Forbidden Berge Hypergraphs

Richard Anstee, Santiago Salazar UBC, Vancouver

CanaDAM Ryerson University June 12, 2017

Introduction

Claude Berge and others created hypergraphs as a generalization of graphs. There are several hypergraph generalizations of paths and cycles. One generalization yields Berge paths and cycles. The definition of Berge Hypergraphs was given by Gerbner and Palmer (2015) and follows the same ideas. We consider the extremal set problem obtained by forbidding a single Berge Hypergraph

Santiago
Salazar

Berge Hypergraphs

Let F be a hypergraph with edges $E_{1}, E_{2}, \ldots, E_{\ell}$. We say that a hypergraph H has F as a Berge Hypergraph and write $F \ll H$ if there are ℓ edges $E_{1}^{\prime}, E_{2}^{\prime}, \ldots, E_{\ell}^{\prime}$ of H so that $E_{i} \subseteq E_{i}^{\prime}$ for $i=1,2, \ldots, \ell$.

$$
\begin{aligned}
& \quad F=C_{4} \\
& E_{1}=\{1,2\} \\
& E_{2}=\{2,3\} \\
& E_{3}=\{3,4\} \\
& E_{4}=\{1,4\}
\end{aligned}
$$

Berge Hypergraphs

Let F be a hypergraph with edges $E_{1}, E_{2}, \ldots, E_{\ell}$. We say that a hypergraph H has F as a Berge Hypergraph and write $F \ll H$ if there are ℓ edges $E_{1}^{\prime}, E_{2}^{\prime}, \ldots, E_{\ell}^{\prime}$ of H so that $E_{i} \subseteq E_{i}^{\prime}$ for $i=1,2, \ldots, \ell$.

$$
\begin{array}{rll}
F=C_{4} & \ll & H \\
E_{1}=\{1,2\} & & E_{1}^{\prime}=\{1,2,4\} \\
E_{2}=\{2,3\} & & E_{2}^{\prime}=\{2,3,5\} \\
E_{3}=\{3,4\} & & E_{3}^{\prime}=\{3,4\} \\
E_{4}=\{1,4\} & & E_{4}^{\prime}=\{1,3,4,5\}
\end{array}
$$

We typically give our results using matrices. Define a matrix to be simple if it is a $(0,1)$-matrix with no repeated columns. A $k \times \ell$ (0,1)-matrix corresponds to a hypergraph (or set system) of ℓ edges on a ground set of k vertices where each column is viewed as the incidence matrix of an edge.

$$
F=\left[\begin{array}{cccc}
E_{1} & E_{2} & E_{3} & E_{4} \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]<H=\left[\begin{array}{ccccc}
E_{1}^{\prime} & E_{3}^{\prime} & E_{4}^{\prime} & E_{2}^{\prime} & \cdots \\
1 & 0 & 1 & 0 & \\
1 & 0 & 0 & 1 & \\
0 & 1 & 1 & 1 & \cdots \\
1 & 1 & 1 & 0 & \\
0 & 0 & 1 & 1 &
\end{array}\right]
$$

Patterns, Configurations and Berge Hypergraphs

Consider a $(0,1)$-matrix F. We say that A has F as a Berge Hypergraph if there is a submatrix B of A and a row and column permutation G of F so that $G \leq B$. row/column order doesn't matter, 0 's don't matter.

Patterns, Configurations and Berge Hypergraphs

Consider a $(0,1)$-matrix F. We say that A has F as a Berge Hypergraph if there is a submatrix B of A and a row and column permutation G of F so that $G \leq B$.
row/column order doesn't matter, 0's don't matter.
We say that A has F as a Pattern if there is a submatrix B of A so that $F \leq B$.
row/column order matters, 0 's don't matter.

Patterns, Configurations and Berge Hypergraphs

Consider a $(0,1)$-matrix F. We say that A has F as a Berge Hypergraph if there is a submatrix B of A and a row and column permutation G of F so that $G \leq B$.
row/column order doesn't matter, 0's don't matter.
We say that A has F as a Pattern if there is a submatrix B of A so that $F \leq B$.
row/column order matters, 0 's don't matter.
We say that A has F as a Configuration if there is a submatrix B of A and a row and column permutation G of F so that $G=B$. row/column order doesn't matter, 0's matter.

Our Extremal Problem

Define $\|A\|$ as the number of columns of A. Define our extremal problem as follows:

$$
\begin{gathered}
\operatorname{Avoid}(m, F)=\{A: A \text { is } m \text {-rowed, simple, } F \nless A\}, \\
\operatorname{Bh}(m, F)=\max _{A}\{\|A\|: A \in \operatorname{Avoid}(m, F)\}
\end{gathered}
$$

Forbidden Berge Hypergraph I_{k}

Theorem $\operatorname{Bh}\left(m, I_{k}\right)=2^{k-1}$
The fact that this is a constant would follow from a result of Balogh and Bollobás (2005). This exact bound follows by induction or by the shifting argument given later.

Extremal Graph Theory

$\operatorname{ex}(m, G)$ is the maximum number of edges in a graph on m vertices which has no subgraph G.

Graph Theory and Berge Hypergraphs

Given a $k \times \ell(0,1)$-matrix F, we can form a graph $G(F)$ on k vertices where we join i, j if there is a column in F with 1 's in rows i, j. Alternatively replace the hyperedges in the hypergraph associated with F, by the cliques associated with each hyperedge and take the union of the edges.
Theorem $\operatorname{Bh}(m, F) \geq \operatorname{ex}(m, G(F))+m+1$

$$
\text { e.g. } F=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right] \text { has } G(F)=C_{4}
$$

Since ex $\left(m, C_{4}\right)=\Theta\left(m^{3 / 2}\right)$ then $\operatorname{Bh}(m, F)$ is $\Omega\left(m^{3 / 2}\right)$.

$$
C_{4}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right], T_{4}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

Theorem (A., Koch, Raggi, Sali '14) forb $\left(m,\left\{C_{4}, T_{4}\right\}\right)$ is $\Theta\left(m^{3 / 2}\right)$.
Corollary $\operatorname{Bh}\left(m, C_{4}\right)$ is $\Theta\left(m^{3 / 2}\right)$.
Proof: $C_{4} \ll T_{4}$ so avoiding C_{4} as a Berge hypergraph will forbid both C_{4} and T_{4} as configurations (as well as some other configurations).

Downsets

Theorem If $A \in \operatorname{Avoid}(m, F)$, then there exists an $A^{\prime} \in \operatorname{Avoid}(m, F)$ with $\|A\|=\left\|A^{\prime}\right\|$ and the columns of A^{\prime} form a downset: namely if α is a column of A^{\prime} and $\beta \leq \alpha$, then β is a column of A^{\prime}.

Proof: Apply a shifting argument, replacing 1's by 0's in A as long as no repeated columns are created. The result is A^{\prime}.

Forbidden Berge Hypergraph $I_{2} \times I_{4}$

Definition The product $I_{2} \times I_{4}$
$=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \times\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]=\left[\begin{array}{llllllll}1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1\end{array}\right]$

Forbidden Berge Hypergraph $I_{2} \times I_{4}$

Definition The product $I_{2} \times I_{4}$
$=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \times\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]=\left[\begin{array}{llllllll}1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1\end{array}\right]$
Note that $G\left(I_{2} \times I_{4}\right)=K_{2,4}$.

Forbidden Berge Hypergraph $I_{2} \times I_{4}$

Assume $A \in \operatorname{Avoid}\left(m, I_{2} \times I_{4}\right)$ with

$A=$| i |
| :---: |
| $\overbrace{1}$ |
| j |
| 1 | 1

Recall that $\operatorname{Bh}\left(m, I_{4}\right)=2^{3}$.

$I_{2} \times I_{4}$

Thus $I_{2} \times I_{4} \ll A$ using the idea that A is a downset. Hence if $I_{2} \times I_{4} \nless A$ then for each pair of rows i, j, the number of columns of A with 1 's on both rows i, j is at most 2^{3}.
Then the number of columns with three or more 1 's is asymptotic to the number of columns of sum 2

Definition $\operatorname{ex}\left(m, K_{\ell}, G\right)$ is the maximum number of copies of K_{ℓ} in an m-vertex G-free graph.
Such an extremal function has been studied, with surprisingly good results obtained, by Alon and Shikhelman '15 and Kostachka, Mubayi and Verstratte '15.

Definition $\operatorname{ex}\left(m, K_{\ell}, G\right)$ is the maximum number of copies of K_{ℓ} in an m-vertex G-free graph.
Such an extremal function has been studied, with surprisingly good results obtained, by Alon and Shikhelman '15 and Kostachka, Mubayi and Verstratte '15.

Theorem (Alon, Shikhelman '15, Kostachka, et al '15)
Let s, t be given with $t \geq(s-1)!+1$. Then $\operatorname{ex}\left(m, K_{3}, K_{s, t}\right)$ is $\Theta\left(m^{3-(3 / s)}\right)$.

Theorem (Alon, Shikhelman '15, Kostachka, et al '15)
Let r, s, t be given with $s \geq 2 r-2, t \geq(s-1)!+1$

$$
\operatorname{ex}\left(m, K_{r}, K_{s, t}\right) \geq\left(\frac{1}{r!}+o(1)\right) m^{r-\frac{r(r-1)}{2 s}}
$$

Definition $\operatorname{ex}\left(m, K_{\ell}, G\right)$ is the maximum number of copies of K_{ℓ} in an m-vertex G-free graph.
Such an extremal function has been studied, with surprisingly good results obtained, by Alon and Shikhelman '15 and Kostachka, Mubayi and Verstratte '15.

Definition $\operatorname{ex}\left(m, K_{\ell}, G\right)$ is the maximum number of copies of K_{ℓ} in an m-vertex G-free graph.
Such an extremal function has been studied, with surprisingly good results obtained, by Alon and Shikhelman '15 and Kostachka, Mubayi and Verstratte '15.
Lemma Given $A \in \operatorname{Avoid}\left(m, I_{3} \times I_{k}\right)$, where A is a downset, the number of columns of column sum $\ell(\ell \geq 3)$ in A is at most $\operatorname{ex}\left(m, K_{\ell}, K_{3, k}\right)$.

Theorem $\operatorname{Bh}\left(m, I_{3} \times I_{k}\right) \leq$
$\left.1+m+\operatorname{ex}\left(m, K_{3, k}\right)+2^{k-1} \operatorname{ex}\left(m, K_{3}, K_{3, k}\right)\right)$

Definition $\operatorname{ex}\left(m, K_{\ell}, G\right)$ is the maximum number of copies of K_{ℓ} in an m-vertex G-free graph.
Such an extremal function has been studied, with surprisingly good results obtained, by Alon and Shikhelman '15 and Kostachka, Mubayi and Verstratte '15.
Lemma Given $A \in \operatorname{Avoid}\left(m, I_{3} \times I_{k}\right)$, where A is a downset, the number of columns of column sum $\ell(\ell \geq 3)$ in A is at most $\operatorname{ex}\left(m, K_{\ell}, K_{3, k}\right)$.

Theorem $\operatorname{Bh}\left(m, I_{3} \times I_{k}\right) \leq$
$\left.1+m+\operatorname{ex}\left(m, K_{3, k}\right)+2^{k-1} \operatorname{ex}\left(m, K_{3}, K_{3, k}\right)\right)$
Theorem $\operatorname{Bh}\left(m, I_{4} \times I_{k}\right) \leq$
$\left.1+m+\operatorname{ex}\left(m, K_{4, k}\right)+\operatorname{ex}\left(m, K_{3}, K_{4, k}\right)\right)+2^{k-1} \operatorname{ex}\left(m, K_{4}, K_{4, k}\right)$

Trees

Let T_{k} be a tree on k vertices. A well known result for trees is $\operatorname{ex}\left(m, T_{k}\right)$ is $\Theta(m)$.

Theorem Let T_{k} be a tree on k vertices and let F be the k-rowed vertex-edge incidence matrix of T_{k} so $G(F)=T_{k}$ and F has column sums 2. Then
$\operatorname{Bh}(m, F)$ is $\Theta(m)$.

Trees

Let T_{k} be a tree on k vertices. A well known result for trees is $\operatorname{ex}\left(m, T_{k}\right)$ is $\Theta(m)$.
Theorem Let T_{k} be a tree on k vertices and let F be the k-rowed vertex-edge incidence matrix of T_{k} so $G(F)=T_{k}$ and F has column sums 2. Then
$\operatorname{Bh}(m, F)$ is $\Theta(m)$.

The situation is different for configurations

Theorem Let T_{k} be a tree on k vertices and let F be the k-rowed vertex-edge incidence matrix of T_{k}. Then forb (m, F) is $\Theta\left(m^{k-1}\right)$ or $\Theta\left(m^{k-2}\right)$ or $\Theta\left(m^{k-3}\right)$ depending on T_{k}.

Smallest Open Problem

$C_{4}=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]$ where $G(F)$ is C_{4}.
$\operatorname{Bh}\left(m, C_{4}\right)$ is $\Theta\left(m^{3 / 2}\right)$.
$F=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1\end{array}\right]$
Problem What is $\operatorname{Bh}(m, F)$?
We might guess that $\operatorname{Bh}(m, F)$ is $\Theta\left(m^{2}\right)$.

THANKS to those who have kept contributing to the CanaDAM series of conference. Another great event!

