s on the
diagonal and b’s else where, Tk(a, b) the k× k matrix with a’s below the diagonal
and b’s elsewhere. We also extend to considering the bound on the number of
distinct columns, given that the number of rows is m, when avoiding a tk × k
matrix obtained by taking any one of the k×k matrices above and repeating each
column t times. We use Ramsey Theory.
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†Research supported in part by NSF grant DMS 1300547 and ONR grant N00014-13-1-0717.
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1 Introduction

We define a matrix to be simple if it has no repeated columns. A (0,1)-matrix that is
simple is the matrix analogue of a set system (or simple hypergraph) thinking of the
matrix as the element-set incidence matrix. We generalize to allow more entries in our
matrices and define an r-matrix be a matrix whose entries are in {0, 1, . . . , r − 1}. We
can think of this as an r-coloured matrix. We examine extremal problems and let ‖A‖
denote the number of columns in A.

We will use the language of matrices in this paper rather than sets. For two matrices
F and A, define F to be a configuration in A, and write F ≺ A, if there is a row and
column permutation of F which is a submatrix of A. Let F denote a finite set of
matrices. Let

Avoid(m, r,F) = {A : A is m-rowed and simple r-matrix, F ⊀ A for F ∈ F} .

Our extremal function of interest is

forb(m, r,F) = max
A
{‖A‖ : A ∈ Avoid(m, r,F)}.

We use the simplified notation Avoid(m,F) and forb(m,F) for r = 2. Many results
of forbidden configurations are cases with r = 2 (and hence (0, 1)−matrices) and with
|F| = 1. There is a survey [4] on forbidden configurations. There are a number of
results for general r including a recent general shattering result [7] which has references
to earlier work. This paper explores some forbidden families with constant or linear
bounds. We do not require any F ∈ F to be simple which is quite different from usual
forbidden subhypergraph problems.

A lovely result of Balogh and Bollobás on set systems can be restated in terms of a
forbidden family. Let I` denote the `×` identity matrix, Ic` denote the (0,1)-complement
of I` and let T` be the `× ` (upper) triangular matrix with a 1 in position (i, j) if and
only if i ≤ j. As a configuration, the ` × ` lower triangular matrix with 1’s on the
diagonal is the same as T`. The result [5] show that after a constant number of distinct
columns, one cannot avoid all three configurations I`, I

c
` , T`.

Theorem 1.1 [5] For any ` ≥ 2, forb(m, {I`, Ic` , T`}) ≤ (2`)2
`
.

A slightly worse bound forb(m, {I`, Ic` , T`}) ≤ 222` but with a simpler proof is in [6].
We generalize I`, I

c
` , T` into r-matrices as follows. Define the generalized identity matrix

I`(a, b) as the ` × ` r-matrix with a’s on the diagonal and b’s elsewhere. Define the
generalized triangular matrix T`(a, b) as the `×` r-matrix with a’s below the diagonal
and b’s elsewhere. Now we have I` = I`(1, 0), Ic` = I`(0, 1), and T` = T`(1, 0).
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Let
T`(r) = {I`(a, b) : a, b ∈ {0, 1, · · · , r − 1}, a 6= b}∪

{T`(a, b) : a, b ∈ {0, 1, · · · , r − 1}, a 6= b} .

Note that I` = I`(1, 0), Ic` = I`(0, 1), T` = T`(0, 1), and T c` = T`(1, 0). In Theo-
rem 1.1, we do not have T c` = T`(1, 0) but we note that T`−1(0, 1) ≺ T`(1, 0) ≺ T`+1(0, 1).
From the point of view of forbidden configurations in the context of Theorem 1.1, T`(1, 0)
and T`(0, 1) are much the same. In general, we have T`−1(a, b) ≺ T`(b, a) ≺ T`+1(a, b).

After removing all T`(a, b) with a > b, we define a reduced set of configurations:

T ′` (r) = {I`(a, b) : a, b ∈ {0, 1, · · · , r − 1}, a 6= b}∪

{T`(a, b) : a, b ∈ {0, 1, · · · , r − 1}, a < b} .

We have |T ′` (r)| = 3
(
r
2

)
. In particular, T ′` (2) = {I`, Ic` , T`} and

forb(m, r, T`(r)) ≤ forb(m, r, T ′` (r)) ≤ forb(m, r, T`+1(r)).

As a forbidden family, T ′` (r) behaves very much like T`(r). We will mainly work on
T`(r).

Theorem 1.2 Let r ≥ 2 be given. Then there exists a constant cr so that for any ` ≥ 1,

forb(m, r, T`(r)) ≤ 2cr`
2

.

In particular, for r = 2, we have

forb(m, {I`, Ic` , T`}) ≤ 2c2(`
2+`)

with the constant c2 ≤ 6 log2 6 < 15.51.

The previous best known upper bound for forb(m, {I`, Ic` , T`}) (the case r = 2) was
doubly exponential in `, so this is a substantial improvement. The current best known
lower bound for forb(m, {I`, Ic` , T`}) is still `c1`, and it was conjectured forb(m, {I`, Ic` , T`})
< `c2` in [5]. We are not quite there yet. The result gives a concrete value for c2 but

it is not likely to be best possible. Currently, for general r ≥ 2, cr < 30
(
r
2

)2
log2 r.

Theorem 1.1 is also generalized to r-colours.
Theorem 1.1 yields a corollary, as noted in [2], identifying which families yield a

constant bound and remarking that all other families yield a linear bound. Our multi-
coloured extension of Theorem 1.1 also yields a similarly corollary.

Corollary 1.3 Let F = {F1, F2, . . . , Fp} and r be given. There are two possibilities.
Either forb(m, r,F) is Ω(m) or there exists an ` and a function f : (i, j) −→ [p] defined
on all pairs i, j with i, j ∈ {0, 1, . . . , r − 1} and i 6= j so that either Ff(i,j) ≺ I`(i, j) or
Ff(i,j) ≺ T`(i, j), in which case there is a constant c`,r with forb(m, r,F) = c`,r.
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Proof: Let Fh be ah×bh and let d = maxh∈[p](ah+bh). Then Fh ⊀ Id(i, j) (respectively
Fh ⊀ Td(i, j)) implies Fh 6≺ Im(i, j) (respectively Fh ⊀ Tm(i, j)) for any m ≥ d. Thus if
for some choice i, j ∈ {0, 1, · · · , r − 1} with i 6= j we have Fh ⊀ I`(i, j) or Fh ⊀ T`(i, j)
for all h ∈ [p], then forb(m,F) is Ω(m) using the construction Im(i, j) or Tm(i, j).

Some further applications of our results and proof ideas are in Section 5.
Our forbidden configurations I`(a, b) and T`(a, b) for a 6= b are simple but it is natural

to consider non-simple matrices as forbidden configurations. One natural way to create
non-simple matrices is as follows. For t > 1, let t·M = [M |M | · · · |M ], the concatenation
of t copies of M . For a family F of matrices, we define t · F = {t ·M : M ∈ F}. In
[3], we showed that forb(m, {t · Ik, t · Ick, t · Tk}) is O(m). We obtain a sharp bound and
extend to r-matrices.

Theorem 1.4 Let ` ≥ 2, r ≥ 2, and t ≥ 1 be given. Then there is a constant c with

forb(m, r, t · T`(r)) ≤ 2r(r − 1)(t− 1)m+ c.

The proof of the upper bound is in Section 4. For a lower bound consider a choice
a, b ∈ {0, 1, . . . , r− 1} with a 6= b. Consider T`(a, b). The first column has (at least) one
b and at least one a and the rest either a or b. The following easy result is useful.

Theorem 1.5 [1] forb(m, t · [0]) = b tm
2
c+ 1.

Given a pair a, b we construct Mm(a, b) as follows. Choose e from {a, b}. Form an
m × (b tm

2
c + 1) matrix Mm(a, b) all of whose entries are a or b with t · [e] ⊀ Mm(a, b)

using Theorem 1.5. Now consider the concatenation M of the
(
r
2

)
matrices Mm(a, b)

over all choices for a, b. Thus M is an m × (
(
r
2

)
(b tm

2
c + 1)) simple r-matrix. Moreover

t · T a,b,d` ⊀M since the first column of T`(a, b) has both a’s and b’s and so must appear
in Mm(a, b). But then since t · [e] ⊀ Mm(a, b) for some choice e ∈ {a, b}, we deduce
t · T`(a, b) ⊀M . Thus

forb(m, r, t · T`(r)) ≥
(
r

2

)
(btm

2
c).

This lower bound is about a quarter of the upper bound in Theorem 1.4. For `� log2 t,
a different construction in Section 4 improves this lower bound by a factor of 2.

2 Inductive Decomposition

Let M be an m-rowed matrix. Some notation about repeated columns is needed. For an
m× 1 column α ∈ {0, 1, . . . , r− 1}m, we define µ(α,M) as the multiplicity of column α
in a matrix M . At certain points it is important to consider matrices of bounded column
multiplicity. Define a matrix A to be s-simple if every column α of A has µ(α,A) ≤ s.
Simple matrices are 1-simple.
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We need induction ideas from [3]. Define

Avoid(m, r,F , s) = {A : A is m-rowed and s-simple r-matrix, F ⊀ A for F ∈ F} ,

with the analogous definition for forb(m, r,F , s). The induction proceeds with a matrix
in Avoid(m, r,F , s) but the following observation from [3] generalized to r-matrices
shows that the asymptotics of forb(m, r,F) are the same as that of forb(m, r,F , s):

forb(m, r,F) ≤ forb(m, r,F , s) ≤ s · forb(m, r,F). (1)

The second inequality follows from taking a matrix A ∈ Avoid(m, r,F , s) and forming
the matrix A′ where µ(α,A′) = 1 if and only if µ(α,A) ≥ 1 so that ‖A′‖ ≤ ‖A‖ ≤ s·‖A′‖.

Let A ∈ Avoid(m, r,F , s). During the proof of Theorem 1.2, s =
(
r
2

)i
for some i.

Assume ‖A‖ = forb(m, r,F , s). Given a row r we permute rows and columns of A to
obtain

A =
row r →

[
0 0 · · · 0 1 1 · · · 1 · · · r − 1 r − 1 · · · r − 1
G0 G1 Gr−1

]
. (2)

Each Gi is s-simple. Note that typically [G0G1 · · ·Gr−1] is not s-simple so we cannot
use induction directly on [G0G1 · · ·Gr−1]. We would like to permute the columns of
[G0G1 · · ·Gr−1] into the form of [C1C1A1], where A1 is an s-simple matrix and C1 is
a matrix such that for each column α of C1 the copies of α in the two copies of C1

comes from different Gi and µ(α, [C1C1A1]) > s. This can be done greedily. Initially set
A1 = [G0G1 · · ·Gr−1]. If A1 is not s-simple, then there is a column α appear in various
Gi. Move α to C1 and delete two copies of α (in two different Gi) from A1. When the
process stops, we get the matrix A1 and C1 as stated. Note A1 is s-simple. For each
column α of C1, the multiplicity of α satisfies

s < µ(α, [C1C1A1]) ≤ rs.

We inductively apply the same decomposition to the (m− 1)-rowed s-simple matrix
A1 and get a (m−2)-rowed s-simple matrix A2 and an (m−2)-rowed matrix C2 appearing
twice, and so on.

We deduce that

‖A‖ ≤

(
2
m−1∑
i=1

‖Ci‖

)
+ rs (3)

where rs is the maximum number of columns in any 1-rowed s-simple matrix. Note
that each Ci is rs

2
-simple. Note that it is possible to have ‖Ci‖ = 0 in which case we

ignore such cases. The idea is to have A as a root of a tree with the children Ci for each
i with ‖Ci‖ > 0.

3 Proof of Theorem 1.2

We denote byR(k1, k2, . . . , kn) the multicolour Ramsey number for the minimum number
p of vertices of Kp so that when the edges are coloured using n colours {1, 2, . . . , n} there
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will be a monochromatic clique of colour i of size ki for some i ∈ {1, 2, . . . , n}. It is
well-known that the multicolour Ramsey number satisfyies the following inequality:

R(k1, k2, . . . , kn) ≤
( ∑n

i=1(ki − 1)
k1 − 1, . . . , kn − 1

)
< n

∑n
i=1(ki−1).

This follows from showing that the Ramsey numbers satisfy the same recurrence as the
multinomial coefficients but with smaller base cases. The proof of Theorem 1.2 uses the
following 2r2 − r multicolour Ramsey number.

Proposition 3.1

Let u = R((r − 1)(`− 1) + 1, . . . , (r − 1)(`− 1) + 1︸ ︷︷ ︸
r copies

, 2`, . . . , 2`︸ ︷︷ ︸
2r(r−1) copies

). (4)

Then a upper bound on u is:

u ≤ (2r2 − r)r(r−1)(5l−3) < r15r(r−1)l. (5)

We highlight the fact that u is bounded by a single exponential function in ` for a fixed
r (independent of s and m).

We are now going to describe a tree growing procedure used in the proof. We
initially start with some A ∈ Avoid(m, r, T`(r)) as the root of the tree. Given a matrix
A ∈ Avoid(m′, r, T`(r), s) that is a node in our tree, we apply the induction ideas of
Section 2 to obtain matrices C1, C2, . . . Cm′−1 and we set the children of A to be the
matrices Ci for those i with ‖Ci‖ > 0. Note that Ci ∈ Avoid(m′′, r, T`(r), rs2 ). Repeat.

Lemma 3.2 Given A ∈ Avoid(m, r, T`(r)), form a tree as described above. Then the
depth of the tree is at most

(
r
2

)
(`− 1) + 1.

Proof: Suppose there is a chain of depth
(
r
2

)
(` − 1) + 2 in the tree. Pick any column

vector α in the matrix forming the terminal node. At its parent node (or row), α is
extended twice with some choices ai, bi (ai 6= bi). We label this edge (of the chosen
chain) by the colour {ai, bi}. Since the number of colours (each consisting of a pair from
{0, 1, . . . , r − 1}) is at most

(
r
2

)
, there is some pair {a, b} occurring at least ` times (by

Pigeonhole principle). As the result, α can be extended into 2` columns so that the
columns form a submatrix B of A that contains the complete `× 2`-configuration using
only two colours a and b. In particular, A contains I`(a, b) (as well as T`(a, b)). This
contradiction completes the proof.

Lemma 3.3 Given A ∈ Avoid(m, r, T`(r)), form a tree as described above. Then the
maximum branching is at most u with u given in (4).
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Proof: A ∈ Avoid(m, r, T`(r), s) be a node of the tree and determine the children of A
as described above. Let |{i : Ci 6= ∅}| ≥ u. Selecting one column ci from each non-empty
Ci and deleting some rows if necessary, we get the following submatrix of A.

a1 b1 ∗ ∗ ∗ ∗ · · ·
a2 b2 ∗ ∗

a3 b3

c1 c1 c2 c2 c3 c3 · · ·

(6)

On the diagonal, we can assume ai < bi for each i. This is a u × 2u matrix. We can
view this as a u × u “square” matrix with each entry is a 1 × 2 row vector. Note that
in this “square” matrix, the entries below the diagonal are special 1× 2 row vectors of
the form (x, x) while the i-th diagonal entries is (ai, bi) satisfying ai < bi. There is no
restriction on the entries above the diagonal.

Now we form a colouring of the complete graph Ku. For each edge ij ∈ E(Ku) (with
i < j), set the colour of ij to be the combination of the (i, j) entry and the (j, i) entry.
Write the (i, j) entry on the top of (j, i) entry to form a 2 × 2 matrix, which has the

following generic form:
( y1 y2
x x

)
.

There are at most r3 such 2 × 2 matrices and so r3 colours on which to apply a
multicolour version of the Ramsey’s theorem. We can reduce the number of colours to
2r2− r, and obtain a better upper bound, by combining some patterns of 2×2 matrices
into one colour class to reduce the total number of colours needed. To be precise, we
define the colour classes as⋃

a

{(
a a
a a

)}
∪
⋃
a6=b

{(
b ∗
a a

)}
∪
⋃
a6=b

{(
∗ b
a a

)}

Note that the matrix

(
b1 b2
a a

)
for b1 6= b2 fits two colour classes. When this occurs,

we break the tie arbitrarily.
A critical idea here is that we only apply Ramsey’s theorem once to get a uniform

pattern for both entries below and above the diagonal! By the definition of u as a
Ramsey number (4), one of the following cases must happen.

Case 1: There is a number a ∈ {0, 1, . . . , r − 1} such that there is a monochromatic

clique of size (r − 1)(`− 1) + 1 using colour

(
a a
a a

)
.

Since the diagonals have two colours, we can pick one colour other than a and get a
square matrix so that all off-diagonal entries are a’s and all diagonal elements are not
equal to a. Since this matrix has (r− 1)(`− 1) + 1 rows, by pigeonhole principle, there
is a colour, call it b, appearing at least ` times on the diagonal. This gives a submatrix
I`(a, b) in A, contradicting A ∈ Avoid(m, r, T`(r), s). This eliminates Case 1.
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Case 2: There is a pair a 6= b ∈ {0, 1, . . . , r − 1} such that there is a monochromatic

clique of size 2` using colour

(
b ∗
a a

)
.

By selecting first column from each 1× 2 entry, we obtain a (2`× 2`)-square matrix
so that the entries below the diagonal are all a’s and the entry above the diagonal
are all b’s. The diagonal entries are arbitrary. By deleting first column, second row,
third column, fourth row, and so on, we get a submatrix T`(a, b) in A, contradicting
A ∈ Avoid(m, r, T`(r), s). This eliminates Case 2.

Case 3: There is a pair a 6= b ∈ {0, 1, . . . , r − 1} such that there is a monochromatic

clique of size 2` using colour

(
∗ b
a a

)
.

This is symmetric to Case 2, and thus it can be eliminated in the same way.
Thus such an A with u children does not exist.

Proof of Theorem 1.2: We do our tree growing beginning with some
A ∈ Avoid(m, r, T`(r)). We will be applying (3). Regardless the value of m, at most u
summands in the summation above are non-zero by Lemma 3.3. It is sufficient to bound
each ‖Ci‖. Recall that each Ci is rs

2
-simple when the parent node is s-simple.

For i = 0, 1, 2, . . . ,
(
r
2

)
(`− 1) + 1, let f(i) be the maximum value of ‖C‖ in the i-th

depth node of matrix C in the tree above. By convention f(0) = ‖A‖. Inequality (3)
combined with Lemma 3.3 implies the following recursive formula:

f(i) ≤ 2uf(i+ 1) + r
(r

2

)i
.

By Lemma 3.2, we have the initial condition f(
(
r
2

)
(`− 1) + 1) ≤ r · ( r

2
)(

r
2)(`−1)+1 by (3),

where a matrix in a node of the tree at depth
(
r
2

)
(`− 1) + 1 is ( r

2
)(

r
2)(`−1)+1-simple.

Pick a common upper bound, say r15r(r−1)`, for both 2u and r( r
2
)(

r
2)(`−1)+1 + 1. It

implies
f(i) + 1 ≤ (f(i+ 1) + 1)r15r(r−1)`.

Thus

‖A‖ < f(0) + 1 ≤
(
r15r(r−1)`

)(r
2)(`−1)+2 ≤ r30(

r
2)

2
`2 .

For the special case r = 2, the upper bound can be reduced. First, each diagonal
entry of the matrix in Equation (6) is always [0 1]. In the proof Lemma 3.3, Case 2
and Case 3, there is no need to delete rows and columns alternatively. The size of the
monochromatic clique can be taken to ` instead of 2`. Thus in this setting we may take
u = R(`, `, `, `, `, `) = R6(`) and obtain

|{i : Ci 6= ∅}| < R6(`).

Second, all Ci are simple matrices ( r
2

= 1 = s). So the recursive formula for f(i) is

f(i) ≤ 2R6(`)f(i+ 1) + 2
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with the initial condition f(`) ≤ 2. It is not hard to check that f(` − 1) ≤ 2` − 1 for
` ≥ 2. (Otherwise, we get a row vector consisting of ` 0’s or ` 1’s, which can be used to
extend into T`(0, 1) or T`(1, 0).) Use the bound R6(`) < 66(`−1) and solve the recursive
relation for f(i). We get

f(0) <
(
2 · 66(`−1))`−1 · (2`− 1) ≤ 66(`−1)`.

Thus,
forb(m, 2, T`(2)) < 66(`−1)`.

This implies
forb(m, {I`, Ic` , T`}) ≤ forb(m, 2, T`+1(2)) < 66`(`+1),

yielding the stated bound.

4 A non-simple forbidden family

In many examples when computing forb(m, t · F ), the proof ideas for forb(m,F ) are
important. A much weaker linear bound than Theorem 1.4 for r = 2 is in [3] (the con-
stant multiplying m is the constant of Theorem 1.1). The upper bound of Theorem 1.4
is only off by a factor of 2 from the lower bound asymptotically. In fact, Theorem 1.4
can be generalized to s-simple matrices.

Theorem 4.1 Let ` ≥ 2, r ≥ 2, t ≥ 1, and s ≥ t− 1 be given. Then there is a constant
c`,r,t with

forb(m, r, t · T`(r), s) ≤ 2r(r − 1)(t− 1)m+ c`,r,t + rs.

This upper bound is only off by a factor of 2 from the lower bound. Note that we
can use this bound with s < t− 1 as noted in (1). This yields Theorem 1.4. The proof
appears below.

Theorem 4.2 Let ` ≥ 3, r ≥ 2, t ≥ 1, and s ≥ t− 1 be given. Then

forb(m, r, t · T`(r), s) ≥ r(r − 1)(t− 1)m.

Proof: Consider the matrix Mm obtained by the concatenation of all matrices in (t −
1) · {Im(a, b) : for a, b ∈ {0, 1, . . . , r − 1}, a 6= b}. The matrix Mm is (t− 1)-simple and
hence s-simple with

‖Mm‖ = r(r − 1)(t− 1)m.

It suffices to show that Mm ∈ Avoid(m, r, t · T`(r)). For a choice a, b ∈ {0, 1, . . . , r − 1}
with a 6= b, we need show t · I`(a, b) 6≺Mm and t · T`(a, b) 6≺Mm.

Suppose not, say t · I`(a, b) ≺ Mm. There are a list of `-rows i1, i2, . . . , i` and t`
columns j11 , · · · , j1r , j21 , · · · , j2r , · · · , jt1, · · · , jtr, evidencing the copies of t · I`(a, b) in Mm.
Let us restrict to the rows i1, i2, . . . , i` at the moment. For each row ih, there are t
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columns who has a at row ih and b at other ` − 1 rows. These columns can only show
up in exactly one column in each copy of Im(a, b). But we only have t − 1 copies of
Tm(a, b). Thus t · I`(a, b) 6≺Mm.

Similarly suppose t · T`(a, b) ≺ Mm. With ` ≥ 3, then there are t columns of Mm

and ` rows i1, i2, . . . , i` containing a in row i1 and containing b’s in the other `− 1 rows.
Each copy of Im(a, b) contains exactly one such columns with an a in row i1 and all
other copies of Im(c, d) do not contain such columns of a’s and b’s. But there are only
t− 1 copies of Im(a, b). Thus t · T`(a, b) 6≺Mm.

Note that in this construction of the lower bound, every column has equal multiplicity
t− 1. By adding q := dlog2(t− 1)e rows we can distinguish t− 1 columns and obtain a
(m+ q)-rowed simple matrix M ′ ∈ Avoid(m+ q, r, t · T`−q). Thus we have the following
corollary.

Corollary 4.3 Let t ≥ 1, r ≥ 2, and ` ≥ dlog2 te + 3 be given. There is a constant c
with forb(m, r, t · T`(r)) ≥ r(r − 1)(t− 1)m− c.

We begin the proof of Theorem 4.1. Consider (t−1)-simple matrices. Consider some
A ∈ Avoid(m, r, t · T`(r)) so that A ∈ Avoid(m, r, t · T`(r), t− 1) . Apply our inductive
decomposition of Section 2 with the bound (3).

Keep track of the matrices Ci that are generated yielding the following structure in
A:

a11 a
1
2 · · · b11 b

1
2 · · · ∗ ∗ ∗ ∗ · · ·

a21 a
2
2 · · · b21 b

2
2 · · · ∗ ∗

a31 a
3
2 · · · b31 b

3
2 · · ·

C1 C1 C2 C2 C3 C3 · · ·

(7)

In what follows let
T = r(r − 1)(t− 1) + 1. (8)

By the construction, we may require aij < bij for all i, j = 1, 2, . . . ,m− 1. In analogy to
u of (4), let v be the multicolour Ramsey number:

v = R( (r − 1)(`− 1) + 1, . . . , (r − 1)(`− 1) + 1︸ ︷︷ ︸
rT copies

, 2t`, . . . , 2t`︸ ︷︷ ︸
2Tr(r−1) copies

). (9)

Lemma 4.4 In the inductive structure of (7), we have |{i : ‖Ci‖ ≥ T}| < v.

Proof: Assume
|{i : ‖Ci‖ ≥ T}| ≥ v. (10)
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In what follows we arrive at a contradiction. A has a structure as in (7). Select rows i
for which ‖Ci(a, b)‖ ≥ T to obtain an v-rowed matrix as follows. For a given i, select T
columns from Ci(a, b) and we have

ai1a
i
2 · · · aiT bi1b

i
2 · · · biT

α α
β β
δ δ
...

...

 is a submatrix of

[
ai1a

i
2 · · · bi1b

i
2 · · ·

Ci Ci

]
,

where each entry α, β, . . . and [ai1a
i
2 · · · aiT ] and [bi1b

i
2 · · · biT ] are 1× T row vectors. Now

with v choices i with ‖Ci‖ ≥ T we obtain a v × 2Tv r-matrix X as follows:
ai11 · · · ai1T bi11 · · · bi1T ∗ ∗ ∗ ∗ ∗ ∗ · · ·

α α ai21 · · · ai2T bi21 · · · bi2T ∗ ∗ ∗ ∗ · · ·
β β γ γ ai31 · · · ai3T bi31 · · · bi3T ∗ ∗ · · ·
δ δ µ µ ν ν ai41 · · · ai4T bi41 · · · bi4T
...

...
...

...
...

...

 ,
where the entries α, β, . . . are 1× T row vectors with entries from {0, 1, . . . , r − 1}.

View this matrix as a v × v “square” matrix with each entry being a 1 × 2T row
vector. All entries below the diagonal are “doubled” row vectors, i.e., the concatenation
of two identical 1 × T row vectors. All diagonal entries are the concatenation of two
1× T row vectors, where each coordinate of the first vector is always strictly less than
the corresponding coordinate of the second vector. There is no restriction on the entries
above the diagonal.

Now we form a colouring of the complete graph Kv. For each edge ij ∈ E(Kv) (with
i < j), colour ij using the combination of the (i, j) entry and the (j, i) entry. Write the
(i, j) entry on the top of (j, i) entry to form a 2 × 2T matrix, which has the following

generic form:

(
β1 β2
α α

)
. Here α, β1, β2 are 1× T row vectors.

There are at most r3T such matrices. Instead of applying Ramsey’s theorem with r3T

colours, we can reduce the total number of colours needed by combining some patterns
of 2× 2T matrices into a single colour class.

The first type of colour classes is denoted C(α) (with α ∈ {0, 1, . . . , r − 1}T ) and

consists of patterns

(
α α
α α

)
. The second type of colour classes is denoted C(a, b, i)

(with a 6= b ∈ {0, 1, . . . , r− 1}T and 1 ≤ i ≤ 2T ) consists of patterns

(
β1 β2
α α

)
whose

i-th column is the vector

(
b
a

)
.

A 2 × 2T matrix may fit multiple colour classes. When this occurs, we break the
tie arbitrarily. The total number of colours are rT + r2T (reduced from r3T ). By the
definition of v and (10), one of the following cases must happen.

11



Case 1: There is a number α ∈ {0, 1, . . . , r − 1}T such that there is a monochromatic

clique of size (r − 1)(`− 1) + 1 using colour

(
α α
α α

)
.

We get the following ((r − 1)(`− 1) + 1)-rowed submatrix:
∗∗ αα αα αα · · ·
αα ∗∗ αα αα · · ·
αα αα ∗∗ αα · · ·
αα αα αα ∗∗
...

...
...


Since all the diagonal entry have two choices, we can pick one colour other than the

corresponding colour in α. We get the following sub-matrix:
β1 α α α · · ·
α β2 α α · · ·
α α β3 α · · ·
α α α β4 · · ·
...

...
...

...


where the diagonal entry βi(j) 6= α(j) for any i and any j = 1, 2, . . . , T .

Using (8), the Pigeonhole principle yields a colour a appearing in α at least (r −
1)(t − 1) + 1 times. By selecting these columns we get an ((r − 1)(` − 1) + 1)-rowed
submatrix 

∗ · · · ∗ a · · · a a · · · a a · · · a · · ·
a . . . a ∗ · · · ∗ a · · · a a · · · a · · ·
a · · · a a · · · a ∗ · · · ∗ a · · · a · · ·
a · · · a a · · · a a · · · a ∗ · · · ∗ · · ·

...
...

...
...

 .
Note that all diagonal elements (marked by ∗) are not equal to a. By Pigeonhole
principle, each diagonal entry has one colour bi 6= a appearing at least t times. Since the
number of row s is (r− 1)(`− 1) + 1, among those bi’s, there is a colour b appears in at
least ` rows by Pigeonhole principle. This gives a configuration t · I`(b, a), contradicting
A ∈ Avoid(m, r, t · T`(r)).

Case 2: There is a pair a 6= b ∈ {0, 1, . . . , r − 1} and an index i ∈ {1, 2, . . . , 2T} such
that there is a monochromatic clique of size 2t` using colour C(a, b, i).

By selecting i-th column from each 1× 2T entry, we obtain a 2t`× 2t`-square sub-
matrix of A so that the entry below the diagonal are all a’s and the entry above the
diagonal are all b’s. The diagonal entries could be arbitrary. By deleting first column,
second row, third column, fourth row, and so on, we get a submatrix Tt`(a, b) of A and
this contains t · T`(a, b), contradicting A ∈ Avoid(m, r, t · T`(r)).

12



Both cases end in a contradiction so we may conclude |{i : ‖Ci‖ ≥ T}| < v.

Proof of Theorem 4.1: We consider (t − 1)-simple matrices. Consider some A ∈
Avoid(m, r, t · T`(r)) so that A ∈ Avoid(m, r, t · T`(r), t − 1). Obtain the inductive
structure of (7) with the bound (3).

By Lemma 4.4, |{i : ‖Ci‖ ≥ T}| ≤ v with T given in (8). For each i, let C ′i denote
the simple matrix obtained from Ci by reducing multiplicities to 1. Then ‖C ′i‖ ≤
forb(m− i, r, T`(r)) since the multiplicity of each column α (of Ci) in CiCiAi is at least
s + 1 ≥ t. By Theorem 1.2, there are at most 2cr`

2
distinct columns in each Ci. Since

Ci is rs
2

-simple, we have

‖Ci‖ ≤
rs

2
· 2cr`2 .

We obtain using (3)

‖A‖ ≤ 2

 ∑
i : ‖Ci‖<T

‖Ci‖+
∑

i : ‖Ci‖≥T

‖Ci‖

+ rs

≤ 2(T − 1)m+ 2u · rs
2
· 2cr`2 + rs

= 2r(r − 1)(t− 1)m+ c,

for a constant c depending on r, s, ` (note s ≥ t− 1). This is the desired bound, albeit
with c being quite large.

5 Applications

We can apply our results in several ways. The following two variations for the problem
of forbidden configurations are noted in [4].
Fixed Row order for Configurations: There have been some investigations for cases
where only column permutations of are allowed. Note in our proof, the row order is fixed.
So Theorem 1.2 works for this variation with the exact same upper bound.
Forbidden submatrices: When both row and column orders are fixed, this is the
problem of forbidden submatrices. Let IR` (a, b) and TR` (a, b)) be the matrix obtained
from I`(a, b) and T`(a, b) respectively by reversing the column order. Our first obser-
vation is that any matrix in the four family {I`(a, b)}`≥3, {IR` (a, b)}`≥3, {T`(a, b)}`≥3,
and {TR` (a, b)}`≥3 cannot be the submatrix of the one in another family. We have the
following submatrix version of Theorem 1.2.

Theorem 5.1 For any r ≥ 2, there is a constant cr so that for any ` ≥ 2 and any matrix
with entries drawn from {0, 1, ..., r−1} with at least 2cr`

4
different columns must contain

a submatrix I`(a, b), T`(a, b), IR` (a, b), or TR` (a, b) for some a 6= b ∈ {0, 1, ..., r − 1}.
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Proof: Let cr = 30
(
r
2

)2
log2 r. Let A be a simple r-matrix with ‖A‖ > 2cr`

4
and

apply Theorem 1.2. Then A has an `2 × `2 submatrix F which is a column permuta-
tion of I`2(a, b) or T`2(a, b). Let the column permutation be σ. By the fundamental
Erdős-Szekeres Theorem, any sequence of (`− 1)2 + 1 ≤ `2 distinct numbers must con-
tain a monotone subsequence of ` numbers. Let i1 < i2 < · · · < i` be the indexes
so that the subsequence σ(i1), σ(i2), . . . , σ(i`) is either increasing or decreasing. Con-
sider the submatrix of F obtained from F by restricting it to the i1, i2, . . . , i` rows and
σ(i1), σ(i2), . . . , σ(i`) columns. Then we obtained a submatrix which is one of the four
matrices: I`(a, b), T`(a, b), I

R
` (a, b), or TR` (a, b).

We also can obtain some interesting variants of Theorem 1.2 by replacing some of
the matrices in T`(r). As noted in [7], we must forbid at least one (a, b)-matrix for
each pair a, b ∈ {0, 1, . . . , r − 1} in order to have a polynomial bound. What follows
provides some additional examples of forbidden families related to T`(r) with interesting
polynomial bounds. We define forbmax(m, r,F) = maxm′≤m forb(m′, r,F). It has been
conjectured that forbmax(m,F) = forb(m,F) for large m and for many F this can be
proven. We have the following theorem.

Theorem 5.2 Let r, ` be given and let π = P0 ∪ P1 ∪ · · · ∪ Pt−1 be a partition of
{0, 1, . . . , r−1} into t parts. There is a constant c`,r such that for any family of matrices
Fi all of whose entries lie in Pi (1 ≤ i ≤ t)

forb(m, r,

{
T`,π(r) ∪

t−1⋃
i=0

Fi

}
) ≤ c`,r ·

t−1∏
i=0

forbmax(m, |Pi|,Fi).

Here T`,π(r) = {I`(a, b) : a ∈ Pi, b ∈ Pj, i 6= j} ∪ {T`(a, b) : a ∈ Pi, b ∈ Pj, i 6= j}

∪ {T`(b, c) : b, c ∈ Pj, b 6= c} .

Proof: Consider A ∈ Avoid(m, r, T`,π(r) ∪
⋃t−1
i=0 Fi). Now form a t-matrix Aπ from A

by replacing each entry a of A that is in Pi by the entry i. Of course Aπ is typically
not simple but the maximum number of different columns is finite. Let k = Rr2(2`) and
c`,r = 2ctk

2
where ct is the constant specified in Theorem 1.2. Otherwise Aπ contains

a configuration Ik(i, j) or Tk(i, j) for some i 6= j ∈ {0, 1, . . . , t}. Now we return the
colours i and j to the original colours in Pi and Pj respectively. We obtain a k × k
matrix F ≺ A of one of the following two types.

type Ik(i, j) : All diagonal entries of F are in Pi while all off-diagonal entries are in
Pj. First we apply the Pigeonhole principle on the diagonal and get a square
submatrix F1 of size k/|Pi| so that all diagonal entries have the common value,
say a, in Pi. Then we apply the multicolour Ramsey Theorem to F1, where F1

is viewed as a |Pj|2-colouring of the complete graph on k/|Pi| vertices with edge
(x, y) (for x < y) coloured (b, c) if the (x, y) entry of F1 is c and the (y, x) entry
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of F1 is b . Since k/|Pi| > R|Pj |2(2`), there exists a monochromatic clique of size
2` in F1. Say the colour is (b, c), where b, c ∈ Pj. If b = c, we obtain I2`(a, b)
and so I`(a, b), a contradiction. If b 6= c, we obtained a 2` × 2` matrix with a’s
on the diagonal, b’s below the diagonal and c’s above the diagonal. Forming the
submatrix consisting of the odd indexed rows and the even indexed columns, we
obtain T`(b, c), a contradiction.

type Tk(i, j): All entries below diagonal of F are in Pi while the rest of entries are in
Pj. We apply the multicolour Ramsey Theorem to F to obtain a submatrix F2

of size 2` whose lower-diagonal entries has a common value a ∈ Pi and whose
upper-diagonal entries has a common value b ∈ Pj. There is no restriction on
the diagonal of F2. We can get T`(a, b) from F2 by deleting the first column, the
second row, and so on. Again we have a contradiction.

Thus the number of different columns in Aπ is bounded by a constant. Now consider
µ(α,Aπ). If we replace just the i’s in α by symbols chosen from Pi in more than
forbmax(m, |Pi|,Fi) ways then we get some F ∈ Fi with F ≺ A, a contradiction. So
µ(α,Aπ) ≤

∏t−1
i=0 forbmax(m, |Pi|,Fi). Combined with our bound on the number of

different columns in Aπ, we are done.

Remark 5.3 The constant c`,r in Theorem 5.2 is doubly exponential in ` in the proof
above. One can reduce it into 2c

′
r`

2
for some constant c′r if we mimic the proof of Theorem

1.2 and use the Ramsey Theorem once. The details are omitted here.

When applying it to the partition {0, 1}∪{2}∪{3}∪· · ·∪{r}, we have the following
theorem.

Theorem 5.4 Let r, ` be given. There is a constant c`,r so that the following statement
holds. Let F be a family of (0,1)-matrices. Then

forb(m, r, (T`(r)\T`(2)) ∪ {T`+1(0, 1)} ∪ F) ≤ c`,r · forbmax(m, s,F).

This shows that, asymptotically at least, forbidding the configurations of T`(r)\T`(2) ∪
T`+1(0, 1) is much like restricting us to (0,1)-matrices.
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[7] Z. Füredi, A. Sali, Optimal Multivalued Shattering, SIAM J. on Discrete Mathe-
matics 26(2012), 737–744.

16


