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Introduction

The results in this paper come from work done this summer
with Richard Anstee. The motivation for studying this problem
came from Anstee’s work in forbidden configurations as well as
Daniél Gerbner and Corey Palmers’ paper Extremal Results for
Berge-Hypergraphs.
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Notation

I Let ||A|| denote the number of columns in a matrix A.

I For a k1 × `1 matrix A and a k2 × `2 matrix B denote
A×B as the (k1 + k2)× (`1`2) matrix containing every
columns of A above every column of B.

I Let 1a0b denote the column of a 1’s above b 0’s. If a of b
are 0 we write 1a or 0b instead.

I Let Kk denote the (0,1) k-rowed matrix containing all
distinct columns. eg.

K3 =

1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0


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Definitions

I We say a matrix A is simple if it is a (0,1) matrix with no
repeated columns.

I Let F and A be two (0,1) matrices. We say that A contains
F as a Berge hypergraph if there exists a submatrix of A,
and then a row and column permutation of that matrix,
call this matrix G, such that F ≤ G. In this case we write
F Î G

I Let BAvoid(m,F ) be the set

BAvoid(m,F ) = {A : A is m-rowed, simple, F 6Î A}.

I Define the extremal function Bh(m,F ) as

Bh(m,F ) = max
A
{||A|| : A ∈ BAvoid(m,F )}.
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Berge Hypergraph Example

F =

[
1 1 1
0 1 0

]
A =


1 0 1 1
1 1 0 1
0 1 0 1
1 0 1 0



[
1 1 1
0 1 0

]
≤
[
1 1 1
1 1 0

]

F Î A
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Example Bh(m, Ik)

Theorem
Let k be given and assume m ≥ k − 1. Then Bh(m, Ik) = 2k−1.

Proof:
We prove the upper bound, Bh(m, Ik) ≤ 2k−1 by induction on k.

Base Case: Let k = 1, then I1 = [1] and A ∈ BAvoid(m, [1]) can
only be the column of zeros. So BAvoid(m, I1) = 1 = 20.

Induction step: Assume A ∈ BAvoid(m, Ik) and let B be the
matrix A with rows of 0’s removed. If ||B|| ≤ 2k−2 we are done
so assume ||B|| > 2k−2. Also assume B has atleast k rows.
Then Ik−1 Î B, so permute B to the form

B =

[
C D

E G

]
where Ik−1 Î E and E is (k − 1)× (k − 1).
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Example BAvoid(m, Ik) (cont.)

B =

[
C D

E G

]
Note that D is the matrix of zero’s so G must be simple. Also
note that since B has no nonzero rows, C has a 1. Therefore
Ik−1 6Î G. By the induction assumption ||G|| ≤ 2k−2 and so
||B|| = ||E||+ ||G|| = k − 1 + 2k−2 ≤ 2k−1. This proves
Bh(m,F ) ≤ 2k−1.

The construction Kk−1 × 0m−(k−1) is in BAvoid(m, Ik) and has

2k−1 columns. Thus Bh(m,F ) = 2k−1.
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General Results

I Complete asymptotic classification of Bh(m,F ) for all
1, 2, 3, 4-rowed F .

I Complete asymptotic classification of Bh(m,F ) all 5-rowed
F with the exception of

I1 × I2 × I2 =


1 1 1 1
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1


I Asymptotic classification of Bh(m,F ) where F is the

vertex-edge incidence matrix of a forest.
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Downsets

We use a shifting operation Ti(A) on A where we remove all 1’s
on row i that do not create a repeated column by their removal.
This operation preserves the number of columns and simplicity
of the matrix. Also if F is not a Berge hypergraph of A then it
is not a Berge hypergraph of Ti(A). We apply
Tm(Tm−1(· · ·T1(A) · · · )) until we can no longer remove 1’s.
If we interpret the resulting matrix T (A) as a set system S then
it is a downset . That is to say, if S ∈ S and S′ ⊂ S, then
S′ ∈ S. For the matrix T (A), if a columns has 1’s on rows
r1, r2, . . . , rt, then Kt is contained on those t rows.

Conclusion: if A ∈ BAvoid(m,F ), we can assume A has the
downset property!
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Shifting Example



1 1 1 1 1 1 0 0 0 1 1 1
0 1 1 0 1 1 1 0 0 0 1 1
1 0 0 1 0 1 1 1 1 1 1 0
0 1 1 1 0 0 0 1 0 0 0 0
0 1 1 0 0 0 1 0 0 1 0 0

→

0 1 0 1 0 0 1 0 0 0 1 0


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Graph Theory Machinery

Theorem
Let G be a simple graph where each vertex has degree greater
than or equal to k− 1. Then G contains every tree on k vertices
as a subgraph.

Let ex(m,Kk, G) denote the maximum number of subgraphs Kk

in an m-vertex graph avoiding G.

Let G(A) denote the m vertex graph with vertices i, j
connected if and only if rows i, j of A have a [ 11 ] pair.
eg.

A =


1 0 0 1
1 1 0 1
0 1 0 0
1 0 1 0
0 0 1 0


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F is a tree

Theorem
Let F be the vertex-edge incidence matrix of a tree (or forest) T
on k vertices. Then Bh(m,F ) is Θ(m).

Proof:
Let A ∈ BAvoid(m,F ) and assume A is a downset. For each
row r of A with column sum 2k−2 or less remove that row and
the columns of A with 1’s on row r. This corresponds to at
most 2k−2m column deletions. Any rows left in B have row sum
strictly larger than 2k−2. Note that this implies that B has k or
more rows since Kk−1 has row sum 2k−2. Consider the
submatrix Bq of B formed by taking the columns with 1’s on
row q and taking every row but row q. Bq is simple with
||Bq|| > 2k−2 and therefore contains Ik−1. Therefore the vertex
q in G(B) will have degree k − 1 or greater.
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F is a tree (cont.)

By the theorem, T is a subgraph in G(B) and therefore F is in
the downset of B. Since the downset of B is in A, F is in A.
This contradicts the hypothesis so we conclude that A has fewer
than 2k−2m rows.

The lower bound follows from the construction Im.
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Avoiding the Complete Bipartite Graph

Let Ks,t denote the complete bipartite graph on s and t
vertices. The vertex-edge incidince matrix of Ks,t is Is × It. We
use the following theorems to prove results about Bh(m, Is× It).

Theorem
W. G. Brown (1966)

For t ≥ 2, ex(m,K2,t) is Θ(m
3
2 ).

Theorem
N. Alon, L. Rónyai, T. Szabó (1999)

For t ≥ 3, ex(m,K3,t) is Θ(m
5
3 ).

Theorem
For t ≥ 2, Bh(m, I2 × It) is Θ(m

3
2 ).

Theorem
For t ≥ 3, Bh(m, I3 × It) is Θ(m2).
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Column Sum Restriction

For general Is × It, we consider matrices with column sums
1, 2, . . . , s. Suppose A ∈ BAvoid(m,F ) has a column α with
column sum s. The number of columns βi with βi > α is
bounded by 2t−1.



α β1 β2 2t−1+1 βn

1 1 1 · · · 1

s
...

...
...

...
...

1 1 1 · · · 1

B


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Column Sum Restriction (cont.)

Note that B is a simple matrix with ||B|| > Bh(m, It) so
It Î B. We apply the downset idea and note that we can find
Is × It in A.

1 1 · · · 1
...

...
...

...
1 1 · · · 1
1

1
. . .

1



⇒



1 · · · 1 0 · · · 0 0 · · · 0
0 · · · 0 1 · · · 1 0 · · · 0
...

...
...

...
...

...
...

...
...

0 · · · 0 0 · · · 0 0 · · · 1
1 1 1

. . .
. . . · · ·

1 1 1


We therefore restrict ourselves to considering the columns of
column sum s or less since the number of columns of larger
column sum is bounded by a constant times the number of
columns of column sum s.
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Bh(m, I2 × It)

Theorem
Let F = I2 × It be the vertex-edge incidence matrix of the
complete bipartite graph K2,t. Then Bh(m,F ) is Θ(ex(m,K2,t))

which is Θ(m
3
2 )

Proof: Let A ∈ BAvoid(m, I2 × It) and assume A has column
sums at most 2. The number of columns of column sum 0 or 1
is bounded by m+ 1 and the number of columns of column sum
2 is bounded by 2t−1ex(m,K2,t). It is known that ex(m,K2,t) is

Θ(m
3
2 ). Thus Bh(m, I2 × It) ≤ 2t−1ex(m,K2,t) +m+ 1 which is

O(m
3
2 ).

It follows from the existence of a graph with Θ(m
3
2 ) edges that

we can take the corresponding vertex-edge incidence matrix and
get the lower bound. Therefore Bh(m, I2 × It) is Θ(m

3
2 ).
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Graph reduction

We cannot use the same approach to determine Bh(m, I3 × It)
since we must consider edges of size 3. However, we can still
reduce Bh(m, I3 × It) to a graph theory problem. Let
A ∈ BAvoid(m, I3 × It) and let A have the downset property. If
A has a column of sum 3 on rows i, j, k, then the vertices i, j, k
in G(A) have a triangle. Therefore the number of columns of
sum 3 in A is bounded by ex(m,K3,Ks,t). Conversely, we can
show that if we have a triangle on rows i, j, k of A, then we can
have a column with 1’s on those rows. Suppose that on rows
i, j, k of A ∈ BAvoid(m, I3 × It) we have a triangle K3. Append
the column α with 1’s on i, j, k and 0’s elsewhere. Call the new
matrix B.
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Graph reduction (cont)


a b c α

i 1 1 0 1
j 1 0 1 1
k 0 1 1 1


Now suppose the forbidden object has been formed in B. Since
it was not in A, column α must be part of the submatrix.
Furthermore, since there are two 1’s in I3 × It two of rows i, j, k
must also be part of the submatrix. Suppose without loss of
generality, that those rows are i, j. We note that column a can
not be in the submatrix since that would form a 2× 2
submatrix of 1’s. However, that implies that we could
equivalently take a instead of α in the submatrix. Therefore the
forbidden object is in A, a contradiction. We conclude that the
forbidden object is not in B.
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Bh(m, I3 × It) Upper bound

Lemma
N. Alon, C. Shikhelman (2015)
For any fixed s ≥ 2 and t ≥ (s− 1)! + 1, ex(m,K3,Ks,t) is

Θ(m3− 3
s ).

Theorem
For t ≥ 3, Bh(m, I3 × It) is Θ(m2).

Proof: We consider columns of column sum 3 or less. The
number of columns with column sum 2 or less is bounded by(
m
2

)
+
(
m
1

)
+
(
m
0

)
. As we showed before, the number of columns

of column sum 3 is bounded by ex(m,K3,K3,t) which is Θ(m2).
Therefore we have that Bh(m, I3 × It) is O(m2).
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Bh(m, I3 × It) Lower bound

For the lower bound we take the construction, G, used in the
lemma and construct a matrix with a column of column sum 3
on rows i, j, k if vertices i, j, k of G have a triangle. As we
showed, this new matrix avoids I3 × It, is simple, and has
Θ(m2) columns. Therefore Bh(m, I3 × It) is Θ(m2)
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General Is × It

Although the bounds we have found are for s = 2 and s = 3, our
methods generalize to Is × It. For any s and t ≥ s, we have that

Bh(m, Is × It) is Θ

(
s∑
i=0

ex(m,Ki,Ks,t)

)

Alon and Shikhelman’s work is particularly relevant as can be
seen by the following theorem.

Theorem
For any fixed r, s ≥ 2r − 2, and t ≥ (s− 1)! + 1. Then,

ex(m,Kr,Ks,t) ≥
(

1

r!
+ o(1)

)
mr− r(r−1)

s .

Santiago Salazar Berge Hypergraphs



General Is × It

Although the bounds we have found are for s = 2 and s = 3, our
methods generalize to Is × It. For any s and t ≥ s, we have that

Bh(m, Is × It) is Θ

(
s∑
i=0

ex(m,Ki,Ks,t)

)

Alon and Shikhelman’s work is particularly relevant as can be
seen by the following theorem.

Theorem
For any fixed r, s ≥ 2r − 2, and t ≥ (s− 1)! + 1. Then,

ex(m,Kr,Ks,t) ≥
(

1

r!
+ o(1)

)
mr− r(r−1)

s .

Santiago Salazar Berge Hypergraphs



Thanks for listening!
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