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Jerry isn’t tall
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Jerry and Jeannine in Magnolia Gardens
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Introduction

The paper ‘Small Forbidden Configurations’, joint with Jerry
Griggs and Attila Sali, began a systematic exploration of the
subject. The collaboration is from a sabbatical visit of Jerry to
Vancouver and a visit of Attila in 1993. That paper contains the
origin of the conjecture that I will describe.

Survey at www.math.ubc.ca/∼anstee

Richard Anstee,UBC, Vancouver Forbidden Configurations



Simple Matrices and Set Systems

Definition We say that a matrix A is simple if it is a (0,1)-matrix
with no repeated columns.

i.e. if A is m-rowed then A is the incidence matrix of some family
A of subsets of [m] = {1, 2, . . . ,m}.

A =

 0 0 0 1 1
0 1 0 0 1
0 0 1 1 1


A =

{
∅, {2}, {3}, {1, 3}, {1, 2, 3}

}
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Configurations

Definition Given a matrix F , we say that A has F as a
configuration written F ≺ A if there is a submatrix of A which is a
row and column permutation of F .

F =

[
0 0 1 1
0 1 0 1

]
≺


1 1 1 1 1 1
0 1 0 1 1 0
0 0 0 0 1 1
0 1 1 0 0 0

 = A
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Our Extremal Problem

Definition We define ‖A‖ to be the number of columns in A.

Let F be a family of (0,1)-matrices.

Avoid(m,F) = {A : A is m-rowed simple, F 6≺ A for F ∈ F}

forb(m,F) = maxA{‖A‖ : A ∈ Avoid(m,F)}
There are other possibilities for extremal problems for Avoid(m,F)
including maximizing the weighted sum over columns where a
column of column sum i is weighted by 1/

(m
i

)
(e.g. Johnston and

Lu) or maximizing the number of 1’s .
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A Product Construction

As with any extremal problem, the results are often motivated by
constructions, namely matrices in Avoid(m,F ). The early
investigations with Jerry Griggs and Attila Sali suggested a product
construction might be very helpful.
The building blocks of our product constructions are I , I c and T :

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , I c4 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 , T4 =


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1
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A Product Construction

Definition Given an m1 × n1 matrix A and a m2 × n2 matrix B we
define the product A× B as the (m1 + m2)× (n1n2) matrix
consisting of all n1n2 possible columns formed from placing a
column of A on top of a column of B. If A, B are simple, then
A× B is simple. (A, Griggs, Sali 97)

1 0 0
0 1 0
0 0 1

×
1 1 1

0 1 1
0 0 1


A × B

=



1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

1 1 1 1 1 1 1 1 1
0 1 1 0 1 1 0 1 1
0 0 1 0 0 1 0 0 1


Given p simple matrices A1,A2, . . . ,Ap, each of size m/p ×m/p,
the p-fold product A1 × A2 × · · · × Ap is a simple matrix of size
m × (mp/pp) i.e. with Θ(mp) columns.
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The Conjecture

Definition Let x(F ) denote the largest p such that there is a
p-fold product which does not contain F as a configuration where
the p-fold product is A1 × A2 × · · · × Ap where each
Ai ∈ {Im/p, I

c
m/p,Tm/p}.

Conjecture (A, Sali 05) forb(m,F ) is Θ(mx(F )).

In other words, we predict our product constructions with the three
building blocks {I , I c ,T} determine the asymptotically best
constructions. The conjecture has now been verified in many cases.

Attila Sali
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Exact bounds and asymptotic bounds

Definition Let s · F = [

s︷ ︸︸ ︷
FF · · ·F ].

Let F =


1 0
1 0
0 1
0 1


Theorem (Frankl, Füredi, Pach 87) forb(m,F ) =

(m
2

)
+ 2m − 1

i.e. forb(m,F ) is Θ(m2).

Theorem (A. and Lu 13) Let s be given. Then forb(m, s · F ) is
Θ(m2).

Note for this F , x(F ) = 2 = x(s · F ) for any constant s, so the
result is evidence for the conjecture
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Berge Hypergraphs

Claude Berge, and others, created hypergraphs as a generalization
of graphs. There are several hypergraph generalizations of paths
and cycles. One generalization yields Berge paths and cycles. The
definition of Berge Hypergraphs was given to me by Gerbner and
Palmer (2015) and follows the same ideas. With Santiago
Salazar, we consider the extremal set problem obtained by
forbidding a single Berge Hypergraph

Santiago
Salazar
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Let F be a hypergraph with edges E1,E2, . . . ,E`. We say that a
hypergraph H has F as a Berge Hypergraph and write F Î H if
there are ` edges E ′1,E

′
2, . . . ,E

′
` of H so that Ei ⊆ E ′i for

i = 1, 2, . . . , `.

1 2

34

5

F = C4 Î H
E1 = {1, 2} E ′1 = {1, 2, 4}
E2 = {2, 3} E ′2 = {2, 3, 5}
E3 = {3, 4} E ′3 = {3, 4}
E4 = {1, 4} E ′4 = {1, 3, 4, 5}
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Berge Hypergraphs

C4 =


1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

 Î



E ′1 E ′2 E ′3 E ′4
1 0 0 1 · · ·
1 1 0 0 · · ·
0 1 1 1 · · ·
1 0 1 1 · · ·
0 1 0 1 · · ·


1’s matter in C4 when considering a Berge hypergraph of C4, but
0’s in C4 don’t matter.
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Berge Hypergraphs

Define our extremal problem as follows:

BergeAvoid(m,F ) = {A : A is m-rowed, simple, F 6Î A},

Bforb(m,F ) = max
A
{‖A‖ : A ∈ BergeAvoid(m,F )}.

Richard Anstee,UBC, Vancouver Forbidden Configurations



Downsets

Theorem If A ∈ BergeAvoid(m,F ), then there exists an
A′ ∈ BergeAvoid(m,F ) with ‖A‖ = ‖A′‖ and the columns of A′

form a downset: namely if α is a column of A′ and β ≤ α,
then β is also a column of A′.

Proof: Apply a shifting argument, replacing 1’s by 0’s in A as long
as no repeated columns are created. The result is A′.

Theorem Bforb(m, Ik) = 2k−1
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Theorem Bforb(m,C4) = Θ(m3/2)

Note that I2 × I2 ≈ C4 ≈ K2,2

Theorem Let t ≥ 3. Then Bforb(m, I3 × It) = Θ(m2)

For this latter result we needed recent extremal graph results. Note
that I3 × It is the vertex-edge incidence matrix of K3,t .

Definition ex(m,K`,Ks,t) is the maximum number of copies of K`

in an m-vertex Ks,t-free graph.
Such an extremal function has been studied, with surprisingly good
results obtained, by Alon and Shikhelman ’15 and Kostachka,
Mubayi and Verstratte ’15.

Theorem (Alon, Shikhelman ’15, Kostochka, et al ’15)
Let s, t be given with t ≥ (s − 1)! + 1. Then
ex(m,K3,Ks,t) is Θ(m3−(3/s)).
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Linyuan and his kids on Pender Island
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An Unavoidable Forbidden Family

Theorem (Balogh and Bollobás 05) Let k be given. Then

forb(m, {Ik , I ck ,Tk}) ≤ 22
k

We note that there is no product construction of I , I c ,T avoiding
Ik , I

c
k ,Tk so this is consistent with the conjecture. It has the spirit

of Ramsey Theory.

Theorem (A., Lu 14) Let k be given. Then there is a constant c

forb(m, {Ik , I ck ,Tk}) ≤ 2ck
2

If you take all columns of column sum at most k − 1 that arise
from the k − 1-fold product Tk−1 × Tk−1 × · · · × Tk−1 then this
yields

(2k−2
k−1

)
≈ 22k columns. A probabalistic construction in

Avoid(m, {Ik , I ck ,Tk}) has 2ck log k columns.
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Ramsey Theory

Proofs used lots of induction and multicoloured Ramsey numbers:
R(k1, k2, . . . , k`) is the smallest value of n such than any colouring
of the edges of Kn with ` colours 1, 2, . . . , ` will have some colour i
and a clique of ki vertices with all edges of colour i . These
numbers are readily bounded by multinomial coefficients:

R(k1, k2, . . . , k`) ≤
( ∑`

i=1 ki
k1 k2 k3 · · · k`

)
R(k1, k2, . . . , k`) ≤ `k1+k2+···+k`

Our first proof had something like
forb(m{, Ik , I ck ,Tk}) < R(R(k , k),R(k , k)) yielding a doubly
exponential bound.
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We say a matrix with entries in {0, 1, . . . , r − 1} is an r -matrix.

An r -matrix is simple if there are no repeated columns.

forb(m, r ,F) = max{‖A‖ : A is simple r -matrix,F 6≺ A ∀F ∈ F}

Let Tk(a, b, c) =


b c c · · · c
a b c · · · c
a a b · · · c
...

...
...

. . .

a a a · · · b


 k

Let Tk(r) = {Tk(a, b, a) : a 6= b, a, b ∈ {0, 1, . . . , r − 1}}

∪ {Tk(a, b, b) : a 6= b, a, b ∈ {0, 1, . . . , r − 1}}

Theorem (A, Lu 14) Given r there exists a constant cr so that
forb(m, r , Tk(r)) ≤ 2crk

2
.
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Using Ramsey Theory

Consider 3-matrices, that is matrices with entries in {0, 1, 2}. By
Ramsey Theory, if n ≥ R(k, k , k), then any choices for the entries
marked ∗ in the n × n matrix

b ∗ ∗ · · · ∗
a b ∗ · · · ∗
a a b · · · ∗
...

...
...

. . .

a a a · · · b




n

we will find one of the configurations Tk(a, b, 0) or Tk(a, b, 1) or
Tk(a, b, 2).
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Tk(2) =
1 0 · · · 0
0 1 · · · 0
...

...
. . .

0 0 · · · 1

 ,


0 1 · · · 1
1 0 · · · 1
...

...
. . .

1 1 · · · 0

 ,


1 1 · · · 1
0 1 · · · 1
...

...
. . .

0 0 · · · 1

 ,


0 0 · · · 0
1 0 · · · 0
...

...
. . .

1 1 · · · 0

 .
Tk(2) ≈ {Ik , I ck ,Tk}
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Tk(3)\Tk(2) =
1 2 · · · 2
2 1 · · · 2
...

...
. . .

2 2 · · · 1

 ,


0 2 · · · 2
2 0 · · · 2
...

...
. . .

2 2 · · · 0

 ,


2 0 · · · 0
0 2 · · · 0
...

...
. . .

0 0 · · · 2

 ,


2 1 · · · 1
1 2 · · · 1
...

...
. . .

1 1 · · · 2

 ,


2 2 · · · 2
0 2 · · · 2
...

...
. . .

0 0 · · · 2

 ,


2 2 · · · 2
1 2 · · · 2
...

...
. . .

1 1 · · · 2

 ,


0 0 · · · 0
2 0 · · · 0
...

...
. . .

2 2 · · · 0

 ,


1 1 · · · 1
2 1 · · · 1
...

...
. . .

2 2 · · · 1

 .
Do the set of (0,1,2)-matrices in Avoid(m, 3, (Tk(3)\Tk(2))
behave somewhat like (0,1)-matrices?
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Do the set of (0,1,2)-matrices in Avoid(m, 3, (Tk(3)\Tk(2))
behave somewhat like (0,1)-matrices?

Problem Let F be a family of (0, 1)-matrices. Is it true that
forb(m, 3, (Tk(3)\Tk(2) ∪ F)) is Θ(forb(m,F))?

Jeffrey Dawson
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Awkward extra matrix

Tk(0, 2, 1) =


2 1 1 · · · 1
0 2 1 · · · 1
0 0 2 · · · 1
...

...
...

. . .

0 0 0 · · · 2


Theorem Let F be a family of (0, 1)-matrices.
forb(m, 3, (Tk(3)\Tk(2) ∪ Tk(0, 2, 1) ∪ F)) is Θ(forb(m,F)).

Surely Tk(0, 2, 1) is not needed for this result. Dawson, Lu, Sali
and A. ’17 have some preliminary results on eliminating Tk(0, 2, 1).
Our results have made heavy use of Ramsey Theory.
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Eliminating Tk(0, 2, 1)

Corollary Let F ≺ Tk(0, 2, 1). Then forb(m, 3, (Tk(3)\Tk(2) ∪ F ))
is Θ(forb(m,F )).

Corollary forb(m, 3, (Tk(3)\Tk(2) ∪ [0 1])) is Θ(1)

Theorem forb(m, 3, (Tk(3)\Tk(2) ∪ ∅)) is Θ(2m) which is
Θ(forb(m, ∅)).

Theorem forb(m, 3, (Tk(3)\Tk(2) ∪ I2)) is Θ(forb(m, I2)).

A nice inductive result:

Theorem forb(m, 3, (Tk(3)\Tk(2)∪
[
1
0

]
× F ))

is Θ(m · forb(m, 3, (Tk(3)\Tk(2)∪F )).
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Eliminating Tk(0, 2, 1)

Corollary Let F ≺ Tk(0, 2, 1). Then forb(m, 3, (Tk(3)\Tk(2) ∪ F ))
is Θ(forb(m,F )).

Corollary forb(m, 3, (Tk(3)\Tk(2) ∪ [0 1])) is Θ(1)

Theorem forb(m, 3, (Tk(3)\Tk(2) ∪ ∅)) is Θ(2m) which is
Θ(forb(m, ∅)).

Theorem forb(m, 3, (Tk(3)\Tk(2) ∪ I2)) is Θ(forb(m, I2)).

A nice inductive result:

Theorem forb(m, 3, (Tk(3)\Tk(2)∪
[
1
0

]
× F ))

is Θ(m · forb(m, 3, (Tk(3)\Tk(2)∪F )).
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Congratulations on this milestone.
And thank you, Jerry, for your friendship over the years.

Richard Anstee,UBC, Vancouver Forbidden Configurations


