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Abstract

A framework in Euclidean space consists of a set of points called joints, and line segments

connecting pairs of joints called bars. A framework is flexible if there exists a continuous

motion of its joints such that all pairs of joints with a bar remain at a constant distance, but

between at least one pair of joints not joined by a bar, the distance changes. For example,

a square in the plane is not rigid since it can be deformed into a family of rhombi. This

thesis is mainly concerned with infinitesimal motions. Loosely speaking, a framework is in-

finitesimally rigid if it does not wobble. One example is a motion of a single joint, where all

other joints are unmoving, such that the movement of the one joint is perpendicular to all

bars attached to it. The distances in an infinitesimal motion are preserved in the initial in-

stant of motion. Infinitesimally rigid frameworks are rigid, and is an easier quality to verify,

thereby making it a popular notion of rigidity to study among engineerings, architects, and

mathematicians. We present infinitesimally rigid bipartite unit-bar frameworks in Rn, and

infinitesimally rigid bipartite frameworks in the plane with girth up to 12. Our constructions

make use of the knight’s graph; a graph such that vertices (joints) are squares of a chessboard

and edges (bars) represent legal moves of the knight. We show that copies of the knight’s

graph can be assembled to create infinitesimally rigid frameworks in any dimension. Our

constructions answer questions of Hiroshi Maehara.
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Lay Summary

A framework is a mathematical model of a physical structure consisting of bars secured at

joints. The Eiffel Tower is an example of bar and joint structure, since it is primarily com-

posed of iron beams bolted together. A framework is rigid if it cannot be deformed into a

different shape. For example, a square can be bent into a rhombus, and so is not rigid. Most

rigid shapes we think of have triangles. Hiroshi Maehara posed the problem of determining

rigid frameworks without triangles, or without any shape with any odd number of sides. We

present rigid frameworks with this property.
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Preface

Unless otherwise stated, the results after the first section of this thesis are original and a

product of joint work with my supervisor Professor József Solymosi. Several of the results

contained in this thesis have been submitted for publication.
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1 Background

1.1 Rigidity of physical structures

It is important to know if a bridge, tower, or toolshed will fall over in the presence of wind,

loading, or gravity. Many factors contribute to the rigidity of structures including materials,

foundation, and external forces. We will be concerned with the geometric component of

rigidity, and will study it using a model known as a framework, which will be defined formally

in the next section. Frameworks are mathematical approximations for structures made from

bars and joints such as wooden trusses found in roofs, or bolted metal works such as the

Forth Bridge in Scotland, or the Eiffel Tower in France.

The bars of a framework are fixed in length and cannot be bent. Information such as

building material is not captured by a framework, and so plastic and steel structures are

not differentiated. Moreover, in real life, any building material will deform when subjected

to sufficient forces. Another difference between frameworks and real structures is that the

joints of a framework are universally flexible, like the shoulder or hip of a person. Most

structures are built with securely fastened and immovable joints. On the other hand, the

bolts and welds of a real structure are often the weakest part, and so it is useful to know if

the load of a structure will be borne by its beams or its bolts. In the latter case, a revised

design might be in order.

Despite its obvious deficiencies, the framework model and properties of rigidity can be

applicable in building design. In particular, infinitesimal motions of a framework, a concept

that will be defined shortly, result in finite vibrations and deformations after construction.

Frameworks also provide an accessible model to determine if a structure is over-braced. A

structure will typically be overengineered with safety in mind, at the cost of heavier and

costlier constructions. Applications of rigidity can be found in other scientific disciplines.

In biology, the active sites of protein molecules (locations of chemical reactions) have been

observed to be more rigid than elsewhere on the molecule, when it is modelled as a framework.

In robotics, by applying rigidity theory, an operator of multiple robots can determine and
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reorganize their formation by only considering a small fraction of the relative distances

between robots, as opposed to all position measurements.

1.2 Rigidity of frameworks

The following is one of the most important concepts of this thesis.

Definition 1.1. (Framework)

Let G be a simple graph on n vertices, and V = {1, 2, . . . , n}, E be the sets of vertices

and edges of G, respectively. A framework in Rd is a embedding of the vertices of G in Rd.

We denote the framework by G(p), where p = (p1, . . . ,pn) ∈ Rdn are the coordinates of the

vertices. We call p a placement, and require that pi 6= pj for all i 6= j. For each vertex i ∈ V

call pi a joint of G(p), and if ij ∈ E, call pipj a bar. �

The fundamental question of rigidity theory is to determine whether or not a framework

is rigid. There are many different notions of rigidity, and several are defined in this section.

Definition 1.2. (Equivalent and Congruent) Two frameworks, G(p) and G(q) are called

equivalent if for all edges ij ∈ E, we have

‖pi − pj‖2 = ‖qi − qj‖2, (1)

where ‖ · ‖ is the Euclidean norm. Denote equivalent frameworks by G(p) ≡ G(q). Further-

more, if (1) holds for all i, j ∈ V , then we say the two frameworks are congruent, and write

p ≡ q. �

Definition 1.3. (Globally Rigid). A framework G(p) is globally rigid if for all placements

q of G such that G(p) ≡ G(q), then p ≡ q. �

The framework in Figure 1(a) is not globally rigid, since the framework in (b) is equivalent

to it, but not congruent. It is easy to check that the framework in (c) is globally rigid. In

[11], Saxe shows that determining if a framework is globally rigid in R is a strongly NP hard

problem. We will see that other notions of rigidity result in more tractable problems.
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(a) (b) (c)

Figure 1: Global rigidity in R2

Definition 1.4. (Continuously flexible). Let G(p) be a framework in Rd with n joints. The

framework G(p) is continuously flexible if there exists a continuous path γ : [0, 1] → Rdn

such that

i. γ(0) = p

ii. G(γ(t)) ≡ G(p) for all t ∈ [0, 1]

iii. γ(t) 6≡ p for t > 0.

We call γ a flexion of G(p). A framework that is not continuously flexible, is continuously

rigid. �

This notion of rigidity most strongly agrees with the intuitive ‘bent out of shape’ defini-

tion. A triangle cannot be bent, since it’s three side lengths uniquely determine it’s shape.

A square framework can be bent out of shape. For example, consider the framework with

joints at (0, 0), (1, 0), (0, 1), (1, 1) and four bars all length 1. Then

γ(t) =


(0, 0)

(1, 0)

(sin t, cos t)

(sin t+ 1, cos t)

 ,

describes a flexion of the square, deforming it into a family of rhombi. Continuous rigidity

can be formulated in several equivalent and useful ways.

3



Definition 1.5. (Neighbourhood rigid). A framework G(p) is neighbourhood rigid if there

exists ε > 0 such that for all placements q of G with ‖pi − qi‖ < ε for all i ∈ V , and

G(p) ≡ G(q), then p ≡ q. A framework that is not neighbourhood rigid is neighbourhood

flexible. �

A flexion of a framework G(p) gives non-equivalent frameworks arbitrarily close to G(p),

and so continuous flexibility implies neighbourhood flexibility. On the other hand, let X ⊂

Rdn be the set of all placements such that G(p) ≡ G(q), and let Y ⊂ Rdn be the set of all

placements such that p ≡ q. Note that X is an algebraic variety, and Y is a subvariety.

Suppose that G(p) is neighbourhood flexible. Then for every neighbourhood U of p, there

exists q ∈ U ∩ (X − Y ).

Remark 1.6. As a result of Lemma 1.7 below, there is an analytic path γ between p and q,

such that γ is a flexion. It follows that continuous and neighbourhood rigidity are equivalent.

�

Lemma 1.7. (Wallace [13]). Let V be a real algebraic variety, W a subvariety, and p a

point of W . Then there is a neighbourhood U of p such that all points of U ∩ (V −W ) can

be jointed to p by analytic arcs on V meeting W only at p. �

This means that the requirement that flexions must be continuous is equivalent to con-

dition they are infinitely differentiable. Let γ = (γ1, . . . , γn) : [0, 1] → Rdn be an analytic

flexion of a framework G(p). The size of a bar does not change under γ, hence for each edge

ij ∈ E we have

d

dt
‖γi(t)− γj(t)‖2 = 2(γi(t)− γj(t)) · (γ′i(t)− γ′j(t)) = 0. (2)

This means that the relative motion of two joints is perpendicular to the direction of a bar

between them. This motivates another definition of rigidity.

Definition 1.8. (Infinitesimal rigidity). An infinitesimal motion of Rd is a vector field

f : Rd → Rd such that for all points x,y ∈ Rd:

(x− y) · (f(x)− f(y)) = 0. (3)

4



An infinitesimal motion of a framework G(p) is a vector field f : V → Rd that satisfies (3) for

all bars xy of G(p). An infinitesimal motion of a framework is trivial if it is the restriction

of an infinitesimal motion of Rd. A framework that admits a non-trivial infinitesimal motion

is called infinitesimally flexible, otherwise the framework is infinitesimally rigid. �

Intuitively, infinitesimal flexibility describes a frameworks ability to ‘wobble’. From (2),

we see an analytic flexion γ gives rise to an infinitesimal motion defined by f(pi) = γ′i(0).

It’s easy to check that f is non-trivial since (2) is nonzero for some ij 6∈ E. It follows that

continuously flexible frameworks are infinitesimally flexible, and so infinitesimal rigidity im-

plies continuous rigidity. On the other hand, continuous rigidity does not imply infinitesimal

rigidity, see Figure 2 for an example.

↑

Figure 2: Continuously but not infinitesimally rigid framework in R2

The infinitesimal motion of the above framework that gives zero velocity to the four corner

joints, but upwards velocity to the middle joint is non-trivial. The framework in Figure 2

is globally rigid also. On the other hand, the framework in Figure 1(a) is infinitesimally

rigid, but not globally rigid. In summary, global and infinitesimal rigidity imply continuous

rigidity, but neither implies the other.

Infinitesimal rigidity also captures the real-world intuition that ‘flat’ structures are not

strong. For example, the framework of three joints pairwise connected by bars in R is

infinitesimally rigid. But in R2, three collinear joints, pairwise connected by bars is infinites-

imally flexible. In general, suitably ‘flat’ frameworks are infinitesimally flexible.

Proposition 1.9. Let F be a framework with n joints contained in the span of the basis

vectors e1, . . . , ek in Rd, where k ≤ n− 2, and k ≤ d− 1. Then F is infinitesimally flexible.

5



Proof. Let x1, . . . ,xn, be the joints of F . Without loss of generality, suppose x1 = 0. Define

a function f : Rd → Rd such that f(xi) = 0 for 2 ≤ i ≤ n, and f(0) = ek+1. It is easy to

check that f is an infinitesimal motion of F . On the other hand, suppose for a contradiction

that f can be extended to an infinitesimal motion of Rd. Then (ek+1 − xi) · f(ek+1)) = 0

for all 2 ≤ i ≤ n. Since {x2, . . . ,xn} is contained in a subspace of dimension at most n− 2,

they are linearly dependent. We can find ai ∈ R, 2 ≤ i ≤ n such that
∑n

i=2 aixi = 0 and∑n
i=2 ai = 1. Then

∑n
i=2 ai(ek+1 − xi) = ek+1. This implies ek+1 · f(ek+1) = 0 and so

(0− ek+1) · (ek+1 − f(ek+1)) = −ek+1 · ek+1 = −1.

This is a contradiction, since the above must be 0 for an infinitesimal motion f of Rd. It

follows that F is infinitesimally flexible.

The framework in Figure 3 is infinitesimally rigid in R2, i.e. if it’s joints are at coordinates

(0, 0), (0, 1), (1, 0), (1, 1). On the other hand if the same framework is in R3, with joints at

(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0) then it is infinitesimally flexible by Proposition 1.9.

Figure 3: Infinitesimally rigid in R2, infinitesimally flexible in R3

It is easy to check that an infinitesimal motion f of Rd is determined by its values at the

basis vectors e1, . . . , ed. Since the set of infinitesimal motions is closed under addition and

scalar multiplication, it can be viewed as a vector subspace of Rd2 . Applying (3) to each

pair ei, ej gives
(
d
2

)
independent constraints, and so the space of infinitesimal motions has

dimension at most d2−
(
d
2

)
=
(
d+1
2

)
. Equation (2) shows that all smooth motions of Rd that

are distance preserving, i.e. rotations and translations, give rise to infinitesimal motions.

The space of orientation preserving rotations are the special orthogonal matrices and have

dimension (d−1)d
2

. The space of translations has dimension d. It follows that the space of

6



infinitesimal motions of Rd has dimension d+ (d−1)d
2

=
(
d+1
2

)
. The infinitesimal motions of a

framework can be described by the kernel of a matrix.

Definition 1.10. (Rigidity matrix). Let G(p) be a framework in Rd with n joints and m

bars. The rigidity matrix of G(p) has a row for each bar, and d columns for each joint,

corresponding to each coordinate of the joint. The matrix takes the form

RG(p) =

vertex i vertex j
edge ij · · · pi − pj · · · pj − pi · · ·

�

Each row of the rigidity matrix corresponds with the condition described in (3). It is

easy to check that an infinitesimal motion of Rd that is zero on a set of points that are not

contained in a (d− 2)-dimensional hyperplane, is identically zero. As a result, if G(p) is in

Rd with joints not contained in a (d− 2)-dimensional hyperplane, then distinct infinitesimal

motions of Rd restrict to distinct infinitesimal motions of G(p) and so the dimension of

infinitesimal motions of G(p) is at least
(
d+1
2

)
. Equivalently, this is

rank RG(p) ≤ dn−
(
d+ 1

2

)
, (4)

and equality holds just in case G(p) is infinitesimally rigid. The above is summarized in the

following key theorem.

Theorem 1.11. (Rigidity matrix). Let G(p) be a framework in Rd with at least d joints.

Then G(p) is infinitesimally rigid if and only if

rank RG(p) = dn−
(
d+ 1

2

)
. �

Proof. If G(p) is not contained in a (d − 2)-dimensional hyperplane, then by the above

the result follows. Suppose on the other hand, that G(p) is contained in a k-dimensional

7



hyperplane, where k ≤ d− 2, and that G(p) . By translations and rotations, we can assume

that G(p) is contained in the subspace spanned by {e1, . . . , ek}. Let G(p′) be the framework

in Rk corresponding to the natural projection of taking the first k coordinates (note that

the underlying graph will be the same). The rigidity matrices RG(p) and RG(p′) differ only

by (d− k)n columns of zeros, and so they have the same rank. By the above discussion,

rank RG(p′) ≤ kn−
(
k + 1

2

)
< dn−

(
d+ 1

2

)
.

This proves the result.

Note that the condition n ≥ d is necessary for (4) to hold. For example, the triangle

framework with joints (0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0) is infinitesimally rigid, and the rank

of the corresponding rigidity matrix is 3. On the other hand, the quantity on the righthand

side of (4) in this case is 2.

Example 1.12. Reconsider the framework in Figure 2, with the placement described in

Figure 4.

p1 = (0, 0)

p2 = (0, 1)

p5 = (2, 0)

p4 = (2, 1)p3 = (1, 1)

e1

e2 e3

e4

e5

e6 e7

Figure 4: Infinitesimally flexible framework in R2
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We calculate the rigidity matrix below using Definition 1.10.

p1 p1 p2 p2 p3 p3 p4 p4 p5 p5



e1 0 −1 0 1 0 0 0 0 0 0

e2 0 0 −1 0 1 0 0 0 0 0

e3 0 0 0 0 −1 0 1 0 0 0

e4 0 0 0 0 0 0 0 1 0 −1

e5 −2 0 0 0 0 0 0 0 2 0

e6 −2 −1 0 0 0 0 2 1 0 0

e7 0 0 −2 1 0 0 0 0 2 −1

(5)

The framework in question has at least two joints, and so the result of Theorem 1.11

applies. It is easy to check that the rank of the matrix above is 6, and so the framework

is infinitesimally flexible. For a different perspective, recall that any infinitesimal motion of

the plane in which two distinct joints are fixed is trivial, i.e. in this case all joints are fixed.

The vector v = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0) is in the nullspace of the above matrix and hence

corresponds to an infinitesimal motion of the framework. The motion described by v fixes

the joints p1, p2, p4, and p5, but moves p3, and so cannot be extended to an infinitesimal

motion of the plane. �

Example 1.13. Consider the framework of Figure 5.

p1 = (0, 0)

p2 = (0, 1)

p3 = (2, 0)

p4 = (2, 1)

e1

e2

e3

e4

e5

Figure 5: Infinitesimally rigid in R2
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The rigidity matrix is

p1 p1 p2 p2 p3 p3 p4 p4



e1 0 −1 0 1 0 0 0 0

e2 0 0 0 −2 0 2 0 0

e3 0 0 0 0 −2 0 2 0

e4 −2 0 0 0 2 0 0 0

e5 −2 −1 0 0 0 0 2 1

One can check that the rank of the above matrix is 5, and so the framework is in-

finitesimally rigid in R2 (as expected). If any bar of the framework is removed, the rank of

the matrix would decrease since it only has 5 rows, and the resulting framework would be

infinitesimally flexible. �

In general, an infinitesimally rigid framework in Rd must have at least dn −
(
d+1
2

)
bars.

We make this statement more precise below.

Proposition 1.14. If G(p) is an infinitesimally rigid framework in Rd with n joints and m

bars, then

m ≥

dn−
(
d+1
2

)
if n ≥ d(

n
2

)
if n ≤ d− 1

Proof. The case n ≥ d is clear by Theorem 1.11. Suppose for a contradiction that n ≤ d− 1

and m <
(
n
2

)
, and so there is a pair of joints without a bar between them. Let {p1, . . . ,pn} be

the joints of G(p) and suppose there is no bar between p1 and p2. Define a function f on the

joints to Rd by f(pi) = 0 for 2 ≤ i ≤ n. Consider that U = {u ∈ Rd : (p1−pi)·u = 0, 3 ≤ i ≤

n}, is a vector subspace of Rd with dimension at least 2. Hence there exists u ∈ U such that if

f(p1) = u then f is an infinitesimal motion of G(p) but also (p1−p2)·(f(p1)−f(p2)) 6= 0. It

follows that f cannot be extended to an infinitesimal motion of Rd, andG(p) is infinitesimally

flexible, a contradiction.

10



Notice that the two lower bounds in Proposition 1.14 are equal if n = d. Furthermore, if

n ≤ d, then
(
n
2

)
≥ dn−

(
d+1
2

)
, and so the number of bars in an infinitesimally rigid framework

is always at least dn−
(
d+1
2

)
.

A continuously rigid framework need not posses at least dn−
(
d+1
2

)
bars. See Figure 6(a)

for an example. The framework in Figure 6(a) is rigid since the upper edges have no slack.

The same graph is shown in Figure 6(b) with a more typical embedding, and is flexible. On

the other hand, Figure 7 shows the two frameworks from the same graph, the framework

on the left is continuously flexible, and the framework on right is infinitesimally rigid. The

framework in Figure 7(b) is more typical of most placements of this graph. The rigidity of

the framework in Figure 6(a), and flexibility of the framework in Figure 7(a), is ‘nontypical’.

This motivates another type of rigidity.

(a) (b)

Figure 6: Generically flexible in the plane

Definition 1.15. (Generic rigidity). A set of points in Rd is generic if the coordinates of

the points are algebraically independent over the rationals. A framework G(p) is generic if

its joints {p1, . . . ,pn} ⊂ Rd form a generic set. A graph G is generically rigid in Rd if there

exists a placement p of its vertices such that G(p) is infinitesimally rigid.

If a graph G is generically rigid, then all generic frameworks G(p) are infinitesimally rigid.

Moreover, any infinitesimal motion of a generic framework comes from the initial velocities
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(a) (b)

Figure 7: Generically rigid in the plane

of a flexion, i.e. infinitesimal and continuous rigidity are equivalent for generic frameworks.

Clearly, generic rigidity is a combinatorial property of the underlying graph. The following

theorem describes the conditions for when a graph in the plane is generically rigid.

Theorem 1.16. (Laman’s Theorem). A graph G is generically rigid in the plane if and only

if for every subgraph H ⊂ G, with at least 2 vertices,

|E(H)| ≤ d|V (H)| −
(
d+ 1

2

)
, (6)

where above d = 2 and equality holds for H = G.

For any dimension, (6) is known as Maxwell’s condition, and is a necessary condition for

the rows of the rigidity matrix to be independent. In dimensions d ≥ 3, Maxwell’s condition is

not sufficient. A well-known example of a flexible framework satisfying Maxwell’s conditions

in d = 3 is the ‘double-banana’ framework. This can be constructed by glueing two K5’s

along an edge, and then deleting that edge. In general, no characterization of generically

rigid graphs for dimensions more than two is known.

1.3 Unit-bar frameworks

The results of this thesis are concerned with frameworks in which all bars have unit length.

Since properties of (infinitesimal) rigidity are preserved under scaling, we make the following

definition.

12



Definition 1.17. A framework is a unit-bar framework if all bars have the same length.

�

Any framework with two bars of the same length is not generic, and so the rigidity of

unit-bar frameworks is a geometric property as well as a combinatorial one. In particular,

Laman’s theorem is not applicable to unit-bar frameworks. It is easy to construct rigid

unit-bar frameworks in the plane by glueing together equilateral triangles, and in general by

glueing d-simplexes in Rd. Constructing rigid frameworks without triangles, or no odd-cycles

is a more difficult problem.

Maehara et al. [7, 8, 9, 10] explore triangle-free and bipartite rigid unit-bar frameworks.

In [7], Maehara found a rigid bipartite framework in R2 consisting of 353 joints and 676 unit-

bars. It is not infinitesimally rigid. An infinitesimally rigid unit-bar triangle-free framework

in R2 was given by Maehara and Chinen in [8]. Their framework has 22 joints and 41

unit-bars and is pictured in Figure 8.

Figure 8: Maehara and Chinen’s framework

An infinitesimally rigid unit-bar triangle-free framework in R3 with 26 joints and 78 unit-

bars was found by Maehara and Tokushige, see [9]. Their framework is built beginning with

a unit cube, and then attaching pairs of joints that are unit distance from some co-circular

four tuples of joints of the cube. The frameworks in [8, 9] contain pentagons. In [8] and [10]

13



the authors propose the following problems:

I. Find an infinitesimally rigid bipartite unit-bar framework in the plane

II. Find a general method to construct a triangle-free, infinitesimally rigid unit-bar frame-

work in Rd.

The main results of this thesis is the resolution of these problems.

1.4 Connections to the unit distance problem

The unit distance problem was posed by Paul Erdős in 1946: “how many pairs of n points

in the plane can be unit distance apart?” [4]. This is one of the central open problems in

discrete geometry. Erdős gave a construction that proved there are at least n1+c/ log logn such

pairs, and he conjectured that this is the true order of magnitude. The construction is as

follows. There are infinitely many n such that the number of solutions to n = p2 + q2 is

greater than nc/ log logn [3]. For any such n, consider the points on a 2b
√
nc × 2b

√
nc lattice.

It is easy to check that there are at least n1+c/ log logn pairs of points distance
√
n apart. By

scaling the lattice, these pairs of points are unit distance apart.

My supervisor, Jozsef Solymosi, noticed that Erdős’ lower bound construction for the

unit distance problem is a good candidate for rigid unit-bar frameworks. We will present

several infinitesimally rigid frameworks that arise from Erdős’ construction. In particular,

using numbers that can be written as a sum of two squares in several ways, and a random

computer algorithm, we construct infinitesimally rigid unit-bar frameworks on lattices with

girth up to 12.

2 Bipartite Unit-Bar Frameworks in the Plane.

The results of this section correspond with Section 2 of [12]. Let m,n, d ∈ N, and define

Fm,n(d) to be the framework in R2 with joint set {(x, y) ∈ Z2 : 0 ≤ x ≤ m−1, 0 ≤ y ≤ n−1},

and bars between all pairs of joints distance
√
d apart. For odd d, two numbers summing to
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d have different parity. Hence the sum of the coordinates of adjacent joints is different, and

the framework is bipartite. One can show that for even d a framework constructed in this

way is also bipartite, see for example [2].

The number of bars in Fm,n(1) is (m − 1)n + m(n − 1), the number of bars in Fm,n(2)

is 2(m− 1)(n− 1), and if m,n ≥ 4, the number of bars in Fm,n(4) is (m− 4)n+m(n− 4).

In all of these cases, there is no size of lattice with enough bars to be infinitesimally rigid,

i.e. there is always less that 2mn − 3 bars. On the other hand, if m,n ≥ 2, the number

of bars in Fm,n(5) is 2(m − 1)(n − 2) + 2(m − 2)(n − 1). The smallest framework Fm,n(5),

with enough bars is F5,5(5). We will prove that F5,5(5) is infinitesimally rigid. The graph

underlying F5,5(5) is the knight’s graph, and so we refer to it as the 5×5 knight’s framework,

see Figure 9 below.

Figure 9: 5× 5 knight’s framework

2.1 Knight’s Framework

The infinitesimal rigidity of the 5× 5 knight’s framework can be verified by calculating the

rank of its rigidity matrix. The program in Appendix 2 does this calculation. The rank

can also be computed without computer aid; however, it is a system of 50 variables. The

following lemma reduces the number of variables and facilitates a shorter by-hand proof of

the infinitesimal rigidity of F5,5(5).

Lemma 2.1. (Rhombus Lemma) Let p1p2p3p4 be a framework of a non-degenerate rhombus

in the plane. If v1,v2,v3,v4 are the velocity vectors associated with any infinitesimal motion
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of the rhombus, then v1 + v3 = v2 + v4.

p1 p2

p4 p3

Proof. Put x = p2 − p1 = p3 − p4 and y = p3 − p2 = p4 − p1. We have:

(v2 − v1) · x = 0,

(v3 − v2) · y = 0,

(v4 − v3) · x = 0,

(v1 − v4) · y = 0.

The first and third equation give (v1 + v3) · x = (v2 + v4) · x, while the second and fourth

give (v1 +v3) ·y = (v2 +v4) ·y. Since x and y are linearly independent, we have the desired

result.

If f : Rd → Rd is a function, let fk(x) denote the value in the kth coordinate of f(x).

Theorem 2.2. The 5× 5 knight’s framework is infinitesimally rigid in R2.

Proof. Let the joints of N5 from left to right, top to bottom be p1,p2, . . . ,p25. Consider all

infinitesimal motions f of N5 such that

f(p13) = f1(p2) = 0. (7)

This specifies three degrees of freedom of f , so the dimension of the space of infinitesimal

motions of N5 that satisfy (7) is at most three less than the dimension of the space of

all infinitesimal motions of N5. Since the space of infinitesimal motions of the plane has
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dimension three, if all infinitesimal motions f of N5 that satisfy (7) are identically zero then

N5 is infinitesimally rigid. Let f be an infinitesimal motion of N5 satisfying (7) and put

f(pi) = vi for all i. Since p2p13 is a bar we have that v2 = 0. Using Lemma 2.1, we are

able to determine all velocities vi homogenously in terms of the velocities v4,v6,v10,v20, and

v22. The first equation in every line below follows from an application of Lemma 2.1 to a

rhombus in N5, a second equation in any line is a substitution of a previous equation. We

have:

v3 = v6 + v10

v11 = v22

v15 = v4 + v24

v23 = v16 + v20

v7 = v4 + v16

v9 = v20

v17 = v6 + v24

v19 = v10 + v22

v8 = v11 + v19 − v22 = v10 + v22 (8)

v8 = v15 + v17 − v24 = v4 + v6 + v24 (9)

v12 = v9 + v23 − v20 = v16 + v20 (10)

v12 = v3 + v19 − v10 = v6 + v10 + v22 (11)

v14 = v3 + v17 − v6 = v6 + v10 + v24 (12)

v14 = v7 + v23 − v16 = v4 + v16 + v20 (13)

v18 = v7 + v15 − v4 = v4 + v16 + v24 (14)

v18 = v9 + v11 − v2 = v20 + v22 (15)

v1 = v8 + v12 − v19 = v16 + v20

(16)
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v5 = v8 + v14 − v17 = 2v10 + v22

v21 = v12 + v18 − v9 = v4 + 2v16 + v24

v25 = v14 + v18 − v7 = v6 + v10 + 2v24

v11 + v15 = v8 + v18 ⇒ v16 = −v10

v3 + v23 = v12 + v14 ⇒ v24 = 0.

Equating equations (3),(4) and (9),(10) gives

v10 + v22 = v4 + v6 + v24 (17)

v4 + v16 + v24 = v20 + v22.

Adding the above equations gives v6 + v20 = v10 + v16 = 0. Equating equations (5),(6) and

(7),(8) gives

v16 + v20 = v6 + v10 + v22 (18)

v6 + v10 + v24 = v4 + v16 + v20.

Adding the above equations gives v4 + v22 = v24 = 0. Substituting into (11) and (12) we

obtain:

v10 − v4 = v4 + v6

−v10 − v6 = v6 + v10 − v4.

The above system gives v4 = 4
5
v10 and v6 = −3

5
v10. Now we see that all velocities are scalar

multiples of v10. Since p10p13 is a bar we have that v10 · (p10 − p13) = 0. Since p3p10 is a

bar we have that (v3 − v10) · (p3 − p10) = v6 · (p3 − p10) = −3
5
v10 · (p3 − p10) = 0. The

directions of the bars p10p13 and p3p10 are linearly independent, and so v10 = 0. It follows

that all velocities are zero and N5 is infinitesimally rigid.

The framework obtained by deleting the corner joints and one degree three joint from the

5× 5 knight’s framework is also infinitesimally rigid, see Figure 10. This framework has 20
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Figure 10: Trimmed 5× 5 knight’s framework

joints and 37 edges. The rigidity of this framework can be verified using a similar approach

to the above, or by calculating the rank of its rigidity matrix.

Note that Fm+1,n(5) can be constructed from Fm,n(5) by attaching n joints each with

at least two non-parallel bars. As a result, Fm,n(5) is infinitesimally rigid for all m,n ≥ 5.

In addition, by the same verification techniques, F4,7(5) is also infinitesimally rigid. This

implies F4,n(5) and Fm,4(5) are infinitesimally rigid for m,n ≥ 7. This completely describes

the infinitesimally rigid Fm,n(5), since all other such frameworks have less than 2mn−3 bars.

2.2 Leaper Frameworks

The knight’s graph is one instance of a leaper graph. An {r, s}-leaper graph on an m × n

board has the vertex set {(x, y) ∈ Z2 : 0 ≤ x ≤ m − 1, 0 ≤ y ≤ n − 1}, and edges between

pairs of points of the form (x, y) and (x±r, y±s) or (x, y) and (x±s, y±r). Edges represent

the legal moves of a generalized knight chess piece that jumps in an L-shape with side lengths

r and s. We call the natural embedding of a leaper graph into R2 an leaper framework. See

Figure 11 for example. Knuth [6] proved the following theorem on the connectivity of leaper

graphs.

Theorem 2.3. (Knuth) The {r, s}-leaper graph on an m× n board, where 2 ≤ m ≤ n and

1 ≤ r ≤ s, is connected if and only if the folloing three conditions hold: (i) r+ s is relatively

prime to r − s; (ii) n ≥ 2s; (iii) m ≥ r + s. �

We have verified that the (r, s)-leaper framework on an m×n chessboard is infinitesimally
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Figure 11: 6× 6 {2, 3}-leaper framework

rigid if r+ s is relatively prime to r− s and r, s ≥ 2(r+ s)− 1, for 1 ≤ r, s ≤ 25. We expect

that a rigid analogue of Knuth’s connected theorem above exists for leaper frameworks. That

is, under the right conditions, a large enough leaper framework will be infinitesimally rigid.

3 Bipartite Unit-Bar Frameworks in Rd

The results of this section correspond with Section 2 in [12]. The knight’s framework can

be extended to higher dimensions. We do this by constructing the knight’s framework on

two-dimensional cross-sections within a higher dimensional lattice. We prove the resulting

framework is infinitesimally rigid. Furthermore, and of perhaps broader interest, we prove

more generally that a framework on an integer lattice in any dimension with infinitesimally

rigid cross-sections is infinitesimally rigid.

Definition 3.1. An n-lattice framework in Rd has joints of the form (x1, . . . , xd), where

xi ∈ {0, 1, . . . , n − 1}. Let F be an n-lattice framework in Rd. For all integers 1 ≤ i ≤ d

and 0 ≤ c ≤ n − 1, define Fi,c to be the cross-section framework of F induced by all joints

in F of the form (x1, . . . , xi−1, c, xi+1, . . . , xd). The framework Fi,c can be embedded in Rd−1

by deleting the ith coordinate of all joints in Fi,c. The resulting framework is an n-lattice

framework in Rd−1, call it F ′i,c. �

In Figure 12, the cross-section frameworks F1,0 and F2,1 are infinitesimally flexible in R3.
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In R2, F ′1,0 remains infinitesimally flexible, but F ′2,1 is infinitesimally rigid.

(0, 0, 0)

(0, 1, 1)

(1, 1, 0)

(1, 1, 1)

(a) A 2-lattice framework F

(0, 0, 0)

(0, 1, 1)

(b) F1,0

(1, 1, 0)

(0, 1, 1)

(c) F2,1

Figure 12: Cross-sections of a lattice framework

The framework F in Figure 12 is infinitesimally flexible. If all 6 faces of F had the two

diagonal bars as F2,1 does, it’s easy to check that the framework would be infinitesimally

rigid. We’ll prove that in general, if the cross-sections have all bars, then the framework is

infinitesimally rigid.

Lemma 3.2. Let y,x1,x2, . . . ,xn be joints of a framework F such that yxi is a bar for all

i. Let f be an infinitesimal motion of F such that f(xi) = 0 for all i. If z is in the span of

{y− x1, . . . ,y− xn}, then f(y) · z = 0.

Proof. Let z = a1(y−x1)+· · ·+an(y−xn) with ai ∈ R. Since yxi is an edge, (f(y)− f(xi))·

(y− xi) = f(y) · (y− xi) = 0 for all i. Hence

f(y) · z = a1f(y) · (y− x1) + · · ·+ anf(y) · (y− xn) = 0.

When the dimension is unambiguous, we will use the notation ek to represent the standard

basis vector consisting of a 1 in the kth entry and zeroes elsewhere. The vector ek will

represent both the direction, and the joint with the corresponding coordinates. The context

will make the use clear.
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Theorem 3.3. Let F be an n-lattice framework in Rd, d ≥ 3, and n ≥ 2. If for all 1 ≤ i ≤ d

and 0 ≤ c ≤ n − 1, the framework Fi,c has bars between all pairs of joints, then F is

infinitesimally rigid.

Proof. Consider all infinitesimal motions f of F such that

f(0) = 0, and fi(ek) = 0 for 1 ≤ k ≤ d− 1 and k + 1 ≤ i ≤ d. (19)

The restrictions of (19) specify d+(d−1)+ . . .+1 =
(
d+1
2

)
degrees of freedom of f . Hence the

space of infinitesimal motions of F that satisfy (19) is at most
(
d+1
2

)
less than the dimension

of the space of all infinitesimal motions of F . It follows that if the only infinitesimal motions

of F that satisfy (19) are identically zero, then F is infinitesimally rigid.

Let f be an infinitesimal motion of F satisfying (19). Note that e10 is a bar of F and

e1 is in the span of {e1 − 0}. Since f(0) = 0, by Lemma 3.2 we see that f(e1) · e1 = 0 and

so f(e1) = 0. Notice ei0 is a bar for all 1 ≤ i ≤ d. For all j 6= i, since d ≥ 3, we have

that eiej is also a bar. A simple induction and Lemma 3.2 gives the result f(ei) = 0 for all

1 ≤ i ≤ d. For any joint x ∈ Fi,0 we have that x0 and xej are bars for all j 6= i. Lemma 3.2

gives fj(x) = 0 for all j 6= i. Hence if a joint x has a zero in two or more coordinates,

f(x) = 0. Let y = (y1, . . . , yd) be a joint of F such that yi 6= 0 for all i. Let y(i) be the

joint with yi in the ith coordinate and zeros in all other coordinates. Notice that yy(i) is a

bar for all 1 ≤ i ≤ d. Furthermore, since d ≥ 3, y(i) has a zero in at least two coordinates,

and so f(y(i)) = 0. It is easy to check that the span of {y − y(i)}1≤i≤d is all of Rd, and so

by Lemma 3.2, f(y) = 0. Finally, let x = (x1, . . . , xd) be a joint of F such that xi = 0 and

xj 6= 0 for j 6= i. Let z be the joint (x1, . . . , xi−1, 1, xi+1, . . . , xd). The existence of z follows

from n ≥ 2. Since xz is a bar:

(f(x)− f(z)) · (x− z) = (f(x)− f(z)) · ei = 0.

Since all coordinates of z are nonzero, f(z) = 0, and so fi(x) = 0. It follows that f ≡ 0,

and F is an infinitesimally rigid framework.
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Note that the assumptions d ≥ 3 in the above theorem is necessary. In the plane, the

cross-sections of the square are single bar frameworks, and are infinitesimally rigid in R,

but the square is flexible. Using the same argument, Theorem 3.3 can be extended to a

framework on a lattice of the form [0, a1] × [0, a2] × · · · × [0, ad], where each ai ≥ 1. The

assumption ai ≥ 1 is necessary, since a ‘flat’ framework will have an infinitesimal motion in

the perpendicular direction. For an example, see F2,1 in Figure 12.

The assumption in Theorem 3.3 that all bars be present in all cross-sections can be

replaced with the cross-sections being infinitesimally rigid.

Corollary 3.4. Let F be an n-lattice framework in Rd, d ≥ 3 and n ≥ 2. If for all 1 ≤ i ≤ d,

and 0 ≤ c ≤ n− 1, the framework F ′i,c is infinitesimally rigid, then F is infinitesimally rigid.

Proof. Let 1 ≤ i ≤ d and 0 ≤ c ≤ ni − 1 be arbitrary. Any infinitesimal motion f of F

induces an infinitesimal motion fi,c of Fi,c in the following way. For any joint x ∈ F ′i,c let x̂

denote the corresponding joint in Fi,c, and put

fi,c(x) = [f1(x̂) . . . fi−1(x̂) fi+1(x̂) . . . fd(x̂)]t .

It is clear that this defines fi,c as a vector field in Rd−1. Furthermore, for any bar xy of F ′i,c,

since f is an infinitesimal motion:

(fi,c(x)− fi,c(y)) · (x− y) = (f(x̂)− f(ŷ)) · (x̂− ŷ) = 0. (20)

It follows that fi,c is an infinitesimal motion. Notice that the first equality in (20) holds for

all x,y ∈ F ′i,c, and not just bars. Since F ′i,c is infinitesimally rigid we see that both equalities

in (20) holds for all x,y ∈ Fi,c. Hence all infinitesimal motions of F are infinitesimal motions

of the framework described in Theorem 3.3, and so F is infinitesimally rigid.

Definition 3.5. The n× · · · × n knight’s framework in Rd is the n-lattice framework with

bars between two joints x and y if the coordinates of x and y are equal except in two places

where they differ by 1 and 2. �
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All bars in the knight’s framework have length
√

5. The parity of the sum of the coor-

dinates of two adjacent joints is different, the same as in the two dimensional case. Hence

the knight’s framework in Rd is bipartite, and in particular, triangle free. A consequence of

Theorem 2.2 and Corollary 3.4 is the following.

Theorem 3.6. The 5 × · · · × 5 knight’s framework in Rd, for d ≥ 2, is an infinitesimally

rigid bipartite unit-bar framework. �

Using a computer and the rigidity matrix we noticed that the 4×4×4 knight’s framework

is infinitesimally rigid. The computer code of this program that does this verification can

be found in Appendix 1 of [12]. It follows by Corollary 3.4 that the 4 × · · · × 4 knight’s

framework in Rd for d ≥ 3 is also infinitesimally rigid.

4 Unit-Bar Frameworks of Higher Girth in R2

The results of this section correspond with Section 3 in [12]. We extend Maehara’s problem

of finding triangle-free infinitesimally rigid unit-bar frameworks, to the problem of finding

infinitesimally rigid unit-bar frameworks of higher girth. As noted earlier, building infinitesi-

mally rigid frameworks by attaching triangles is easy since triangles are infinitesimally rigid.

On the other hand, finding a triangle-free infinitesimally rigid framework is harder, since

components of the framework are infinitesimally flexible, i.e. every four joints induce an

infinitesimally flexible framework. Along the same reasoning we see that finding an infinites-

imally rigid unit-bar framework of girth g is more problematic still, since every set of g joints

induce an infinitesimally flexible framework.

Erdős’ construction of many unit distances motivated our approach to finding infinitesi-

mally rigid unit-bar frameworks with larger girth. We consider subframeworks of an n × n

lattice of joints with bars of length
√
m, where m can be written as the sum of two squares in

several ways. For odd m, two numbers summing to m have different parity. Hence the sum

of the coordinates of adjacent joints is different, and the framework is bipartite. One can

show that for even m a framework constructed in this way is also bipartite, see for example
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[2]. The following algorithm gives an outline of how we construct our frameworks.

4.1 Generating a unit-bar framework of a chosen girth

Below we describe an algorithm for generating a bipartite unit-bar framework in the plane

of a specified girth. The framework in the output is not necessarily infinitesimally rigid.

Algorithm:

Input: The size n of the square lattice, an integer m that can be written as the sum of two

squares in several ways, and the desired girth 2g.

Output: A bipartite unit-bar framework with girth at least 2g.

(1) Determine all ordered pairs of integers (a, b) where a2 + b2 = m and either b > 0, or

b = 0 and a > 0. These are the bar directions, call the set D.

(2) Add the joints to the framework, they are at the integer coordinates (x, y) with 0 ≤

x, y ≤ n− 1.

(3) Select a permutation σ of the joints at random. For each joint x make a list D(x) = D

of all possible directions of bars.

(4) In the order described by σ visit each joint x and do the following.

i. Randomly select an untried bar direction d from D(x), let y = x + d.

ii. If y is a joint in the framework then determine all joints within distance g − 1 of x

and distance g − 2 of y, call these sets Nx and Ny.

iii. If Nx and Ny are disjoint then add the bar xy to the framework.

iv. Remove d from D(x).

(5) Repeat (4) until D(x) is empty for all joints x, this will take |D| loops.

(6) Remove joints with degree less than three. Output the framework. �
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Recall that there is an infinite sequence of natural numbers n such that the number of

integer solutions to p2 + q2 = n is greater than nc/ log logn [3]. As a result, for any chosen

positive integer M , there exists a lattice framework such that the ‘potential’ degree of most

joints is at least M . An infinitesimally rigid framework in the plane must have average

degree approximately 4. The high availability of bars, with respect to needing only an

average degree of 4, appeared to make infinitesimally rigid frameworks easy to find using the

above algorithm. We expect that the algorithm could be used to find infinitesimally rigid

frameworks of arbitrarily large girth, given enough computing power.

We implemented the above algorithm with Python, see Appendix 2 of [12]. For each

girth, we experimented with a variety of different m and n, and used many random trials,

i.e. different permutations of joints to obtain a large sampling of frameworks with the chosen

girth. As remarked earlier the frameworks obtained are not necessarily infinitesimally rigid;

this needed to be checked.

4.2 Testing for infinitesimal rigidity

We used built-in functions of Python and Matlab to determine the rank of the rigidity matrix

of the frameworks obtained by the algorithm previously described. We noticed that if m was

chosen such that it could be written as a sum of two squares in sufficiently many ways in

relation to the target girth, an infinitesimally rigid framework could be found from a small

sample of outputted frameworks.

Table 1 describes the smallest infinitesimally rigid framework of each girth we found

among the frameworks generated by our random trials. The column ‘# of Trials’ represents

the approximate total number of frameworks of the described specifications that we tested

for infinitesimal rigidity. Many of the frameworks tested in the trials were infinitesimally

rigid. The purpose of performing many trials was to find frameworks as small as possible.

Note that in the girth four case, only one trial is needed, since all bars are always

added. As the girth increased, we needed to increase n in ordered for enough bars to be

available to add. Large frameworks take longer for our program to construct, and evaluate the
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Girth Size n Square bar length m # of Joints # of Edges # of Trials

4 5 5 = 12 + 22 21 40 1

6 9 5 = 12 + 22 54 105 16000000

8 23
65 = 12 + 82

= 42 + 72
433 865 650000

10 53

1105 = 42 + 332

= 92 + 332

= 122 + 312

= 232 + 242

2467 4931 5000

12 147

5525 = 72 + 742

= 142 + 732

= 222 + 712

= 252 + 702

= 412 + 622

= 502 + 552

18924 37845 10

Table 1: Framework specifications

corresponding rank. As a result, because of time constraints, less trials could be performed

for frameworks of larger girth. In the case of girth 14, the required computations were too

long to perform even one construction.

We used Matlab’s rank function to double-check the rank calculations of Python for

frameworks with girth 4,6,8, and 10. A rank computation for the 37845 × 37848 rigidity

matrix corresponding to the girth 12 framework was impractical for our computers. Our

strategy to verify its infinitesimal rigidity was to hand the matrix to Matlab as a sparse

matrix. A sparse matrix is a matrix with zero in most entries. A sparse matrix is stored
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by specifying the locations and values of the nonzero entries, resulting in less used memory.

Rank calculations cannot be performed in Matlab on sparse matrices, but singular value

calculations can. Recall that the number of nonzero singular values of a matrix is it’s

rank. The Matlab function ‘svds’ computes the smallest singular values of matrix. Matlab

computed the smallest singular value of the rigidity matrix of our girth 12 framework to

be 4.9445 · 10−4. This value was reproduced upon decreasing the convergence tolerance and

increasing the number of iterations of the svd algorithm. This calculation indicates that all

singular values of the rigidity matrix are nonzero and the framework is infinitesimally rigid.

4.3 Search Results

Below we draw the frameworks in Table 1 with girth 4,6, and 8. For these frameworks

we also record their adjacency matrices below by representing ones with black squares and

zeros with white squares. For the frameworks with girth 10 and 12 we record their adjacency

matrices using darker shading to represent higher density of edges.

(a) Framework (b) Adjacency matrix

Figure 13: Girth 4

28



(a) Framework (b) Adjacency matrix

Figure 14: Girth 6

(a) Framework (b) Adjacency matrix

Figure 15: Girth 8

5 Conclusion

5.1 Summary of results

The results of this work are constructions of infinitesimally rigid bipartite unit-bar frame-

works. Determining an infinitesimally rigid bipartite framework in the plane and in higher

dimensions was a problem asked by Hiroshi Maehara over two decades ago. The knight’s

framework and our generalization of it to any dimension resolve these problems. One reason

rigid bipartite unit-bar frameworks are interesting is that most rigid frameworks we think
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(a) Girth 10 (b) Girth 12

Figure 16: Girth 10 and 12

of contain triangles. Triangles are the only rigid polygonal frameworks. Squares, pentagons,

hexagons, etc, are all increasingly flexible, that is, they have successively more degrees of

freedom. As a result, finding frameworks with higher girth is an interesting extension of the

triangle-free frameworks constructed by Maehara. The infinitesimally rigid bipartite unit-

bar frameworks of girth 4,6,8,10, and 12 presented in this thesis were found by searching

integer lattices in the plane with a single distance determined by many pairs of points, an

idea borrowed from Paul Erdős’ construction of many unit-distances in the plane.

5.2 Future Work

There are several different avenues that would extend the results of this thesis. Leaper

frameworks (defined in Section 2.2) are a generalization of the knight’s framework. We have

verified for finitely many case that if r + s and r − s are relatively prime, an {r, s}-leaper

framework is infinitesimally rigid on a [2(r + s) − 1] × [2(r + s) − 1] grid. We expect that

this, or a comparable result will be true in general.

Maehara constructed an infinitesimally rigid triangle-free unit-bar framework in the plane

with 22 joints. In this thesis we presented an infinitesimally rigid bipartite unit-bar frame-

work in the plane with 20 joints. We are curious as to the number of joints in the smallest

infinitesimally rigid unit-bar bipartite framework. More generally, using more random trials
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we expect that smaller examples of the frameworks of girth 6 and larger in Table 1 can be

found. Improvements to the algorithm in Section 4.1 might offer a more efficient way to

find smaller examples, and examples of infinitesimally rigid unit-bar frameworks with girth

larger than 12.

We are limited by computing power in finding infinitesimally rigid unit-bar frameworks

of larger girth, though we expect they exist for arbitrarily large girth. We pose the problem

of proving the existence of such frameworks.
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