Berge Hypergraphs

Santiago Salazar

October 4, 2016

Introduction

The results in this paper come from work done this summer with Richard Anstee. The motivation for studying this problem came from Anstee's work in forbidden configurations as well as Daniél Gerbner and Corey Palmers' paper Extremal Results for Berge-Hypergraphs.

Notation

- Let $\|A\|$ denote the number of columns in a matrix A.

Notation

- Let $\|A\|$ denote the number of columns in a matrix A.
- For a $k_{1} \times \ell_{1}$ matrix A and a $k_{2} \times \ell_{2}$ matrix B denote $A \times B$ as the $\left(k_{1}+k_{2}\right) \times\left(\ell_{1} \ell_{2}\right)$ matrix containing every columns of A above every column of B.

Notation

- Let $\|A\|$ denote the number of columns in a matrix A.
- For a $k_{1} \times \ell_{1}$ matrix A and a $k_{2} \times \ell_{2}$ matrix B denote $A \times B$ as the $\left(k_{1}+k_{2}\right) \times\left(\ell_{1} \ell_{2}\right)$ matrix containing every columns of A above every column of B.
- Let $\mathbf{1}_{a} \mathbf{0}_{b}$ denote the column of a 1's above $b 0$'s. If a of b are 0 we write $\mathbf{1}_{a}$ or $\mathbf{0}_{b}$ instead.

Notation

- Let $\|A\|$ denote the number of columns in a matrix A.
- For a $k_{1} \times \ell_{1}$ matrix A and a $k_{2} \times \ell_{2}$ matrix B denote $A \times B$ as the $\left(k_{1}+k_{2}\right) \times\left(\ell_{1} \ell_{2}\right)$ matrix containing every columns of A above every column of B.
- Let $\mathbf{1}_{a} \mathbf{0}_{b}$ denote the column of a 1's above $b 0$'s. If a of b are 0 we write $\mathbf{1}_{a}$ or $\mathbf{0}_{b}$ instead.
- Let K_{k} denote the $(0,1) k$-rowed matrix containing all distinct columns. eg.

$$
K_{3}=\left[\begin{array}{llllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Definitions

- We say a matrix A is simple if it is a $(0,1)$ matrix with no repeated columns.

Definitions

- We say a matrix A is simple if it is a $(0,1)$ matrix with no repeated columns.
- Let F and A be two $(0,1)$ matrices. We say that A contains F as a Berge hypergraph if there exists a submatrix of A, and then a row and column permutation of that matrix, call this matrix G, such that $F \leq G$. In this case we write $F \ll G$

Definitions

- We say a matrix A is simple if it is a $(0,1)$ matrix with no repeated columns.
- Let F and A be two $(0,1)$ matrices. We say that A contains F as a Berge hypergraph if there exists a submatrix of A, and then a row and column permutation of that matrix, call this matrix G, such that $F \leq G$. In this case we write $F \ll G$
- Let $\operatorname{BAvoid}(m, F)$ be the set

$$
\operatorname{BAvoid}(m, F)=\{A: A \text { is } m \text {-rowed, simple, } F \nless A\} .
$$

Definitions

- We say a matrix A is simple if it is a $(0,1)$ matrix with no repeated columns.
- Let F and A be two $(0,1)$ matrices. We say that A contains F as a Berge hypergraph if there exists a submatrix of A, and then a row and column permutation of that matrix, call this matrix G, such that $F \leq G$. In this case we write $F \ll G$
- Let $\operatorname{BAvoid}(m, F)$ be the set

$$
\operatorname{BAvoid}(m, F)=\{A: A \text { is } m \text {-rowed, simple, } F \nless<A\} .
$$

- Define the extremal function $\operatorname{Bh}(m, F)$ as

$$
\operatorname{Bh}(m, F)=\max _{A}\{\|A\|: A \in \operatorname{BAvoid}(m, F)\}
$$

Berge Hypergraph Example

$$
F=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right] \quad A=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

Berge Hypergraph Example

$$
F=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right] \quad A=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

Berge Hypergraph Example

$$
\begin{gathered}
F=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right] \quad A=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] \\
{\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right] \leq\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]} \\
F \ll A
\end{gathered}
$$

Example $\operatorname{Bh}\left(m, I_{k}\right)$

Theorem
Let k be given and assume $m \geq k-1$. Then $\operatorname{Bh}\left(m, I_{k}\right)=2^{k-1}$.

Example $\mathrm{Bh}\left(m, I_{k}\right)$

Theorem

Let k be given and assume $m \geq k-1$. Then $\operatorname{Bh}\left(m, I_{k}\right)=2^{k-1}$.
Proof:
We prove the upper bound, $\operatorname{Bh}\left(m, I_{k}\right) \leq 2^{k-1}$ by induction on k.
Base Case: Let $k=1$, then $I_{1}=[1]$ and $A \in \operatorname{BAvoid}(m,[1])$ can only be the column of zeros. So $\operatorname{BAvoid}\left(m, I_{1}\right)=1=2^{0}$.

Example $\operatorname{Bh}\left(m, I_{k}\right)$

Theorem

Let k be given and assume $m \geq k-1$. Then $\operatorname{Bh}\left(m, I_{k}\right)=2^{k-1}$.

Proof:

We prove the upper bound, $\operatorname{Bh}\left(m, I_{k}\right) \leq 2^{k-1}$ by induction on k.
Base Case: Let $k=1$, then $I_{1}=[1]$ and $A \in \operatorname{BAvoid}(m,[1])$ can only be the column of zeros. So $\operatorname{BAvoid}\left(m, I_{1}\right)=1=2^{0}$.

Induction step: Assume $A \in \operatorname{BAvoid}\left(m, I_{k}\right)$ and let B be the matrix A with rows of 0 's removed. If $\|B\| \leq 2^{k-2}$ we are done so assume $\|B\|>2^{k-2}$. Also assume B has atleast k rows. Then $I_{k-1} \ll B$, so permute B to the form

$$
B=\left[\begin{array}{c|c}
C & D \\
\hline E & G
\end{array}\right]
$$

where $I_{k-1} \ll E$ and E is $(k-1) \times(k-1)$.

Example BAvoid $\left(m, I_{k}\right)$ (cont.)

$$
B=\left[\begin{array}{c|c}
C & D \\
\hline E & G
\end{array}\right]
$$

Note that D is the matrix of zero's so G must be simple. Also note that since B has no nonzero rows, C has a 1. Therefore $I_{k-1} \nless G$. By the induction assumption $\|G\| \leq 2^{k-2}$ and so $\|B\|=\|E\|+\|G\|=k-1+2^{k-2} \leq 2^{k-1}$. This proves $\operatorname{Bh}(m, F) \leq 2^{k-1}$.

Example BAvoid (m, I_{k}) (cont.)

$$
B=\left[\begin{array}{c|c}
C & D \\
\hline E & G
\end{array}\right]
$$

Note that D is the matrix of zero's so G must be simple. Also note that since B has no nonzero rows, C has a 1. Therefore $I_{k-1} \nless G$. By the induction assumption $\|G\| \leq 2^{k-2}$ and so $\|B\|=\|E\|+\|G\|=k-1+2^{k-2} \leq 2^{k-1}$. This proves $\operatorname{Bh}(m, F) \leq 2^{k-1}$.
The construction $K_{k-1} \times \mathbf{0}_{m-(k-1)}$ is in $\operatorname{BAvoid}\left(m, I_{k}\right)$ and has 2^{k-1} columns. Thus $\operatorname{Bh}(m, F)=2^{k-1}$.

General Results

- Complete asymptotic classification of $\operatorname{Bh}(m, F)$ for all 1, 2, 3, 4-rowed F.

General Results

- Complete asymptotic classification of $\operatorname{Bh}(m, F)$ for all 1, 2, 3, 4-rowed F.
- Complete asymptotic classification of $\operatorname{Bh}(m, F)$ all 5-rowed F with the exception of

$$
I_{1} \times I_{2} \times I_{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

General Results

- Complete asymptotic classification of $\operatorname{Bh}(m, F)$ for all 1, 2, 3, 4-rowed F.
- Complete asymptotic classification of $\operatorname{Bh}(m, F)$ all 5-rowed F with the exception of

$$
I_{1} \times I_{2} \times I_{2}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

- Asymptotic classification of $\operatorname{Bh}(m, F)$ where F is the vertex-edge incidence matrix of a forest.

Downsets

We use a shifting operation $T_{i}(A)$ on A where we remove all 1's on row i that do not create a repeated column by their removal. This operation preserves the number of columns and simplicity of the matrix. Also if F is not a Berge hypergraph of A then it is not a Berge hypergraph of $T_{i}(A)$. We apply $T_{m}\left(T_{m-1}\left(\cdots T_{1}(A) \cdots\right)\right)$ until we can no longer remove 1's. If we interpret the resulting matrix $T(A)$ as a set system \mathcal{S} then it is a downset. That is to say, if $S \in \mathcal{S}$ and $S^{\prime} \subset S$, then $S^{\prime} \in \mathcal{S}$. For the matrix $T(A)$, if a columns has 1's on rows $r_{1}, r_{2}, \ldots, r_{t}$, then K_{t} is contained on those t rows.

Conclusion: if $A \in \operatorname{BAvoid}(m, F)$, we can assume A has the downset property!

Shifting Example

$$
\left[\begin{array}{llllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Shifting Example

$$
\rightarrow\left[\begin{array}{llllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Shifting Example

$$
\rightarrow\left[\begin{array}{llllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Shifting Example

$$
\rightarrow\left[\begin{array}{llllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Shifting Example

$$
\rightarrow\left[\begin{array}{llllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Shifting Example

$$
\rightarrow\left[\begin{array}{llllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Shifting Example

$$
\rightarrow\left[\begin{array}{llllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Shifting Example

$$
\rightarrow\left[\begin{array}{llllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Shifting Example

$$
\rightarrow\left[\begin{array}{llllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Shifting Example

$$
\rightarrow\left[\begin{array}{llllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Shifting Example

$$
\left[\begin{array}{llllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Shifting Example

$$
\left[\begin{array}{llllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Graph Theory Machinery

Graph Theory Machinery

Theorem
Let G be a simple graph where each vertex has degree greater than or equal to $k-1$. Then G contains every tree on k vertices as a subgraph.

Graph Theory Machinery

Theorem
Let G be a simple graph where each vertex has degree greater than or equal to $k-1$. Then G contains every tree on k vertices as a subgraph.

Let ex $\left(m, K_{k}, G\right)$ denote the maximum number of subgraphs K_{k} in an m-vertex graph avoiding G.

Graph Theory Machinery

Theorem
Let G be a simple graph where each vertex has degree greater than or equal to $k-1$. Then G contains every tree on k vertices as a subgraph.

Let ex $\left(m, K_{k}, G\right)$ denote the maximum number of subgraphs K_{k} in an m-vertex graph avoiding G.
Let $G(A)$ denote the m vertex graph with vertices i, j connected if and only if rows i, j of A have a $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ pair.

Graph Theory Machinery

Theorem
Let G be a simple graph where each vertex has degree greater than or equal to $k-1$. Then G contains every tree on k vertices as a subgraph.

Let ex $\left(m, K_{k}, G\right)$ denote the maximum number of subgraphs K_{k} in an m-vertex graph avoiding G.
Let $G(A)$ denote the m vertex graph with vertices i, j connected if and only if rows i, j of A have a [$\left.\begin{array}{l}1 \\ 1\end{array}\right]$ pair. eg.

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

F is a tree

Theorem

Let F be the vertex-edge incidence matrix of a tree (or forest) T on k vertices. Then $\operatorname{Bh}(m, F)$ is $\Theta(m)$.

F is a tree

Theorem

Let F be the vertex-edge incidence matrix of a tree (or forest) T on k vertices. Then $\operatorname{Bh}(m, F)$ is $\Theta(m)$.

Proof:

Let $A \in \operatorname{BAvoid}(m, F)$ and assume A is a downset. For each row r of A with column sum 2^{k-2} or less remove that row and the columns of A with 1 's on row r. This corresponds to at most $2^{k-2} m$ column deletions. Any rows left in B have row sum strictly larger than 2^{k-2}. Note that this implies that B has k or more rows since K_{k-1} has row sum 2^{k-2}. Consider the submatrix B_{q} of B formed by taking the columns with 1's on row q and taking every row but row $q . B_{q}$ is simple with $\left\|B_{q}\right\|>2^{k-2}$ and therefore contains I_{k-1}. Therefore the vertex q in $G(B)$ will have degree $k-1$ or greater.

F is a tree (cont.)

By the theorem, T is a subgraph in $G(B)$ and therefore F is in the downset of B. Since the downset of B is in A, F is in A. This contradicts the hypothesis so we conclude that A has fewer than $2^{k-2} m$ rows.

F is a tree (cont.)

By the theorem, T is a subgraph in $G(B)$ and therefore F is in the downset of B. Since the downset of B is in A, F is in A. This contradicts the hypothesis so we conclude that A has fewer than $2^{k-2} m$ rows.

The lower bound follows from the construction I_{m}.

Avoiding the Complete Bipartite Graph

Let $K_{s, t}$ denote the complete bipartite graph on s and t vertices. The vertex-edge incidince matrix of $K_{s, t}$ is $I_{s} \times I_{t}$. We use the following theorems to prove results about $\operatorname{Bh}\left(m, I_{s} \times I_{t}\right)$.

Theorem
W. G. Brown (1966)

For $t \geq 2$, $\mathrm{ex}\left(m, K_{2, t}\right)$ is $\Theta\left(m^{\frac{3}{2}}\right)$.
Theorem
N. Alon, L. Rónyai, T. Szabó (1999)

For $t \geq 3$, $\mathrm{ex}\left(m, K_{3, t}\right)$ is $\Theta\left(m^{\frac{5}{3}}\right)$.

Avoiding the Complete Bipartite Graph

Let $K_{s, t}$ denote the complete bipartite graph on s and t vertices. The vertex-edge incidince matrix of $K_{s, t}$ is $I_{s} \times I_{t}$. We use the following theorems to prove results about $\operatorname{Bh}\left(m, I_{s} \times I_{t}\right)$.

Theorem
W. G. Brown (1966)

For $t \geq 2$, $\operatorname{ex}\left(m, K_{2, t}\right)$ is $\Theta\left(m^{\frac{3}{2}}\right)$.
Theorem
N. Alon, L. Rónyai, T. Szabó (1999)

For $t \geq 3$, $\mathrm{ex}\left(m, K_{3, t}\right)$ is $\Theta\left(m^{\frac{5}{3}}\right)$.
Theorem
For $t \geq 2, \operatorname{Bh}\left(m, I_{2} \times I_{t}\right)$ is $\Theta\left(m^{\frac{3}{2}}\right)$.
Theorem
For $t \geq 3, \operatorname{Bh}\left(m, I_{3} \times I_{t}\right)$ is $\Theta\left(m^{2}\right)$.

Column Sum Restriction

For general $I_{s} \times I_{t}$, we consider matrices with column sums $1,2, \ldots, s$. Suppose $A \in \operatorname{BAvoid}(m, F)$ has a column α with column sum s. The number of columns β_{i} with $\beta_{i}>\alpha$ is bounded by 2^{t-1}.
$s\left[\begin{array}{ccccc}\alpha & \beta_{1} & \beta_{2} & 2^{t-1}+1 & \beta_{n} \\ 1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \\ & & & & \\ & & B & & \end{array}\right]$

Column Sum Restriction (cont.)

Note that B is a simple matrix with $\|B\|>\operatorname{Bh}\left(m, I_{t}\right)$ so $I_{t} \ll B$. We apply the downset idea and note that we can find $I_{s} \times I_{t}$ in A.

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots \\
1 & 1 & \cdots & 1 \\
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right]
$$

Column Sum Restriction (cont.)

Note that B is a simple matrix with $\|B\|>\operatorname{Bh}\left(m, I_{t}\right)$ so $I_{t} \ll B$. We apply the downset idea and note that we can find $I_{s} \times I_{t}$ in A.

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots \\
1 & 1 & \cdots & 1 \\
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right] \Rightarrow\left[\begin{array}{ccccccccc}
1 & \cdots & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & \cdots & 0 & 1 & \cdots & 1 & 0 & \cdots & 0 \\
\vdots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & 0 & 0 & \cdots & 1 \\
1 & & & 1 & & & 1 & & \\
& \ddots & & & \ddots & & & \cdots & \\
& & 1 & & & 1 & & & 1
\end{array}\right]
$$

Column Sum Restriction (cont.)

Note that B is a simple matrix with $\|B\|>\operatorname{Bh}\left(m, I_{t}\right)$ so $I_{t} \ll B$. We apply the downset idea and note that we can find $I_{s} \times I_{t}$ in A.

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots \\
1 & 1 & \cdots & 1 \\
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right] \Rightarrow\left[\begin{array}{ccccccccc}
1 & \cdots & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & \cdots & 0 & 1 & \cdots & 1 & 0 & \cdots & 0 \\
\vdots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & 0 & 0 & \cdots & 1 \\
1 & & & 1 & & & 1 & & \\
& \ddots & & & \ddots & & & \cdots & \\
& & 1 & & & 1 & & & 1
\end{array}\right]
$$

We therefore restrict ourselves to considering the columns of column sum s or less since the number of columns of larger column sum is bounded by a constant times the number of columns of column sum s.

$\mathrm{Bh}\left(m, I_{2} \times I_{t}\right)$

Theorem
Let $F=I_{2} \times I_{t}$ be the vertex-edge incidence matrix of the complete bipartite graph $K_{2, t}$. Then $\operatorname{Bh}(m, F)$ is $\Theta\left(\operatorname{ex}\left(m, K_{2, t}\right)\right)$ which is $\Theta\left(m^{\frac{3}{2}}\right)$

$\mathrm{Bh}\left(m, I_{2} \times I_{t}\right)$

Theorem

Let $F=I_{2} \times I_{t}$ be the vertex-edge incidence matrix of the complete bipartite graph $K_{2, t}$. Then $\operatorname{Bh}(m, F)$ is $\Theta\left(\operatorname{ex}\left(m, K_{2, t}\right)\right)$ which is $\Theta\left(m^{\frac{3}{2}}\right)$
Proof: Let $A \in \operatorname{BAvoid}\left(m, I_{2} \times I_{t}\right)$ and assume A has column sums at most 2. The number of columns of column sum 0 or 1 is bounded by $m+1$ and the number of columns of column sum 2 is bounded by $2^{t-1} \operatorname{ex}\left(m, K_{2, t}\right)$. It is known that ex $\left(m, K_{2, t}\right)$ is $\Theta\left(m^{\frac{3}{2}}\right)$. Thus $\operatorname{Bh}\left(m, I_{2} \times I_{t}\right) \leq 2^{t-1} \operatorname{ex}\left(m, K_{2, t}\right)+m+1$ which is $O\left(m^{\frac{3}{2}}\right)$.
It follows from the existence of a graph with $\Theta\left(m^{\frac{3}{2}}\right)$ edges that we can take the corresponding vertex-edge incidence matrix and get the lower bound. Therefore $\operatorname{Bh}\left(m, I_{2} \times I_{t}\right)$ is $\Theta\left(m^{\frac{3}{2}}\right)$.

Graph reduction

We cannot use the same approach to determine $\operatorname{Bh}\left(m, I_{3} \times I_{t}\right)$ since we must consider edges of size 3 . However, we can still reduce $\mathrm{Bh}\left(m, I_{3} \times I_{t}\right)$ to a graph theory problem. Let $A \in \operatorname{BAvoid}\left(m, I_{3} \times I_{t}\right)$ and let A have the downset property. If A has a column of sum 3 on rows i, j, k, then the vertices i, j, k in $G(A)$ have a triangle. Therefore the number of columns of sum 3 in A is bounded by ex $\left(m, K_{3}, K_{s, t}\right)$. Conversely, we can show that if we have a triangle on rows i, j, k of A, then we can have a column with 1's on those rows. Suppose that on rows i, j, k of $A \in \operatorname{BAvoid}\left(m, I_{3} \times I_{t}\right)$ we have a triangle K_{3}. Append the column α with 1's on i, j, k and 0's elsewhere. Call the new matrix B.

Graph reduction (cont)

i
j
$k$$\left[\begin{array}{cccc}a & b & c & \alpha \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1\end{array}\right]$

Now suppose the forbidden object has been formed in B. Since it was not in A, column α must be part of the submatrix.
Furthermore, since there are two 1's in $I_{3} \times I_{t}$ two of rows i, j, k must also be part of the submatrix. Suppose without loss of generality, that those rows are i, j. We note that column a can not be in the submatrix since that would form a 2×2 submatrix of 1's. However, that implies that we could equivalently take a instead of α in the submatrix. Therefore the forbidden object is in A, a contradiction. We conclude that the forbidden object is not in B.

$\mathrm{Bh}\left(m, I_{3} \times I_{t}\right)$ Upper bound

Lemma
N. Alon, C. Shikhelman (2015)

For any fixed $s \geq 2$ and $t \geq(s-1)!+1, \operatorname{ex}\left(m, K_{3}, K_{s, t}\right)$ is
$\Theta\left(m^{3-\frac{3}{s}}\right)$.
Theorem
For $t \geq 3, \operatorname{Bh}\left(m, I_{3} \times I_{t}\right)$ is $\Theta\left(m^{2}\right)$.

$\mathrm{Bh}\left(m, I_{3} \times I_{t}\right)$ Upper bound

Lemma
N. Alon, C. Shikhelman (2015)

For any fixed $s \geq 2$ and $t \geq(s-1)!+1, \operatorname{ex}\left(m, K_{3}, K_{s, t}\right)$ is
$\Theta\left(m^{3-\frac{3}{s}}\right)$.
Theorem
For $t \geq 3, \operatorname{Bh}\left(m, I_{3} \times I_{t}\right)$ is $\Theta\left(m^{2}\right)$.
Proof: We consider columns of column sum 3 or less. The number of columns with column sum 2 or less is bounded by $\binom{m}{2}+\binom{m}{1}+\binom{m}{0}$. As we showed before, the number of columns of column sum 3 is bounded by ex $\left(m, K_{3}, K_{3, t}\right)$ which is $\Theta\left(m^{2}\right)$. Therefore we have that $\operatorname{Bh}\left(m, I_{3} \times I_{t}\right)$ is $O\left(m^{2}\right)$.

$\operatorname{Bh}\left(m, I_{3} \times I_{t}\right)$ Lower bound

For the lower bound we take the construction, G, used in the lemma and construct a matrix with a column of column sum 3 on rows i, j, k if vertices i, j, k of G have a triangle. As we showed, this new matrix avoids $I_{3} \times I_{t}$, is simple, and has $\Theta\left(m^{2}\right)$ columns. Therefore $\operatorname{Bh}\left(m, I_{3} \times I_{t}\right)$ is $\Theta\left(m^{2}\right)$

General $I_{s} \times I_{t}$

Although the bounds we have found are for $s=2$ and $s=3$, our methods generalize to $I_{s} \times I_{t}$. For any s and $t \geq s$, we have that

$$
\mathrm{Bh}\left(m, I_{s} \times I_{t}\right) \text { is } \Theta\left(\sum_{i=0}^{s} \operatorname{ex}\left(m, K_{i}, K_{s, t}\right)\right)
$$

General $I_{s} \times I_{t}$

Although the bounds we have found are for $s=2$ and $s=3$, our methods generalize to $I_{s} \times I_{t}$. For any s and $t \geq s$, we have that

$$
\operatorname{Bh}\left(m, I_{s} \times I_{t}\right) \text { is } \Theta\left(\sum_{i=0}^{s} \operatorname{ex}\left(m, K_{i}, K_{s, t}\right)\right)
$$

Alon and Shikhelman's work is particularly relevant as can be seen by the following theorem.

Theorem
For any fixed $r, s \geq 2 r-2$, and $t \geq(s-1)!+1$. Then,

$$
\operatorname{ex}\left(m, K_{r}, K_{s, t}\right) \geq\left(\frac{1}{r!}+o(1)\right) m^{r-\frac{r(r-1)}{s}}
$$

Thanks for listening!

