

Congaree

Richard Anstee,UBC, Vancouver
Forbidden Configurations

Being taught birdwatching by Jerry
Richard Anstee,UBC, Vancouver Forbidden Configurations

Jerry and Jeannine in Magnolia Gardens

Richard Anstee,UBC, Vancouver
Forbidden Configurations

Forbidden Configurations

Richard Anstee,
UBC, Vancouver

University of South Carolina, April 27, 2018

Introduction

The paper 'Small Forbidden Configurations', joint with Jerry Griggs and Attila Sali, began a systematic exploration of the subject. The collaboration is from a sabbatical visit of Jerry to Vancouver and a visit of Attila in 1993. That paper contains the origin of the conjecture that I will describe.

Survey at www.math.ubc.ca/~anstee

Simple Matrices and Set Systems

Definition We say that a matrix A is simple if it is a $(0,1)$-matrix with no repeated columns.

Simple Matrices and Set Systems

Definition We say that a matrix A is simple if it is a $(0,1)$-matrix with no repeated columns.
i.e. if A is m-rowed then A is the incidence matrix of some family \mathcal{A} of subsets of $[m]=\{1,2, \ldots, m\}$.

$$
\begin{gathered}
A=\left[\begin{array}{lll|l|l}
0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right] \\
\mathcal{A}=\{\emptyset,\{2\},\{3\},\{1,3\},\{1,2,3\}\}
\end{gathered}
$$

Configurations

Definition Given a matrix F, we say that A has F as a configuration written $F \prec A$ if there is a submatrix of A which is a row and column permutation of F.

$$
F=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \prec\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right]=A
$$

Our Extremal Problem

Definition We define $\|A\|$ to be the number of columns in A.
Let \mathcal{F} be a family of $(0,1)$-matrices.
$\operatorname{Avoid}(m, \mathcal{F})=\{A: A$ is m-rowed simple, $F \nprec A$ for $F \in \mathcal{F}\}$

Our Extremal Problem

Definition We define $\|A\|$ to be the number of columns in A.
Let \mathcal{F} be a family of $(0,1)$-matrices.
$\operatorname{Avoid}(m, \mathcal{F})=\{A: A$ is m-rowed simple, $F \nprec A$ for $F \in \mathcal{F}\}$
forb $(m, \mathcal{F})=\max _{A}\{\|A\|: A \in \operatorname{Avoid}(m, \mathcal{F})\}$

Our Extremal Problem

Definition We define $\|A\|$ to be the number of columns in A.
Let \mathcal{F} be a family of $(0,1)$-matrices.
$\operatorname{Avoid}(m, \mathcal{F})=\{A: A$ is m-rowed simple, $F \nprec A$ for $F \in \mathcal{F}\}$
forb $(m, \mathcal{F})=\max _{A}\{\|A\|: A \in \operatorname{Avoid}(m, \mathcal{F})\}$
There are other possibilities for extremal problems for $\operatorname{Avoid}(m, \mathcal{F})$ including maximizing the weighted sum over columns where a column of column sum i is weighted by $1 /\binom{m}{i}$ (e.g. Johnston and Lu) or maximizing the number of 1 's.

A Product Construction

As with any extremal problem, the results are often motivated by constructions, namely matrices in $\operatorname{Avoid}(m, F)$. The early investigations with Jerry Griggs and Attila Sali suggested a product construction might be very helpful.
The building blocks of our product constructions are I, I^{c} and T :

$$
I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad I_{4}^{c}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right], \quad T_{4}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

A Product Construction

Definition Given an $m_{1} \times n_{1}$ matrix A and a $m_{2} \times n_{2}$ matrix B we define the product $A \times B$ as the $\left(m_{1}+m_{2}\right) \times\left(n_{1} n_{2}\right)$ matrix consisting of all $n_{1} n_{2}$ possible columns formed from placing a column of A on top of a column of B. If A, B are simple, then $A \times B$ is simple. (A, Griggs, Sali 97)

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll|lll|lll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Given p simple matrices $A_{1}, A_{2}, \ldots, A_{p}$, each of size $m / p \times m / p$, the p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$ is a simple matrix of size $m \times\left(m^{p} / p^{p}\right)$ i.e. with $\Theta\left(m^{p}\right)$ columns.

The Conjecture

Definition Let $x(F)$ denote the largest p such that there is a p-fold product which does not contain F as a configuration where the p-fold product is $A_{1} \times A_{2} \times \cdots \times A_{p}$ where each $A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.

The Conjecture

Definition Let $x(F)$ denote the largest p such that there is a p-fold product which does not contain F as a configuration where the p-fold product is $A_{1} \times A_{2} \times \cdots \times A_{p}$ where each $A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.
Conjecture (A, Sali 05) forb (m, F) is $\Theta\left(m^{\times(F)}\right)$.
In other words, we predict our product constructions with the three building blocks $\left\{I, I^{c}, T\right\}$ determine the asymptotically best constructions. The conjecture has now been verified in many cases.

Attila Sali

Exact bounds and asymptotic bounds

S
Definition Let $s \cdot F=[\overbrace{F F \ldots F}]$.

$$
\text { Let } F=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right]
$$

Theorem (Frankl, Füredi, Pach 87) forb $(m, F)=\binom{m}{2}+2 m-1$ i.e. forb (m, F) is $\Theta\left(m^{2}\right)$.

Theorem (A. and Lu 13) Let s be given. Then forb $(m, s \cdot F)$ is $\Theta\left(m^{2}\right)$.
Note for this $F, x(F)=2=x(s \cdot F)$ for any constant s, so the result is evidence for the conjecture

Berge Hypergraphs

Claude Berge, and others, created hypergraphs as a generalization of graphs. There are several hypergraph generalizations of paths and cycles. One generalization yields Berge paths and cycles. The definition of Berge Hypergraphs was given to me by Gerbner and Palmer (2015) and follows the same ideas. With Santiago Salazar, we consider the extremal set problem obtained by forbidding a single Berge Hypergraph

Santiago
Salazar

Let F be a hypergraph with edges $E_{1}, E_{2}, \ldots, E_{\ell}$. We say that a hypergraph H has F as a Berge Hypergraph and write $F \ll H$ if there are ℓ edges $E_{1}^{\prime}, E_{2}^{\prime}, \ldots, E_{\ell}^{\prime}$ of H so that $E_{i} \subseteq E_{i}^{\prime}$ for $i=1,2, \ldots, \ell$.

$$
\begin{aligned}
& \quad F=C_{4} \\
& E_{1}=\{1,2\} \\
& E_{2}=\{2,3\} \\
& E_{3}=\{3,4\} \\
& E_{4}=\{1,4\}
\end{aligned}
$$

Berge Hypergraphs

Let F be a hypergraph with edges $E_{1}, E_{2}, \ldots, E_{\ell}$. We say that a hypergraph H has F as a Berge Hypergraph and write $F \ll H$ if there are ℓ edges $E_{1}^{\prime}, E_{2}^{\prime}, \ldots, E_{\ell}^{\prime}$ of H so that $E_{i} \subseteq E_{i}^{\prime}$ for $i=1,2, \ldots, \ell$.

$$
\begin{array}{rll}
F=C_{4} & \ll & H \\
E_{1}=\{1,2\} & & E_{1}^{\prime}=\{1,2,4\} \\
E_{2}=\{2,3\} & & E_{2}^{\prime}=\{2,3,5\} \\
E_{3}=\{3,4\} & & E_{3}^{\prime}=\{3,4\} \\
E_{4}=\{1,4\} & & E_{4}^{\prime}=\{1,3,4,5\}
\end{array}
$$

Berge Hypergraphs

$$
C_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \ll\left[\begin{array}{ccccc}
E_{1}^{\prime} & E_{2}^{\prime} & E_{3}^{\prime} & E_{4}^{\prime} & \\
1 & 0 & 0 & 1 & \cdots \\
1 & 1 & 0 & 0 & \cdots \\
0 & 1 & 1 & 1 & \cdots \\
1 & 0 & 1 & 1 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right]
$$

1's matter in C_{4} when considering a Berge hypergraph of C_{4}, but 0 's in C_{4} don't matter.

Berge Hypergraphs

Define our extremal problem as follows:

$$
\begin{aligned}
& \operatorname{BergeAvoid}(m, F)=\{A: A \text { is } m \text {-rowed, simple, } F \nless A\}, \\
& \quad \operatorname{Bforb}(m, F)=\max _{A}\{\|A\|: A \in \operatorname{BergeAvoid}(m, F)\} .
\end{aligned}
$$

Downsets

Theorem If $A \in \operatorname{Berge} \operatorname{Avoid}(m, F)$, then there exists an $A^{\prime} \in \operatorname{Berge} A v o i d(m, F)$ with $\|A\|=\left\|A^{\prime}\right\|$ and the columns of A^{\prime} form a downset: namely if α is a column of A^{\prime} and $\beta \leq \alpha$, then β is also a column of A^{\prime}.

Proof: Apply a shifting argument, replacing 1's by 0 's in A as long as no repeated columns are created. The result is A^{\prime}.

Theorem $\operatorname{Bforb}\left(m, I_{k}\right)=2^{k-1}$

Theorem $\operatorname{Bforb}\left(m, C_{4}\right)=\Theta\left(m^{3 / 2}\right)$
Note that $I_{2} \times I_{2} \approx C_{4} \approx K_{2,2}$
Theorem Let $t \geq 3$. Then $\operatorname{Bforb}\left(m, l_{3} \times I_{t}\right)=\Theta\left(m^{2}\right)$
For this latter result we needed recent extremal graph results. Note that $I_{3} \times I_{t}$ is the vertex-edge incidence matrix of $K_{3, t}$.

Theorem $\operatorname{Bforb}\left(m, C_{4}\right)=\Theta\left(m^{3 / 2}\right)$
Note that $I_{2} \times I_{2} \approx C_{4} \approx K_{2,2}$
Theorem Let $t \geq 3$. Then $\operatorname{Bforb}\left(m, l_{3} \times I_{t}\right)=\Theta\left(m^{2}\right)$
For this latter result we needed recent extremal graph results. Note that $I_{3} \times I_{t}$ is the vertex-edge incidence matrix of $K_{3, t}$.
Definition $\operatorname{ex}\left(m, K_{\ell}, K_{s, t}\right)$ is the maximum number of copies of K_{ℓ} in an m-vertex $K_{s, t}$-free graph.
Such an extremal function has been studied, with surprisingly good results obtained, by Alon and Shikhelman '15 and Kostachka, Mubayi and Verstratte '15.

Theorem (Alon, Shikhelman '15, Kostochka, et al '15) Let s, t be given with $t \geq(s-1)!+1$. Then $\operatorname{ex}\left(m, K_{3}, K_{s, t}\right)$ is $\Theta\left(m^{3-(3 / s)}\right)$.

Linyuan and his kids on Pender Island

An Unavoidable Forbidden Family

Theorem (Balogh and Bollobás 05) Let k be given. Then

$$
\operatorname{forb}\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right) \leq 2^{2^{k}}
$$

An Unavoidable Forbidden Family

Theorem (Balogh and Bollobás 05) Let k be given. Then

$$
\operatorname{forb}\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right) \leq 2^{2^{k}}
$$

We note that there is no product construction of I, I^{c}, T avoiding I_{k}, I_{k}^{c}, T_{k} so this is consistent with the conjecture. It has the spirit of Ramsey Theory.

An Unavoidable Forbidden Family

Theorem (Balogh and Bollobás 05) Let k be given. Then

$$
\operatorname{forb}\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right) \leq 2^{2^{k}}
$$

We note that there is no product construction of I, I^{c}, T avoiding I_{k}, I_{k}^{c}, T_{k} so this is consistent with the conjecture. It has the spirit of Ramsey Theory.

Theorem (A., Lu 14) Let k be given. Then there is a constant c

$$
\operatorname{forb}\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right) \leq 2^{c k^{2}}
$$

An Unavoidable Forbidden Family

Theorem (Balogh and Bollobás 05) Let k be given. Then

$$
\text { forb }\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right) \leq 2^{2^{k}}
$$

We note that there is no product construction of I, I^{c}, T avoiding I_{k}, I_{k}^{c}, T_{k} so this is consistent with the conjecture. It has the spirit of Ramsey Theory.

Theorem (A., Lu 14) Let k be given. Then there is a constant c

$$
\operatorname{forb}\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right) \leq 2^{c k^{2}}
$$

If you take all columns of column sum at most $k-1$ that arise from the $k-1$-fold product $T_{k-1} \times T_{k-1} \times \cdots \times T_{k-1}$ then this yields $\binom{2 k-2}{k-1} \approx 2^{2 k}$ columns. A probabalistic construction in $\operatorname{Avoid}\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right)$ has $2^{c k \log k}$ columns.

Ramsey Theory

Proofs used lots of induction and multicoloured Ramsey numbers: $R\left(k_{1}, k_{2}, \ldots, k_{\ell}\right)$ is the smallest value of n such than any colouring of the edges of K_{n} with ℓ colours $1,2, \ldots, \ell$ will have some colour i and a clique of k_{i} vertices with all edges of colour i. These numbers are readily bounded by multinomial coefficients:

$$
\begin{gathered}
R\left(k_{1}, k_{2}, \ldots, k_{\ell}\right) \leq\binom{\sum_{i=1}^{\ell} k_{i}}{k_{1} k_{2} k_{3} \cdots k_{\ell}} \\
R\left(k_{1}, k_{2}, \ldots, k_{\ell}\right) \leq \ell^{k_{1}+k_{2}+\cdots+k_{\ell}}
\end{gathered}
$$

Our first proof had something like forb $\left(m\left\{, I_{k}, I_{k}^{c}, T_{k}\right\}\right)<R(R(k, k), R(k, k))$ yielding a doubly exponential bound.

We say a matrix with entries in $\{0,1, \ldots, r-1\}$ is an r-matrix. An r-matrix is simple if there are no repeated columns. forb $(m, r, \mathcal{F})=\max \{\|A\|: A$ is simple r-matrix, $F \nprec A \forall F \in \mathcal{F}\}$

We say a matrix with entries in $\{0,1, \ldots, r-1\}$ is an r-matrix. An r-matrix is simple if there are no repeated columns. forb $(m, r, \mathcal{F})=\max \{\|A\|: A$ is simple r-matrix, $F \nprec A \forall F \in \mathcal{F}\}$

$$
\begin{aligned}
\text { Let } \left.T_{k}(a, b, c)=\left[\begin{array}{ccccc}
b & c & c & \cdots & c \\
a & b & c & \cdots & c \\
a & a & b & \cdots & c \\
\vdots & \vdots & \vdots & \ddots & \\
a & a & a & \cdots & b
\end{array}\right]\right\} k \\
\text { Let } \begin{aligned}
\mathcal{T}_{k}(r)= & \left\{T_{k}(a, b, a): a \neq b, \quad a, b \in\{0,1, \ldots, r-1\}\right\} \\
& \cup\left\{T_{k}(a, b, b): a \neq b, \quad a, b \in\{0,1, \ldots, r-1\}\right\}
\end{aligned}
\end{aligned}
$$

We say a matrix with entries in $\{0,1, \ldots, r-1\}$ is an r-matrix. An r-matrix is simple if there are no repeated columns. forb $(m, r, \mathcal{F})=\max \{\|A\|: A$ is simple r-matrix, $F \nprec A \forall F \in \mathcal{F}\}$

$$
\begin{aligned}
\text { Let } \left.T_{k}(a, b, c)=\left[\begin{array}{ccccc}
b & c & c & \cdots & c \\
a & b & c & \cdots & c \\
a & a & b & \cdots & c \\
\vdots & \vdots & \vdots & \ddots & \\
a & a & a & \cdots & b
\end{array}\right]\right\} k \\
\text { Let } \left.\begin{array}{rl}
\mathcal{T}_{k}(r)= & \left\{T_{k}(a, b, a): a \neq b, \quad a, b \in\{0,1, \ldots, r-1\}\right\} \\
& \cup\left\{T_{k}(a, b, b): a \neq b, \quad a, b \in\{0,1, \ldots, r-1\}\right\}
\end{array},=\text {, } \begin{array}{rl}
\end{array}\right)
\end{aligned}
$$

Theorem (A, Lu 14) Given r there exists a constant c_{r} so that forb $\left(m, r, \mathcal{T}_{k}(r)\right) \leq 2^{c_{r} k^{2}}$.

Using Ramsey Theory

Consider 3-matrices, that is matrices with entries in $\{0,1,2\}$. By Ramsey Theory, if $n \geq R(k, k, k)$, then any choices for the entries marked $*$ in the $n \times n$ matrix

$$
\left.\left[\begin{array}{ccccc}
b & * & * & \cdots & * \\
a & b & * & \cdots & * \\
a & a & b & \cdots & * \\
\vdots & \vdots & \vdots & \ddots & \\
a & a & a & \cdots & b
\end{array}\right]\right\} n
$$

we will find one of the configurations $T_{k}(a, b, 0)$ or $T_{k}(a, b, 1)$ or $T_{k}(a, b, 2)$.

$$
\begin{aligned}
& \mathcal{T}_{k}(2)= \\
& {\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \\
0 & 0 & \cdots & 1
\end{array}\right],\left[\begin{array}{cccc}
0 & 1 & \cdots & 1 \\
1 & 0 & \cdots & 1 \\
\vdots & \vdots & \ddots & \\
1 & 1 & \cdots & 0
\end{array}\right],} \\
& {\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
0 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \\
0 & 0 & \cdots & 1
\end{array}\right],\left[\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
1 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \\
1 & 1 & \cdots & 0
\end{array}\right] .} \\
& \mathcal{T}_{k}(2) \approx\left\{I_{k}, I_{k}^{c}, T_{k}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{T}_{k}(3) \backslash \mathcal{T}_{k}(2)= \\
& {\left[\begin{array}{cccc}
1 & 2 & \cdots & 2 \\
2 & 1 & \cdots & 2 \\
\vdots & \vdots & \ddots & \\
2 & 2 & \cdots & 1
\end{array}\right],\left[\begin{array}{cccc}
0 & 2 & \cdots & 2 \\
2 & 0 & \cdots & 2 \\
\vdots & \vdots & \ddots & \\
2 & 2 & \cdots & 0
\end{array}\right],\left[\begin{array}{cccc}
2 & 0 & \cdots & 0 \\
0 & 2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \\
0 & 0 & \cdots & 2
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
2 & 1 & \cdots & 1 \\
1 & 2 & \cdots & 1 \\
\vdots & \vdots & \ddots & \\
1 & 1 & \cdots & 2
\end{array}\right],\left[\begin{array}{cccc}
2 & 2 & \cdots & 2 \\
0 & 2 & \cdots & 2 \\
\vdots & \vdots & \ddots & \\
0 & 0 & \cdots & 2
\end{array}\right],\left[\begin{array}{cccc}
2 & 2 & \cdots & 2 \\
1 & 2 & \cdots & 2 \\
\vdots & \vdots & \ddots & \\
1 & 1 & \cdots & 2
\end{array}\right],} \\
& {\left[\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
2 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \\
2 & 2 & \cdots & 0
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & \cdots & 1 \\
2 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \\
2 & 2 & \cdots & 1
\end{array}\right] .}
\end{aligned}
$$

Do the set of (0,1,2)-matrices in $\operatorname{Avoid}\left(m, 3,\left(\mathcal{T}_{k}(3) \backslash \mathcal{T}_{k}(2)\right)\right.$ behave somewhat like $(0,1)$-matrices?

Do the set of (0,1,2)-matrices in $\operatorname{Avoid}\left(m, 3,\left(\mathcal{T}_{k}(3) \backslash \mathcal{T}_{k}(2)\right)\right.$ behave somewhat like (0,1)-matrices?
Problem Let \mathcal{F} be a family of $(0,1)$-matrices. Is it true that forb $\left(m, 3,\left(\mathcal{T}_{k}(3) \backslash \mathcal{T}_{k}(2) \cup \mathcal{F}\right)\right)$ is $\Theta(\operatorname{forb}(m, \mathcal{F}))$?

Do the set of (0,1,2)-matrices in $\operatorname{Avoid}\left(m, 3,\left(\mathcal{T}_{k}(3) \backslash \mathcal{T}_{k}(2)\right)\right.$ behave somewhat like (0,1)-matrices?

Problem Let \mathcal{F} be a family of $(0,1)$-matrices. Is it true that forb $\left(m, 3,\left(\mathcal{T}_{k}(3) \backslash \mathcal{T}_{k}(2) \cup \mathcal{F}\right)\right)$ is $\Theta(\operatorname{forb}(m, \mathcal{F}))$?

Jeffrey Dawson

Awkward extra matrix

$$
T_{k}(0,2,1)=\left[\begin{array}{ccccc}
2 & 1 & 1 & \cdots & 1 \\
0 & 2 & 1 & \cdots & 1 \\
0 & 0 & 2 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \\
0 & 0 & 0 & \cdots & 2
\end{array}\right]
$$

Theorem Let \mathcal{F} be a family of $(0,1)$-matrices. forb $\left(m, 3,\left(\mathcal{T}_{k}(3) \backslash \mathcal{T}_{k}(2) \cup T_{k}(0,2,1) \cup \mathcal{F}\right)\right)$ is $\Theta(\operatorname{forb}(m, \mathcal{F}))$.
Surely $T_{k}(0,2,1)$ is not needed for this result. Dawson, Lu, Sali and A. ' 17 have some preliminary results on eliminating $T_{k}(0,2,1)$. Our results have made heavy use of Ramsey Theory.

Eliminating $T_{k}(0,2,1)$

Corollary Let $F \prec T_{k}(0,2,1)$. Then forb $\left(m, 3,\left(\mathcal{T}_{k}(3) \backslash \mathcal{T}_{k}(2) \cup F\right)\right)$ is $\Theta($ forb $(m, F))$.

Eliminating $T_{k}(0,2,1)$

Corollary Let $F \prec T_{k}(0,2,1)$. Then forb $\left(m, 3,\left(\mathcal{T}_{k}(3) \backslash \mathcal{T}_{k}(2) \cup F\right)\right)$ is $\Theta($ forb $(m, F))$.
Corollary forb $\left(m, 3,\left(\mathcal{T}_{k}(3) \backslash \mathcal{T}_{k}(2) \cup[01]\right)\right)$ is $\Theta(1)$

Eliminating $T_{k}(0,2,1)$

Corollary Let $F \prec T_{k}(0,2,1)$. Then forb $\left(m, 3,\left(\mathcal{T}_{k}(3) \backslash \mathcal{T}_{k}(2) \cup F\right)\right)$ is $\Theta($ forb $(m, F))$.
Corollary forb $\left(m, 3,\left(\mathcal{T}_{k}(3) \backslash \mathcal{T}_{k}(2) \cup[01]\right)\right)$ is $\Theta(1)$
Theorem forb $\left(m, 3,\left(\mathcal{T}_{k}(3) \backslash \mathcal{T}_{k}(2) \cup \emptyset\right)\right)$ is $\Theta\left(2^{m}\right)$ which is $\Theta($ forb $(m, \emptyset))$.

Eliminating $T_{k}(0,2,1)$

Corollary Let $F \prec T_{k}(0,2,1)$. Then forb $\left(m, 3,\left(\mathcal{T}_{k}(3) \backslash \mathcal{T}_{k}(2) \cup F\right)\right)$ is $\Theta($ forb $(m, F))$.
Corollary forb $\left(m, 3,\left(\mathcal{T}_{k}(3) \backslash \mathcal{T}_{k}(2) \cup[01]\right)\right)$ is $\Theta(1)$
Theorem forb $\left(m, 3,\left(\mathcal{T}_{k}(3) \backslash \mathcal{T}_{k}(2) \cup \emptyset\right)\right)$ is $\Theta\left(2^{m}\right)$ which is $\Theta($ forb $(m, \emptyset))$.

Theorem forb $\left(m, 3,\left(\mathcal{T}_{k}(3) \backslash \mathcal{T}_{k}(2) \cup I_{2}\right)\right)$ is $\Theta\left(\operatorname{forb}\left(m, I_{2}\right)\right)$.

Eliminating $T_{k}(0,2,1)$

Corollary Let $F \prec T_{k}(0,2,1)$. Then forb $\left(m, 3,\left(\mathcal{T}_{k}(3) \backslash \mathcal{T}_{k}(2) \cup F\right)\right)$ is $\Theta($ forb $(m, F))$.
Corollary forb $\left(m, 3,\left(\mathcal{T}_{k}(3) \backslash \mathcal{T}_{k}(2) \cup[01]\right)\right)$ is $\Theta(1)$
Theorem forb $\left(m, 3,\left(\mathcal{T}_{k}(3) \backslash \mathcal{T}_{k}(2) \cup \emptyset\right)\right)$ is $\Theta\left(2^{m}\right)$ which is $\Theta($ forb $(m, \emptyset))$.

Theorem forb $\left(m, 3,\left(\mathcal{T}_{k}(3) \backslash \mathcal{T}_{k}(2) \cup I_{2}\right)\right)$ is $\Theta\left(\operatorname{forb}\left(m, I_{2}\right)\right)$.
A nice inductive result:
Theorem forb $\left(m, 3,\left(\mathcal{T}_{k}(3) \backslash \mathcal{T}_{k}(2) \cup\left[\begin{array}{l}1 \\ 0\end{array}\right] \times F\right)\right)$ is $\Theta\left(m \cdot \operatorname{forb}\left(m, 3,\left(\mathcal{T}_{k}(3) \backslash \mathcal{T}_{k}(2) \cup F\right)\right)\right.$.

Congratulations on this milestone.
And thank you, Jerry, for your friendship over the years.

