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1 Introduction

The motivation to study forbidden configurations has its roots in graph theory. Mathe-
maticians such as Erdős himself, asked what is the maximum number of edges a simple
graph G on n vertices can have, before it no longer avoids a particular subgraph H as a
subgraph. This question of graphs can be extended to the study of hypergraphs, where a
simple hypergraph on m vertices is a family X of subsets of {1, 2, . . . ,m}. By convention
X has no repeating elements and hence, in the language of hypergraphs, there are no
“repeated” edges. The equivalent question in the theory of simple hypergraphs would
be to determine the maximum number of hyperedges a simple hypergraph can have
to ensure a certain subhypergraph is forbidden. Naturally, we can allow X ⊂ 2[m] to
have repeated elements, thereby allowing for general hypergraphs with repeating edges;
the analogous question would be to maximize the number of edges of a hypergraph
while forbidding a family of subhypergraphs. Similarly, if we consider an m-rowed ma-
trix with entries in {0, 1}, we would want to determine what the maximum number of
columns it can have while avoiding a configuration, a term which will be defined shortly.
The premise in studying forbidden configurations is generalizing the extremal subgraph
problem to (0, 1)-matrices [1].

This task may seem quite daunting at first, especially when one lacks familiarity
with techniques used in approaching the study of forbidden configurations. This survey
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gives a brief insight into proving results about forbidden configurations by using various
methods of induction, which many mathematicians have employed. We will begin with
a look at the basic induction in Section 2 that any student of mathematics has encoun-
tered. Next, we will consider the method known as standard induction in Section 3
which has been used ubiquitously throughout this subfield of extremal combinatorics.
Repeated induction, found in Section 4, is an extension of standard induction. We will
follow it up with a discussion about multiplicity induction in Section 5, which will con-
sider matrices (and configurations) with repeated columns. Last, we will end with, for
a lack of a better name, sporadic induction, in Section 6, a method of induction that
has shown its usefulness but is not as central.

Below, we provide some preliminary definitions and remarks on the notation, which
are most widely used in the study of forbidden configurations and will be used through-
out this survey.

Definition 1.1 Let m ∈ N. We use the following notation:

[m] = {1, 2, . . . ,m}(
[m]

k

)
= {S : S ⊆ [m], |S| = k}

2[m] = {S : S ⊆ [m]}.

The latter is also known as the power set of [m].

Definition 1.2 We say that a (0, 1)-matrix A is simple, if it has no repeated columns.

Definition 1.3 Given a (0, 1)-matrix A, we denote the number of columns of A by ‖A‖.

Definition 1.4 Let A be an m × n (0, 1)-matrix. Let S ⊆ [m] We denote by A|S, the
|S| × n submatrix of A of the rows i ∈ S.

Now we can define our extremal problem.

Definition 1.5 Given a (0, 1)-matrix A, we say that a (0, 1)-matrix F is a configuration
of A, and denote it as F ≺ A, if there exists a submatrix of A which is a row and column
permutation of F .

Definition 1.6 Let F be a collection of (0, 1)-matrices. Define

Avoid(m,F) = {A is m – rowed : F 6≺ A,∀F ∈ F}.

We call F a forbidden family of configurations.

Definition 1.7 Let

forb(m,F) = max{‖A‖ : A ∈ Avoid(m,F)}.

2



When possible, we seek exact values for forb(m,F ); of course this may not always be
the case and as such, one satisfies the query by seeking as accurate and sharp asymptotic
bounds as possible.

Remark 1.8 If F and G are two configurations such that F ≺ G, then it follows that
forb(m,F ) ≤ forb(m,G).

Proof: If F ≺ G, then A ∈ Avoid(m,F ) implies that A ∈ Avoid(m,G). So
Avoid(m,F ) ⊆ Avoid(m,G), and hence, forb(m,F ) ≤ forb(m,G).

Let us first see some examples of forb(m,F ) for some specific (0, 1)-matrix F .

Example: Let’s determine forb(m, [1]). Note that if A ∈ Avoid(m, [1]) with ‖A‖ =
forb(m, [1]), then A cannot have 1 in any row or column. This leaves us with A = 0m
since A has no repeating columns, and hence ‖A‖ = 1.

Example: Trying something a bit more challenging, suppose A ∈ Avoid(m,
[
0 1

]
)

with ‖A‖ = forb(m,
[
0 1

]
). We determine what ‖A‖ is. Note that on any row of A, we

must avoid
[
0 1

]
. Since A is simple, it cannot have any repeated columns. Suppose

after some permutation of rows, the first column of A is 1i0m−i for some 0 ≤ i ≤ m.
Since this column cannot repeat, if A has another column, there exists a row 1 ≤ j ≤ m
where we have either

[
0 1

]
or
[
1 0

]
, contradicting the assumption on A. So in fact

‖A‖ = 1 if A ∈ Avoid(m,
[
0 1

]
).

For the next example, we introduce some notation:

Definition 1.9 Denote by Im the m ×m identity matrix and denote by Icm the (0, 1)-
complement.

Definition 1.10 Denote by Tm the upper triangular (0, 1)-matrix where the upper tri-
angular entries are 1; that is, Tij = 1 for i ≤ j and Tij = 0 for i > j.

Definition 1.11 We denote with Kk, the k × 2k simple (0, 1)-matrix.

Example: We attempt one more example, which will be a bit more non-trivial than
the two above. Let A ∈ Avoid(m, I2) with ‖A‖ = forb(m, I2), where I2 denotes the
2× 2 identity matrix. We first note that I2 ≺ K2, and so forb(m, I2) ≤ forb(m,K2). By
Theorem 3.2 that we will prove in a later section, we conclude that

‖A‖ ≤ forb(m,K2) =

(
m

1

)
+

(
m

0

)
= m+ 1.

Next, we note that [0m|Tm], the m × (m + 1) upper triangular (0, 1)-matrix, avoids I2
as a configuration; therefore, Tm ∈ Avoid(m, I2). Thus, ‖A‖ ≥ ‖[0m|Tm]‖ ≥ m+ 1. We
conclude ‖A‖ = m.
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Remark 1.12 Thus, Kk is like the incidence matrix representation of the complete
graph, with every possible (0, 1)-string of length k, arranged as columns.

Next, we introduce the matrix theoretic definition of what it means for a set S ⊆ [m]
to be shattered by a matrix A.

Definition 1.13 Let A be a (0, 1)-matrix. We say that S ⊆ [m] is shattered by A, if
K|S| ≺ A|S. We say ∅ is shattered by A if and only if ‖A‖ ≥ 1. Denote by Sh(A), the
sets S ⊆ [m] shattered by A.

The following product construction has proved useful.

Definition 1.14 Let A be an m1×n1 simple matrix and B be an m2×n2 simple matrix.
Denote by A× B the (m1 + m2)× (n1n2) simple matrix where each column consists of
a column of A placed on a column of B, done in every possible way.

2 Basic Induction

In the theory of forbidden configurations and extremal set theory, the term “basic in-
duction” will refer to the proof technique described as follows. Suppose A is a simple,
m-rowed matrix; we identify any row and/or column permutation of A, with itself. The
method of basic induction will require one to induct on the number of columns, n or
rows, m. As with any method of induction, one checks that the base case, n = 1 in the
case of inducting on the number of columns, holds and assumes the inductive hypothesis
for all 1 ≤ k < n, and proving the claim for the case when k = n. To illustrate, suppose
A is a simple m-rowed (0, 1)-matrix with n columns; we claim that some statement P (n)
holds true for the matrix A, and would like to use the method of basic induction on the
number of columns of A. We recognize that any row and column permutation of A is
identified with A itself; as such, assuming that A has at least 2 columns, we have the
following decomposition after permuting the rows and columns of A, so that row r has
at least one 0 and one 1:

A =
r →

[
0 · · · 0 1 · · · 1

A0 A1

]
,

noting that ‖A0‖, ‖A1‖ ≤ n− 1. It is convenient to allow A0 or A1 be empty matrices,
namely with 0 columns. In our first example, we will avoid this by assuming row r has
at least one 0 and one 1. Here, we can invoke the inductive hypothesis on the submatri-
ces A0 and A1, namely that the statement P (‖A0‖) and P (‖A1‖) holds true. We hope
that invoking the inductive hypothesis on ‖A0‖ and ‖A1‖ is sufficient to conclude the
claim for ‖A‖. We note that we are not using any special properties of A0 and A1, with
the exception that the two submatrices have fewer rows than A; this will be starkly
contrasted when studying the method of standard induction, which will use the power
of induction as well as certain special properties of submatrices in its decomposition to

4



conclude claims about the matrix A.

This method of induction is the simplest method of induction and has been used in
proving numerous important theorems in extremal set theory. One such result is the
Shattered Set Lemma, which we shall state and prove in this section, giving both a
matrix-theoretic and set-theoretic proof.

We first prove the Shattered Set Lemma for the case of (0, 1)-matrices.

Lemma 2.1 (Shattered Set Lemma, Pajor [8]) Let A be a given m rowed matrix.
Then |Sh(A)| ≥ ||A||.

Proof: First, let us consider the base case, when ||A|| = 1. Trivially, the empty
(0, 1)-matrix is shattered by A if ‖A‖ ≥ 1 and so, |Sh(A)| ≥ ||A|| = 1. Now assume
inductive hypothesis for all (0, 1)-matrices A, with ||A|| = n, with 1 ≤ j < n. Suppose
that A is a (0, 1)-matrix, such that ||A|| = n, with n ≥ 2. . We permute the rows of A
and find a row r so that row r contains at least one 0 and one 1. Such a row r exists,
since by assumption n ≥ 2. Decompose A in the following way:

A =
r →

[
0 · · · 0 1 · · · 1

A0 A1

]
,

where ||A0||, ||A1|| ≤ n−1. As such, we can apply the inductive hypothesis and conclude
that

|Sh(A0)| ≥ ||A0||,
|Sh(A1)| ≥ ||A1||.

We first remark that ||A|| = ||A0||+ ||A1||, and by the inclusion–exclusion principle,

|Sh(A0) ∪ Sh(A1)|+ |Sh(A0) ∩ Sh(A1)| = |Sh(A0)|+ |Sh(A1)| ≥ ||A0||+ ||A1||.

Next, we show that |Sh(A)| ≥ |Sh(A0)∪Sh(A1)|+ |Sh(A0)∩Sh(A1)|. Suppose S ⊆ [m]
with S ∈ Sh(A0) ∩ Sh(A1). By definition, we have that K|S| ≺ A0|S and K|S| ≺ A1|S.
Remarking that r 6∈ S, we observe that K||S∪{r}| ≺ A|S∪{r}, and so S ∪ {r} ∈ Sh(A).
Also S ∪ {r} 6∈ Sh(A0) ∪ Sh(A1). Hence, Sh(A) contains at least |Sh(A0) ∩ Sh(A1)|
more sets than Sh(A0) ∪ Sh(A1). Therefore, we conclude that |Sh(A)| ≥ |Sh(A0) ∪
Sh(A1)|+ |Sh(A0) ∩ Sh(A1)|, and hence

|Sh(A)| ≥ ||A0||+ ||A1|| ≥ ||A||.

This completes the proof of the matrix version of Shattered Set Lemma.

Now we give a proof of the Shattered Set Lemma for the case of sets.
Here, we state the requisite definitions and the statement of the aforementioned lemma,
and use the method of basic induction to prove it.
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Definition 2.2 Let U ⊆ 2[m]. We say that U shatters a set S ⊆ [m] if

{T ∩ S : T ∈ U} = 2S

In other words, we hope to recover all subsets of S by intersecting S with all subsets
T ∈ U .

Definition 2.3 For U ⊆ 2[m], let Sh(U) be the collection of all T that are shattered by
U .

Now we state and prove the Shattered Set Lemma for sets.

Lemma 2.4 (Shattered Set Lemma, Pajor [8]) Let U ⊆ 2[m], with U 6= ∅. Then
|Sh(U)| ≥ |U|.

Proof: We prove this theorem, as aforementioned, by using the method of basic
induction. We know that ∅ ∈ Sh(U) for U 6= ∅. So |Sh(U)| ≥ |U| holds for the base case.
Now we assume the inductive hypothesis for all U ⊆ 2[m] such that |U| ∈ {1, 2, . . . , n}
and prove the lemma for when |U| = n+1. Let t ∈ [m] such that t is contained in at least
one, but not all S ∈ U . We let U0 = {S ∈ U : t 6∈ S} and U1 = {S ∈ U : t ∈ S}. Then
it is clear that U = U0 t U1, where t denotes a disjoint union. Now, we observe that
|U0|, |U1| < n + 1 and hence, by the inductive hypothesis |Sh(U0)| ≥ U0, |Sh(U1)| ≥ U1.
Applying a case of the inclusion-exclusion principle, we obtain that

|Sh(U0) ∪ Sh(U1)|+ |Sh(U0) ∩ Sh(U1)| = |Sh(U0)|+ |Sh(U1)|
≥ |U0|+ |U1|
= |U|

We want to show that

|Sh(U0) ∪ Sh(U1)|+ |Sh(U0) ∩ Sh(U1)| ≤ |Sh(U)|. (1)

We note that since Sh(U0)∩Sh(U1) ⊆ Sh(U0)∪Sh(U1), if S ∈ Sh(U0)∪Sh(U1)−Sh(U0)∩
Sh(U1), the it contributes exactly one unit to the left in (1) and one unit to the right in
(1). If S ∈ Sh(U0)∩Sh(U1), it contributes exactly 1 unit to the left in (1) but 2 units to
the right in (1), namely S and S∪{t}. Since Sh(U0)∩Sh(U1), Sh(U0)∪Sh(U1) ⊆ Sh(U)
we obtain the inequality in (1).

If S ∈ Sh(U0) ∩ Sh(U1), we note that t 6∈ S; if it were the case that t ∈ S, then we
would obtain that {T ∩ S : T ∈ U0} ( S since t 6∈ T for any T ∈ U0. Therefore, it
follows that S ∪ {t} 6∈ Sh(U0). Now, S, S ∪ {t} ∈ Sh(U). So we have contributions of
2 units to the right side of the inequality in (1) while there is only a contribution of 1
unit to the left side of the inequality in (1). This proves our claim.
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Definition 2.5 For notational simplicity, we let

G6×3 =


1 1 1
1 1 0
1 0 1
0 1 0
0 0 1
0 0 0


and

F7 =


1 1 0 1 1 0
1 0 1 1 1 1
0 1 0 1 0 1
0 0 1 0 0 1
0 0 0 0 1 0

 .
Theorem 2.6 [6] Suppose F is a 6-rowed (0, 1)-matrix. Then F ≺ G6×3 if and only if
forb(m,F ) = Θ(m2). Otherwise, if F 6≺ G6×3, then forb(m,F ) is Ω(m3).

Theorem 2.7 [6] For F7 defined above, forb(m,F7) = Θ(m2). For any (0, 1)-column
α, forb(m, [F7|α]) is Ω(m3).

We will discuss aspects of the proof that forb(m,F7) is O(m2) later in the paper.
The following is a lemma which proves one direction of Theorem 2.6.

Lemma 2.8 [6] Suppose F is a 6-rowed (0, 1)-matrix such that F 6≺ G6×3. Then
forb(m,F ) is Ω(m3).

Proof: First, we remark that without loss of generality, we can assume that the
columns of F have a column sum of exactly 3. Why so? Well first, suppose that F has
a column α with column sum 2 or less. Then we note that α 6≺ Ic × Ic × Ic, since the
3 – fold product has columns with column sum strictly bigger than 2. Likewise, if α
is a column of F with column sum greater than 4; then α 6≺ I × I × I, and the 3 –
fold product has columns of column sum at most 3. In both of these cases, we have a
construction with Ω(m3) columns and hence, forb(m,F ) = Ω(m3).

So let us assume that F is a 6-rowed matrix so that it has columns only of column
sum 3. We consider the following two cases first:

F1 =


1 1
1 1
1 1
0 0
0 0
0 0

 , F2 =


1 0
1 0
1 0
0 1
0 1
0 1


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We claim that F1 6≺ I × I × I. This follows from the fact that the 3 – fold product
I× I× I, is symmetric in I and hence, I has to cover

[
1 1

]
, contradicting the fact that

I has no row with a row sum of 2 or more. Next, we claim that F2 6≺ I × I × T . We

argue this by first noting that

[
1 0
0 1

]
6≺ T . So T can cover one or more of the first three

rows, or one or more of the bottom three rows, but no combination of rows from the
top three or bottom three. Suppose without loss generality that T covers i ∈ {1, 2, 3}
of the first three rows. Then we note that I × I has to cover 6 − i of the rows and in

particular, I has to cover at least 2 of the bottom 3 rows. But notice that

[
0 1
0 1

]
6≺ I

since I has no column with column sum 2 or more. So indeed we have a construction,
I × I × T on Ω(m3) rows which does not contain the configuration F2.

Anstee and Sali showed that what remains is to check the following six cases. First,
observe that

F =


1 1 1
1 1 1
1 0 0
0 1 0
0 0 1
0 0 0

 6≺ Ic × Ic × Ic.

Notice that the 3 – fold product is symmetric in Ic. Moreover, observe that no pair of
the last 4 rows of F can be covered by a single Ic, since Ic has no pair of rows with row
sum 1 or less. Hence, no triple or 4 – tuple of the last four rows of F can be covered by
a single Ic. As such, Ic must cover one of the first two rows, combined with one of the
last four rows. Since there are only two rows of F with column sum more than 2, and
four rows of F with column sum 1, we run into a problem, as some pair of the last four
rows must be covered by Ic, contradicting our argument above.

Next, we argue that if

F =


1 1 1
1 1 0
1 0 1
0 1 1
0 0 0
0 0 0

 ,

then F 6≺ I × I × I. The case for this claim is in the same flavour as that of the above
matrix. We notice that this new F has the first four rows with row sum equal to 4,
while the last two rows are of row sum equal to zero. Since I does not have any pair
of rows with row sum equal to 4, no pair, triple or 4 – tuple of the first four rows of F
can be covered by I. As such, any row from the top 4 rows, must be combined with
one of the bottom 2 rows to be covered by I; since there are 2 remaining rows of row
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sum 4, we have that these remaining 2 rows must be covered by I, which contradicts
the argument we made above.

To shorten the arguments as for the above two cases, we list here the remainder of
the cases where F is a 6-rowed, 3-columned simple matrix which has columns of sum
exactly 3:

1 1 1
1 1 0
1 0 0
0 1 0
0 0 1
0 0 1

 6≺ Ic × Ic × Ic,


1 1 0
1 1 0
1 0 1
0 1 1
0 0 1
0 0 0

 6≺ I × I × I,


1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1

 6≺ I × I × T

and not to forget, 
1 1 1
1 1 0
1 0 1
0 1 0
0 0 1
0 0 0

 = G6×3.

This shows that if F is a 6-rowed matrix, 3-columned matrix that avoids G6×3, then
forb(m,F ) = Ω(m3). As such, any F with 4 or more columns which avoids G6×3 is
such that forb(m,F ) = Ω(m3). Anstee and Sali showed that the only 6-rowed, 4-
columned matrix which contains, on every triple of columns, G6×3 as a configuration, is
the following:

F =


1 1 1 1
1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1
0 0 0 0

 ⊀ T × T × T.

Since F is 4-columned, F 6≺ G6×3 and Anstee and Sali have a construction, namely the
3-fold product T × T × T , that avoids F .

To sum up, we have shown that if F is a 6-rowed matrix such that F 6≺ G6×3, then
forb(m,F ) = Ω(m3).

Lemma 2.9 below will be useful in proving the bound on G6×3, from the bound on
F7.
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Lemma 2.9 [6] Suppose F is a (0, 1)-simple matrix of the following form:

F =

0 . . . 0
1 . . . 1

F ′

 .
Next, suppose that F0 and F1 are defined as follows:

F0 =

[
0 . . . 0

F ′

]
, F1 =

[
1 . . . 1

F ′

]
.

Then, we claim that

forb(m,F ) ≤ forb(m− 1, F0) + forb(m− 1, F1).

Proof: Suppose that A has 3 or more rows. Let A ∈ Avoid(m,F ) and without loss
of generality, we assume that ‖A‖ = forb(m,F ). Find a row r, permute the rows and
columns of A so that we have a row r with at least one 0 and one 1, at the top, as in
the following decomposition:

A =
r →

[
0 . . . 0 1 . . . 1

A′ A′′

]
.

Noting that ‖A‖ = ‖A′‖+ ‖A′′‖, we observe the following: F1 6≺ A′, since otherwise:

F ≺
[
0 . . . 0

F

]
≺
[
0 . . . 0

A′

]
≺ A,

contradicting the hypothesis that A ∈ Avoid(m,F ). Therefore, we must have that A′ ∈
Avoid(m− 1, F ). Using a similar argument, we can show that A′′ ∈ Avoid(m− 1, F0).
By the above, we conclude that

forb(m,F ) = ‖A‖ = ‖A0‖+ ‖A1‖ ≤ forb(m− 1, F0) + forb(m− 1, F1). (2)

Corollary 2.10 [6] We have that forb(m,G6×3) is O(m2).

Proof: Permute the rows of G6×3 so that the row of 0’s and 1’s become the first two
rows, and define G0 and G1 as follows:

G6×3 =


1 1 1
0 0 0
1 1 0
1 0 1
0 1 0
0 0 1

 =

1 1 1
0 0 0

G′

 , G0 =

[
0 0 0

G′

]
, G1 =

[
1 1 1

G′

]
.

Now, from Lemma 2.9, we know that

forb(m,G6×3) ≤ forb(m− 1, G0) + forb(m− 1, G1) ≤ 2 · forb(m− 1, F7),

where the last inequality follows from the fact that G0 ≺ F7 and G1 ≺ F7. We use
Theorem 2.6 to conclude forb(m−1, F7) to be O(m2) and thereby completing the proof.
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3 Standard Induction

Here, we give a description of what is known as “standard induction”, a proof technique
frequently used in showing numerous results about forbidden configurations. Let A ∈
Avoid(m,F). We recall that any row and column permutation of A will be considered
as the matrix A itself. Suppose we permute the columns of A such that we have the
following:

A =

[
0 . . . 0 1 . . . 1

A′

]
.

We note that the matrix A′ need not be simple; for example, if

A =

[
0 1 1
1 1 0

]
,

then removing the first row yields A′ =
[
1 1 0

]
, which is not simple. That being said,

we observe that if A is a simple matrix, then any column of A′ repeats at most twice.
As such, we can permute rows and columns of A, an m-rowed matrix, and find a row r
of A so that we have the following:

A =
r →

[
0 · · · 0 1 · · · 1
Br Cr Cr Dr

]
,

where Cr consists of all the columns of A′ which repeat. We will call [BrCrDr] and Cr
the inductive children of A, and refer to A as the parent.

By construction, [BrCrDr] and Cr are simple m− 1-rowed matrices, where the for-
mer is [BrCrDr] ∈ Avoid(m−1,F). Note that ‖A‖ = ‖[BrCrDr]‖+‖Cr‖. Additionally,
we note that we could find an r so that ‖Cr‖ is minimal, which is relevant in some proof
not discussed here. [1]

We now consider what the (m− 1)-rowed simple matrix Cr must avoid.

Remark 3.1 [3] Suppose that F is some family of (0, 1)-matrices and A ∈ Avoid(m,F).
Let F ∈ F and find a row s so that after some row and column permutation of F , we
have the following:

F =
s→

[
0 · · · 0 1 · · · 1

B(F )s C(F )s C(F )s D(F )s

]
.

We remark that if [B(F )sC(F )sD(F )s] ≺ Cr, then F ≺ A, contradicting the hypothesis
that A ∈ Avoid(m,F). Let

F ′ = {[B(F )sC(F )sD(F )s] : F ∈ F , s ∈ row(F )]}

where row(F ) is the number of rows of F . Then if A ∈ Avoid(m,F), it follows that
Cr ∈ Avoid(m− 1,F ′). [1].
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In fact, we can often reduce F ′ somewhat, as we will see in an example later.
We now prove a version of the Sauer bound, using the standard induction method,

as described above.

Theorem 3.2 (Sauer [9], Perles-Shelah [10], Vapnik-Chervonenkis [11]) Let k
be given. Then we have that

forb(m,Kk) =

(
m

k − 1

)
+ . . .+

(
m

0

)
Proof: We first prove that forb(m,Kk) ≤

(
m
k−1

)
+ . . . +

(
m
0

)
by inducting on m, the

number of rows. Let A be a simple m-rowed matrix, with A ∈ Avoid(m,Kk), and
without loss of generality, suppose that ||A|| = forb(m,Kk). Using the above method
described in remark 3.1 permute the columns and rows of the matrix A so that we have

A =
r →

[
0 · · · 0 1 · · · 1
Br Cr Cr Dr

]
.

Remark that ||A|| = ||[BrCrDr|| + ||Cr|| Next, we observe that Kk−1 6≺ Cr; otherwise,
if indeed Kk−1 ≺ Cr, then we have that

Kk =

[
0 · · · 0 1 · · · 1

Kk Kk

]
≺
[
0 · · · 0 1 · · · 1

Cr Cr

]
≺ A

contradicting our original hypothesis that A ∈ Avoid(m,Kk). Hence Cr ∈ Avoid(m −
1, Kk−1) by remark 3.1. By inductive hypothesis, since Cr is an (m− 1)-rowed simple
matrix,

||Cr|| ≤
(
m− 1

k − 2

)
+ . . .+

(
m− 1

0

)
and [BrCrDr] ∈ forb(m− 1, Kk), which gives

||[BrCrDr]|| ≤
(
m− 1

k − 1

)
+ . . .+

(
m− 1

0

)
.

Recall Pascal’s identity for binomial coefficients:(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
for all 1 ≤ k ≤ n− 1. Combining the above remark with the bounds on ||Cr|| and

12



||[BrCrDr]||, we have that

||A|| ≤
(
m− 1

k − 1

)
+ . . .+

(
m− 1

1

)
+

(
m− 1

0

)
+

(
m− 1

k − 2

)
+ . . .+

(
m− 1

0

)
=

((
m− 1

k − 1

)
+

(
m− 1

k − 2

))
+ . . .+

((
m− 1

1

)
+

(
m− 1

0

))
+ 1

=

(
m

k − 1

)
+ . . .+

(
m

0

)
.

So we have shown an upper bound on forb(m,Kk). Now we show that forb(m,Kk) ≥(
m
k−1

)
+. . .+

(
m
0

)
, by constructing a matrix simple (0, 1)-matrix A which does not contain

Kk as a subconfiguration. We observe thatKk contains the column 1k. So, to construct a
matrix which does not contain Kk as a subconfiguration, we ensure that the constructed
matrix avoids 1k. We observe that for 0 ≤ j ≤ k, there are exactly

(
m
j

)
distinct columns

of length k with column sum j, since there are exactly
(
m
j

)
ways of choosing where to

place j 1’s and m − j 0’s. Let Kj
m denote the m ×

(
m
j

)
sized simple matrix, consisting

of all possible (0,1)-columns of column sum j. Now, we let

A := [K0
m|K1

m| · · · |Kk−2
m |Kk−1

m ].

We note that A has exactly
(
m
k−1

)
+ . . .+

(
m
0

)
columns and since there does not exist a

column in A with column sum k. Note that 1k 6≺ A. Hence, we conclude that Kk 6≺ A
and therefore, A ∈ Avoid(m,Kk). This yields the fact that

forb(m,Kk) ≥ ‖A‖ =

(
m

k − 1

)
+ . . .+

(
m

0

)
,

thereby proving the other direction of the inequality.

First, we make the following remark:

Remark 3.3 [1] If F and G are configurations so that F ≺ G, then forb(m,F ) ≤
forb(m,G).

Proof: If F ≺ G, then having A ∈ Avoid(m,F ) gives that A ∈ Avoid(m,G), and we
obtain that Avoid(m,F ) ⊆ Avoid(m,G). Hence, it follows that

forb(m,F ) = max{||A|| : A ∈ Avoid(m,F )} ≤ max{||A|| : A ∈ Avoid(m,G)} = forb(m,G)

yielding the desired inequality.

Now we state the following definition and theorems and show how to use the argu-
ment of standard induction to prove Theorem 2.6.

13



Definition 3.4 Denote by F7 the following matrix:

F7 =


1 1 0 1 1 0
1 0 1 1 1 1
0 1 0 1 0 1
0 0 1 0 0 1
0 0 0 0 1 0

 . (3)

First, we fix a notation.

Definition 3.5 For i ∈ {1, 2, 3, 4, 5}, let Hi denote the simple matrix attained by delet-
ing row i of F7 and removing any repeated columns.

By Lemma 3.1, if A ∈ Avoid(m,F7) then Cr ∈ Avoid(m, {H1, H2, H3, H4, H5}.
First, let’s look at H1. Deleting row 1 of F7, yields the following matrix:

H ′1 =


1 0 1 1 1 1
0 1 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 0

 .
Observe that H ′1 has no repeating columns, and hence C1 has no columns. So in fact
[B1C1D1] = H ′1 = H1.

Deleting row 2 in F7 yields:

H ′2 =


1 1 0 1 1 0
0 1 0 1 0 1
0 0 1 0 0 1
0 0 0 0 1 0

 .
We note that the column

[
1 1 0 0

]T
, appears twice and hence, C2 =

[
1 1 0 0

]T
.

So we conclude that H2 is the 4-rowed matrix with only one copy of the repeating
column from H ′2, namely C2:

H2 = [B2C2D2] =


1 0 1 1 0
0 0 1 0 1
0 1 0 0 1
0 0 0 1 0

 .

Next, we determine what H3 is. Removing the 3rd row from F7 yields H ′3 which has
two columns which repeat twice:

H ′3 =


1 1 0 1 1 0
1 0 1 1 1 1
0 0 1 0 0 1
0 0 0 0 1 0

 .
14



We notice that the columns
[
1 1 0 0

]T
and

[
0 1 1 0

]T
repeat twice and therefore,

by our standard decomposition method described above,

C3 =


1 0
1 1
0 1
0 0

 .
H3 is therefore the matrix attained by removing the third row of F7 and C3, namely:

H3 =


1 1 0 1
0 1 1 1
0 0 1 0
0 0 0 1

 .
Note that Hc

3 is the same configuration as H3. Determining H4 and H5 requires the
same procedure, and hence have just been stated below:

H4 =


0 1 1 0 1 1
1 1 0 1 1 1
0 0 1 1 1 0
0 0 0 0 0 1

 , H5 =


1 1 0 1 0
1 0 1 1 1
0 1 0 1 1
0 0 1 0 1

 [6].

We make a further few remarks which will aid in proving forb(m,F7) is O(m).

Remark 3.6 For any configuration F , forb(m,F ) = forb(m,F c).

Remark 3.7 We note that Hc
3 = H3, H4 = Hc

1 and H5 = Hc
2.[6]

In fact, we observe that if we permute the second row with the first row in H1 to obtain

H1 =


0 1 1 0 0 1
1 0 1 1 1 1
0 0 0 1 0 1
0 0 0 0 1 0

 .
Then we notice columns 2, 3, 4 and 5 give us precisely H3. So in fact H3 ≺ H1. Hence,
if A ∈ Avoid(m,H3), then A ∈ Avoid(m,H1). Next, we observe that columns 2, 3, 4,
and 6 of H4 form H3. Therefore, H3 ≺ H4 and so, Avoid(m,H3) ⊂ Avoid(m,H4). From
these remarks we can conclude the following:

forb(m, {H1, H2, H3, H4, H5}) ≤ forb(m, {H2, H3, H5}).

This is the reduction of F that we referred to in Remark 3.1.
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Theorem 3.8 [6] forb(m, {H2, H3, H5}) ≤ 7m.

The proof is rather involved and tricky. We shall still use this result to show

forb(m,F7) ≤ 7m2.

Proof: [Theorem 2.6]
Suppose that A ∈ Avoid(m,F7) with ‖A‖ = forb(m,F7), and find a row r to perform
standard induction, and find [BrCrDr and Cr, which are (m− 1)-simple matrices [6]:

‖A‖ = ‖[BrCrDr]‖+ ‖Cr‖
≤ forb(m− 1, F7) + forb(m− 1, {H1, H2, H3, H4, H5})
≤ 7(m− 1)2 + forb(m− 1, {H2, H3, H5})
≤ 7(m− 1)2 + 7(m− 1)

≤ 7m2.

4 Repeated Induction

Repeated induction is a special case of standard induction for forbidden configuration.
We began in section 3 with a simple m-rowed matrix, performed the standard decompo-
sition and observed certain properties of the inductive children. In the case of repeated
induction however, the forbidden configurations of the inductive children retain some
property related to the original family of forbidden configurations, or in other words,
the parent.

For example, consider the case where A ∈ Avoid(m,Kk), and assume that ‖A‖ =
forb(m,Kk). After performing the standard decomposition on A, we obtain

A =
r1 →

[
0 · · · 0 1 · · · 1
Br1 Cr1 Cr1 Dr1

]
,

where [Br1Cr1Dr1 ] is a simple (m−1)-rowed matrix which avoidsKk; that is, [Br1Cr1Dr1 ] ∈
Avoid(m − 1, Kk), while Cr1 is a simple (m − 1)-owed matrix which avoids Kk−1: ie.
Cr1 ∈ Avoid(m− 1, Kk−1). The justification for the latter is that if Kk−1 ≺ Cr1 , then it
follows that

Kk =

[
0 · · · 0 1 · · · 1

Kk−1 Kk−1

]
≺
[
0 · · · 0 1 · · · 1

Cr1 Cr1

]
≺ A,

contradicting our initial hypothesis that A ∈ Avoid(m,Kk). Thus Kk−1 6≺ Cr1 . We
observe that Cr1 , an inductive child of A, retains a very similar property to that of A,
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namely that if A ∈ Avoid(m,Kk), then Cr1 ∈ Avoid(m − 1, Kk−1). Inductively, if we
find a row r2 of Cr1 and perform standard decomposition, we obtain

Cr1 =
r2 →

[
0 · · · 0 1 · · · 1
B′r2 C ′r2 C ′r2 D′r2

]
,

where C ′r2 ∈ Avoid(m− 2, Kk−2) [5]. This procedure can be repeated.

To summarize, we observe that A, avoided Kk as a configuration and after per-
forming the standard decomposition, the inductive child Cr1 necessarily avoided Kk−1.
Consequently, performing standard decomposition on Cr1 , we find C ′r2 where C ′r2 ∈
Avoid(m−2, Kk−2); notice that Kk−2 is the complete (0, 1)-matrix on k−2 rows. Repeat-

ing this procedure, for 1 ≤ t ≤ k, we can find C
(t−1)
rt so that C

(t−1)
rt ∈ Avoid(m−t,Kk−t).

Repeated induction is characterized by invoking this fact that the inductive children have
properties very similar to forbidden configurations of the parent.

We now provide examples of where such an induction proves to be of terrific use,
where the inductive children preserve some sort of property of the parent. Let us begin
by proving useful lemmas which use repeated induction.

Lemma 4.1 (Anstee and Meehan [5]) For m ≥ 3,

forb(m,F2) = forb(m,K2) = m+ 1

where F2 = {[K2|12], [K2|02], [K2|1101]}.

Proof: We first make remark that for m = 2, our claim does not hold. By the Sauer
bound,

forb(2, K2) =

(
2

1

)
+

(
2

0

)
= 2 + 1 = 3.

We note that K2 is a simple, 2-rowed matrix which avoids every F ∈ F2 and hence,
forb(2,F2) ≥ 4. Therefore, for m = 2, we have a strict inequality:

forb(2,F2) > forb(2, K2).

Next we make the following observation: since for all F ∈ F2, K2 ≺ F , we have that
if A ∈ Avoid(m,K2), then A ∈ Avoid(m,F2), and hence forb(m,K2) ≤ forb(m,F2).
Now, assume for contradiction, that we have strict inequality; that is, forb(m,K2) <
forb(m,F2). Let G ∈ Avoid(m,F2) and without loss of generality, assume that ‖G‖ =
forb(m,F2). By our assumption, ‖G‖ > m+ 1 and since m ≥ 3, we have that ‖G‖ ≥ 5.
Now, we observe that K2 ≺ G; otherwise, we have that G is a simple m-rowed matrix
that avoids the configuration K2 and hence ‖G‖ = forb(m,K2), a contradiction to our
initial assumption. So indeed K2 ≺ G and on some pair of rows {i, j}, we have that
K2 ≺ G|{i,j}. Moreover, we observe that ‖G|{i,j}‖ = ‖G‖ and so we have a column of
G|{i,j}, in addition to the four columns of K2. This column can only be one of 12,02 or
1101 and so G 6∈ Avoid(m,F2), a contradiction to our initial hypothesis. So we conclude
that indeed forb(m,Kk) = forb(m,F2) when m ≥ 3.
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Lemma 4.2 [5] For m ≥ 4,

forb(m,F3) = forb(m,K3)

where F3 = {[K3|1201], [K3|1102]}.

Proof: By the Sauer bound, we can conclude that forb(3, K3) = 7. But we note that
K3 is a 3-rowed matrix which avoids every F ∈ F3, and hence forb(3,F3) ≥ 8. So we
deduce that our lemma does not hold for m = 3.

In general, we note that forb(m,F3) ≥ forb(m,K3). We use induction on m to prove
that forb(m,F3) ≤ forb(m,K3). First consider the base case when m = 4. Note that
since K3 ≺ F for every F ∈ F3, it follows that forb(4, K3) ≤ forb(4,F3). Now for
contradiction, assume strict inequality: forb(4, K3) < forb(4,F3). Let G ∈ Avoid(4,F3)
and ‖G‖ = forb(4,F3). As before, we must have that K3 ≺ G and G has at least
forb(4, K3) + 1 = 12 columns; therefore, on some triple of rows G contains the config-
uration K3 and since there are at least 12 columns, we have at least 4 columns in this
triple of rows in addition to the 8 columns of K3. Now we remark that if G is to avoid
all F ∈ F3, then only 13 and 03 can be placed in the remaining columns of the triple of
rows which contain K3. Since there are at least 4 remaining columns, at least one of 13

or 03 must appear at least twice in the 4 remaining columns; but observe that both 13

and 03 appear once in K3 and hence, at least one of 13 or 03 will appear at least three
times in the triple of rows containing K3. But this will be impossible if G is simple.
Given this contradiction, we conclude forb(4, K3) = forb(4,F3).

Now we assume the inductive hypothesis; that is for all 4 ≤ k ≤ m−1, we have that

forb(k,K3) = forb(k,F3).

Let A ∈ Avoid(m,F3) with ‖A‖ = forb(m,F3). Then K3 ≺ A. We find a row r and
perform the standard decomposition to obtain [BrCrDr] and Cr, where the former is
an (m − 1)-rowed simple matrix which avoids F3 and the latter is a simple (m − 1)-
rowed matrix avoiding F2, since F2 is the family of inductive children of F3. This
argument follows from our explanation of the repeated induction above, where we saw
that the inductive children retain some special property of the parent. Now by inductive
hypothesis, we have that

‖[BrCrDr]‖ ≤ forb(m− 1,F3) = forb(m− 1, K3).

From the above lemma, we have that

‖Cr‖ ≤ forb(m− 1,F2) = forb(m− 1, K2).

Putting these inequalities together, we obtain the desired bound:

forb(m,F3) = ‖A‖ = ‖[BrCrDr]‖+‖Cr‖ ≤ forb(m−1, K3)+forb(m−1, K2) = forb(m,K3).

We already have that forb(m,F3) ≥ forb(m,K3) and so we have the conclusion.
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Theorem 4.3 [5] Let k ≥ 4, and 2 ≤ p ≤ k − 2. Then, for m ≥ k + 1, we have that

forb(m, [Kk|1p0k−p]) = forb(m,Kk).

Proof: We induct on both k and m. First, consider the base case when k = 4 and
m = 5. Then p = 2 and so we have to show that

forb(5, [K4|1202]) = forb(5, K4).

We note that since K4 ≺ [K4|1202]), forb(5, K4) ≤ forb(5, [K4|1202]). Assume strict
inequality for the sake of contradiction; that is:

forb(5, K4) < forb(5, [K4|1202]).

Let A ∈ Avoid(5, [K4|1202]) and ‖A‖ = forb(5, [K4|1202]). Then ‖A‖ > 26 and hence,
on a quadruple of rows S4 of A, we have 16 columns, containingK4 as a configuration and
we still have at least 11 columns on this quadruple of rows which need to be decided. It
is clear that no permutation of 1202 can be placed in any of these remaining rows, since
any row and column permutation would yield [K4|1202]. So the only (0, 1)-columns of
length four which can be placed in the remaining columns of the quadruple of rows are
either 14 and 04, as well as any permutation of 1301 and 1103. We observe that there
are 8 ways of choosing a permutation of 1301 and 1103 which gives a total of 10 possible
distinct columns on rows of S4. We note that since A is simple and already has K4,
we cannot have any of these columns appear three times or more on the quadruple of
rows. But this yields a contradiction since we have at least 11 columns to populate with
distinct (0, 1)-columns, and there are only 10 possible choices. So we have that

forb(5, K4) = forb(5, [K4|1202]).

Next, assume that for all 5 ≤ n ≤ m − 1 and k = 4, we have that forb(n,K4) =
forb(n, [K4|1202]). Let ‖A‖ = forb(m, [K4|1202]). Next, we find a row r and perform
the standard decomposition on A and obtain (m − 1)-rowed [BrCrDr] which avoids
[K4|1202], and (m − 1)-rowed Cr, which avoids [K3|1201] and [K3|1102]. We provide a
justification for this claim as follows. If [K3|1201] ≺ Cr, then we have that

[K4|1202] ≺
[
0 · · · 0 1 · · · 1

[K3|1201] [K3|1201]

]
≺
[
0 · · · 0 1 · · · 1

Cr Cr

]
≺ A,

contradicting our initial hypothesis. A similar argument holds for [K3|1102] and thus,
Cr ∈ Avoid(m, {[K3|1201], [K3|1102]}). We notice how the inductive child Cr of A
preserved a property very similar to that of A after the standard decomposition was
employed. Now since Cr ∈ Avoid(m, {[K3|1201], [K3|1102]}), we have by the above
lemma that

‖Cr‖ ≤ forb(m− 1, {[K3|1201], [K3|1102]}) =

(
m− 1

2

)
+

(
m− 1

1

)
+

(
m− 1

0

)
.

19



Moreover, by inductive hypothesis, it follows that

‖[BrCrDr]‖ ≤ forb(m− 1, [K4|1202]) = forb(m− 1, K4)

=

(
m− 1

3

)
+

(
m− 1

2

)
+

(
m− 1

1

)
+

(
m− 1

0

)
.

Last, we conclude that

‖A‖ = ‖[BrCrDr]‖+ ‖Cr‖

≤
(
m− 1

3

)
+

(
m− 1

2

)
+

(
m− 1

1

)
+

(
m− 1

0

)
+(

m− 1

2

)
+

(
m− 1

1

)
+

(
m− 1

0

)
=

(
m

3

)
+

(
m

2

)
+

(
m

1

)
+

(
m

0

)
= forb(m,K4)

where the second last equality follows by Pascal’s identity.

Next, we let m = k + 1 and prove that forb(k + 1, [Kk|1p0k−p]) = forb(k + 1, Kk).
First, we remark that

forb(k + 1, Kk) =

(
k + 1

k − 1

)
+ . . .+

(
k + 1

0

)
= 2k+1 − (k + 1)− 1,

where the last equality comes from the combinatorial fact that 2k+1 =
∑k+1

i=0

(
k+1
i

)
. Now

we assume for contradiction that forb(k + 1, [Kk|1p0k−p]) > forb(k + 1, Kk). Then, on
some k – tuple of rows of the k+ 1 rows, we have that there is a configuration Kk. This
means that 2k of the columns are determined but it still leaves us

2k+1 − (k + 1)− 1− 2k = 2k − (k + 1)

columns to determine. Now we want to avoid [Kk|1p0k−p] and hence none of the re-
maining columns can be any permutation of 1p0k−p. There are exactly

(
k
p

)
distinct

permutations of 1p0k−p and hence, we have 2k −
(
k
p

)
distinct columns to place on the k

tuple of rows containing Kk. But we observe that since k > 2, then k + 1 <
(
k
p

)
and

therefore, 2k −
(
k
p

)
< 2k − (k + 1); so in fact we must have a column appearing three

times in the k tuple of rows containing Kk, violating the simplicity assumption.

Last, we take m > k + 1 > 5 and k > 4, and show that forb(m, [Kk|1p0k−p]) =
forb(m,Kk). Without loss of generality, we may assume the inequality
forb(m, [Kk|1p0k−p]) ≥ forb(m,Kk) is clear since Kk ≺ [Kk|1p0k−p]. Assume next that
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A ∈ Avoid(m, [Kk|1p0k−p]) with ‖A‖ = forb(m, [Kk|1p0k−p]), and take for contradiction,
that forb(m,Kk) < forb(m, [Kk|1p0k−p]). Find a row r and perform standard decompo-
sition on the matrix A to obtain (m−1)-rowed simple matrices [BrCrDr] and Cr. Since
[BrCrDr] ∈ Avoid(m− 1, [Kk|1p0k−p]) by the inductive hypothesis, we conclude that

‖[BrCrDr]‖ ≤
(
m− 1

k − 1

)
+ . . .+

(
m− 1

0

)
.

Also Cr ∈ Avoid(m− 1, [Kk−1|1p−10k − p] and so by induction on k we have that

‖Cr‖ ≤
(
m− 1

k − 2

)
+ · · ·

(
m− 1

0

)
.

Now ‖A‖ = ‖[BrCrDr]‖+‖Cr‖ and so by Theorem 3.2, we have that ‖A‖ ≤ forb(m,Kk).

Above, we observed the power of repeated induction, and invoking the inductive
hypothesis when the inductive children preserve some property similar to that of the
parent. We provide another example in the study of forbidden configuration, where
repeated induction makes an appearance. We begin with some notation.

Definition 4.4 We fix the following notation for the next example:

E1 =

[
0
0

]
, E2 =

[
1
1

]
, E3 =

[
1 0
0 1

]
.

The theorem that we would like to prove, with the help of repeated induction is the
following:

Theorem 4.5 (Anstee and Fleming [2]) Let F be a k-rowed matrix which has the
following property:

1. there exist rows i1 and j1 so that E1 6≺ F |{i1,j1}.

2. there exist rows i2 and j2 so that E2 6≺ F |{i2,j2}.

3. there exist rows i3 and j3 so that E3 6≺ F |{i3,j3}.

Then, it follows that forb(m,F ) = O(mk−2). If, on the contrary, there exists a k ∈
{1, 2, 3} for which Ek ≺ F |{i,j} for every pair of rows i and j, then we have that
forb(m,F ) = Θ(mk−1).

In proving the above theorem, we require the result of the following lemma, which will
use repeated induction; that is, we will observe that in invoking the inductive hypothesis,
we will make use of the fact that the inductive children have a specific property related
to that of the parent.
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Lemma 4.6 [2] Let k ≥ 2 be given and let F1, F2, and F3 be k-rowed simple matrices,
which are not necessarily distinct, such that

1. there exist rows i1 and j1 so that all the columns of F1|{i1,j1} are configurations of[
1 0 1
0 1 1

]
2. there exist rows i2 and j2 so that all the columns of F2|{i2,j2} are configurations of[

0 1 0
1 0 0

]
3. there exist rows i3 and j3 so that all the columns of F3|{i3,j3} are configurations of[

0 1 1
0 0 1

]
.

Noting that the Fi need not to be distinct, if A is a simple m-rowed matrix with the
property that Fi 6≺ A for any i ∈ {1, 2, 3}, then it follows that

‖A‖ ≤ 2

[(
m

k − 2

)
+ . . .+

(
m

0

)]
.

Proof: We prove the lemma by inducting on m and k. For the first base case, let k = 2.
By assumption, each Fi is 2-rowed and moreover, since Ei 6≺ Fi for any i ∈ {1, 2, 3}. If

we want to avoid

[
0
0

]
in F1 and F1 is 2-rowed, the columns of F1 can be

[
0
1

]
,

[
1
0

]
, or[

1
1

]
; moreover, since F1 is simple, the maximal 2-rowed simple matrix avoiding E1 is

F1 =

[
0 1 1
1 0 1

]
.

Using a symmetric argument, we can, without loss of any generality, assume that

F2 =

[
0 1 0
1 0 0

]
.

Last, to avoid the 2× 2 identity matrix in F3, we can have the columns of F3 consisting

of

[
0
0

]
,

[
1
1

]
and exactly one of

[
0
1

]
or

[
1
0

]
, but not both; hence, the maximal 2-rowed

simple matrix avoiding

[
1 0
0 1

]
is

F3 =

[
0 1 1
0 0 1

]
.

Now, we consider the base case m = 2, when k = 2. We want to show that if A ∈
Avoid(m, {F1, F2, F3}) and ‖A‖ = forb(m, {F1, F2, F3}), then ‖A‖ ≤ 2. Since A is a
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simple 2-rowed (0, 1)-matrix and it avoids F1, F2 and F3, we can have that the distinct

columns of A can be at most two of

[
1
0

]
,

[
0
1

]
,

[
0
0

]
and

[
1
1

]
, and so we have our conclusion

that ‖A‖ ≤ 2 = 2
(
2
0

)
. Assume that, when k = 2, for all 2 ≤ n ≤ m− 1, we have that

forb(n, {F1, F2, F3}) ≤ 2

[(
n

0

)]
= 2

Now assume that A ∈ Avoid(m, {F1, F2, F3}) with ‖A‖ = forb(m, {F1, F2, F3}). We first
eliminate a few simple cases. If A has a row of 0’s, after row permutations, we have the
following decomposition:

A =

[
0 . . . 0

A′

]
where A′ is an (m− 1)-rowed simple matrix and hence by our inductive hypothesis, we
conclude that

‖A‖ = ‖A′‖ ≤ 2

[(
m− 1

0

)]
= 2

[(
m

0

)]
= 2.

By a symmetrical argument, if we have a row of 1’s, we have that ‖A‖ ≤ 2. Now assume
that there exist rows i and j of A so that one row is the (0, 1)-complement of the other.
Permute the rows and columns of A to obtain the following decomposition: 0 . . . 0 1 . . . 1

1 . . . 1 0 . . . 0
A′

 .
Noting that ‖A‖ = ‖A′‖, we remark that[

1 . . . 1 0 . . . 0
A′

]
is (m− 1)-rowed and simple. We justify why indeed it is simple; suppose we have that
a column in the above (m − 1)-rowed matrix repeats. Then it must be of the form[

1 1
α α

]
or

[
0 0
α α

]
and indeed we have that either

0 0
1 1
α α

 or

1 1
0 0
α α

 are columns of

A, violating the simplicity of A. Therefore,[
1 . . . 1 0 . . . 0

A′

]
is indeed simple. Now, applying our inductive hypothesis, we obtain that

‖A‖ = ‖A′‖ ≤ 2

(
m− 1

0

)
= 2.
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Assume now that the rows of A have none of the above three properties, namely no rows
of 0’s, no rows of 1’s, and no two complementary rows. For any pair of rows i and j, we

observe that to avoid Fi for i ∈ {1, 2, 3} in A, we can have at most two of

[
1
0

]
,

[
0
1

]
,

[
0
0

]
and

[
1
1

]
occur in A|{i,j}. But for any choice of two columns, one of the three eliminated

cases arise. For example, if we have that the columns of A|{i,j} consist of

[
0
0

]
and

[
1
1

]
, then we have either a row of 0’s or row of 1’s to delete. If we have that the columns

of A|{i, j} consist of

[
1
0

]
and

[
0
1

]
, then we have that the rows are (0, 1)-complements of

each other and hence, we can delete one of the two rows to obtain one of the eliminated
cases. This contradicts our hypothesis that A did not have the property observe in the
eliminated cases. So, we conclude that ‖A‖ ≤ 2

(
m
0

)
= 2. We remark for the reader that

we have yet to employ repeated induction, which shall be used in the case of a general
k > 2.

Now we assume that k > 2, where F1, F2 and F3 are k-rowed simple matrices,
avoiding E1, E2 and E3 respectively. If m < k, then we remark that A will have fewer
rows than F1, F2 and F3 and hence can never have those as a configuration. So we
assume k ≤ m. Let A ∈ Avoid(m, {F1, F2, F3}), with ‖A‖ = forb(m, {F1, F2, F3}). Find
a row r, permute the rows and columns of A and perform the standard decomposition
as described before:

A =
r →

[
0 · · · 0 1 · · · 1
Br Cr Cr Dr

]
,

where [BrCrDr] and Cr are simple, (m− 1)-rowed matrices. Note that [BrCrDr] avoids
{F1, F2, F3}, and therefore,

‖[BrCrDr]‖ ≤ 2

[(
m− 1

k − 2

)
+ . . .+

(
m− 1

0

)]
.

Now, for each n ∈ {1, 2, 3}, we select a row from [k]r{in, jn}, denoting it tn, and letting
F ′n = Fn|[k]rtn . Then we observe that En 6≺ F ′n for all n ∈ {1, 2, 3}; indeed, we see that
the inductive child Cr of A has a property similar to that of A, which is that it avoids
structures which contain E1, E2 and E3 as configurations. So Cr is an (m − 1)-rowed
simple matrix, avoiding the (k − 1)-rowed {F ′i}3i=1. By our inductive hypothesis, we
have that

‖Cr‖ ≤ 2

[(
m− 1

k − 3

)
+ . . .+

(
m− 1

0

)]
.

Noting that ‖A‖ = ‖[BrCrDr]‖+ ‖Cr‖ and using the above results, along with Pascal’s
identity, we obtain the desired:

‖A‖ ≤ 2

[(
m− 1

k − 2

)
+ . . .+

(
m− 1

0

)]
.
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Now we prove the main theorem.
Proof: [Theorem 4.5, Anstee and Fleming]. Let F be such that:

1. there exist rows i1 and j1 so that E1 6≺ F |{i1,j1}

2. there exist rows i2 and j2 so that E2 6≺ F |{i2,j2}

3. there exist rows i3 and j3 so that E3 6≺ F |{i3,j3},

Here we note that F has the properties described in the hypothesis of Lemma 4.6 that
we have just proven, where F = F1 = F2 = F3. Hence, if A ∈ Avoid(m,F ) such
that ‖A‖ = forb(m,F ), then ‖A‖ = O(mk−1). What remains to be shown is that
‖A‖ = Ω(mk−1).

Now assume that there exists n ∈ {1, 2, 3} for which En ≺ F |{i, j} for all {i, j}.
We need to find a construction with Ω(mk−1) columns avoiding F . First, we note the
following. E1 is not contained in the identity complement, Ic, since no column of Ic

has two rows contained 0’s. Likewise, E2 6≺ I since no column of I has two rows with

1’s. Last, E3 6≺ T , where T is any upper triangular (0, 1)-matrix; if

[
a b
c d

]
≺ T where

a = d = 1 and c = 0, then necessarily we have that b = 1. Now suppose that for
some n ∈ {1, 2, 3}, we have that En ≺ F |{i,j}, for every pair of rows i and j, and let
Gn ∈ {I, Ic, T} such that En 6≺ Gn. In fact, without loss of generality, we can take
G1
` = Ic` , G

2
` = I` and G3

` = T`. We want to construct a matrix that is m-rowed and
c ·mk−1-columned, for some c > 0, not containing F as a configuration.

Recall that b m
k−1c is the number of copies of k − 1 in m, and we let

r = m−(k−1)·b m
k−1c. The notation Gn

` represents the `×` identity, identity complement
or upper triangular matrix, depending on what Gn

` is. Now let

H = Gn
b m
k−1
c × · · · ×Gn

b m
k−1
c︸ ︷︷ ︸

(k−2)

×Gn
r

which is a (k − 1)-fold product with m rows. We note that if F ≺ H, then on some
pair of rows i and j of H, we have to have that En ≺ H|{i,j}, leading to a contradiction.
This is because H is constructed as (k − 1)-fold product of Gn, and hence at least 2
of the k rows containing F must come from one of the product terms, which does not
contain En as a configuration. So, we have constructed the matrix H with m rows and
Ω(mk−1) columns which does not contain F as a configuration. Now we can conclude
that if F has the properties:

1. there exist rows i1 and j1 so that E1 6≺ F |{i1,j1}

2. there exist rows i2 and j2 so that E2 6≺ F |{i2,j2}
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3. there exist rows i3 and j3 so that E3 6≺ F |{i3,j3},

then forb(m,F ) = Θ(mk−1).

Next, we generalize the above theorem, but first we state a few definitions and a
result proven by Balogh and Bollobás.

Definition 4.7 For k ≥ 2, define

E1(k) = [1k|Ick],
E2(k) = [0k|Ik],
E3(k) = [0k|Tk]

Theorem 4.8 (Balogh-Bollobás [7]) For k ≥ 2, forb(m, {E1(k), E2(k), E3(k)}) =
ck, for some constant ck > 0; that is forb(m, {E1(k), E2(k), E3(k)}) is O(1).

With the aid of the Balogh-Bollobás result above, we prove a generalization of The-
orem 4.5.

Theorem 4.9 [2] Let k ≥ 2 and p ≥ k be given. Suppose that F1, F2 and F3 are simple
p-rowed matrices with the following property:

1. there exist k rows S1 ⊆ [p] so that all the columns of F1|S1 are contained in E1(k)

2. there exist k rows S2 ⊆ [p] so that all the columns of F2|S2 are contained in E2(k)

3. there exist k rows S3 ⊆ [p] so that all the columns of F3|S3 are contained in E3(k)

Then forb(m, {F1, F2, F3}) = O(mp−k).

Proof: We prove this by inducting on p and m, and use the Balogh-Bollobás result
from above. Suppose first for our base case, that p = k. Without loss of generality,
we may take F1 = E1(k), F2 = E2(k), and F3 = E3(k). Why can we do that? Fix an
i ∈ {1, 2, 3}. Next, we observe that since p = k, any k sized subset Si of [k] is indeed
[k] and if we assume the hypothesis, then all the columns of Fi|Si

= Fi are contained as
columns in Ei(k). Since the maximal k-rowed simple Fi with distinct columns contained
in Ei(k) is indeed Ei(k), we assume that Fi(k) = Ei(k). Then, by the Balogh-Bollobás
result above, we conclude that

forb(m, {F1, F2, F3}) = O(mk−k) = O(1).

Now we assume inductive hypothesis for p > k and m > n ≥ p: if F1, F2 and F3 are
simple p-rowed matrices so that they satisfy the hypothesis in the theorem, then

forb(n, {F1, F2, F3}) ≤ ck(n
p−k)
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for some ck > 0. Assume thatA ∈ Avoid(m, {F1, F2, F3}) so that ‖A‖ = forb(m, {F1, F2, F3}).
Find a row r and perform the standard decomposition on A and obtain the following:

A =
r →

[
0 · · · 0 1 · · · 1
BA
r CA

r CA
r DA

r

]
,

where [BA
r C

A
r D

A
r ] is a simple (m − 1)-rowed matrix avoiding F1, F2 and F3. What

requires more work is to determine what the (m − 1)-rowed simple matrix CA
r avoids,

since it avoids more than F1, F2 and F3. Fix an i ∈ {1, 2, 3} and fix a row ti ∈ [p]r Si.
We perform the standard decomposition on Fi choosing row ti as the row to remove and
obtain:

Fi =
ti →

[
0 · · · 0 1 · · · 1

BFi
ti CFi

ti CFi
ti DFi

ti

]
.

Let F ′ti = [BFi
ti C

Fi
ti D

Fi
ti ]. Then by standard induction, we have that CA

r ∈ Avoid(m−1, F ′i )
for all i ∈ {1, 2, 3}. Now we appeal to the inductive hypothesis in the case of [BA

r C
A
r D

A
r ]

and CA
r . First, note that ‖A‖ = ‖[BA

r C
A
r D

A
r ]‖+ ‖CA

r ‖. Second, we remark that by the
Balogh-Bollobás result, forb(m, {E1(p), E2(p), F3(p)}) ≤ cp, for some constant cp > 0.
Next, note that since F1, F2 and F3 are simple p-rowed matrices, there are 2p distinct
columns and hence, forb(p, {F1, F2, F3}) ≤ 2p. We let Cp = max{cp, 2p}. Then, by the
inductive hypothesis on (m− 1), we obtain that

‖[BA
r C

A
r D

A
r ]‖ ≤ forb(m− 1, {F1, F2, F3}) ≤ Cp(m− 1)p−k.

Last, we use inductive hypothesis on the (m − 1)-rowed simple matrix CA
r and the

(p−1)-rowed simple matrices F ′1, F
′
2 and F ′3. We notice that for each i ∈ {1, 2, 3}, ti was

chosen from rows not contained in Si and therefore, F ′i are simple (p−1)-rowed matrices
which satisfy the hypotheses in the theorem; that is, F ′i |Si

has all the columns contained
as columns in Ei(k). Invoking our inductive hypothesis, we can find a constant C ′p−1 so
that

‖CA
r ‖ ≤ forb(m− 1, {F ′1, F ′2, F ′3}) ≤ C ′p−1(m− 1)p−1−k.

Putting it with our above remark, we conclude that:

‖A‖ = ‖[BA
r C

A
r D

A
r ]‖+ ‖CA

r ‖
≤ forb(m− 1, {F1, F2, F3}) + forb(m− 1, {F ′1, F ′2, F ′3})
≤ C ′p(m− 1)p−k + C ′p−1(m− 1)p−1−k

≤ C ′′pm
p−k

for some constant C ′′p > 0. We remark that the constant may be extremely large with
respect to p, but is independent of m. So we have shown that

forb(m, {F1, F2, F3}) = O(mp−k).

Observe that in the above proof, the inductive child CA
r of A avoided structures very
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similar to the structures avoided by A; as a result, we were able to invoke the power
of repeated induction and conclude our theorem. We state a corollary of the above
theorem, where the proof is essentially the same.

Corollary 4.10 [2] Let k ≥ 2 and p ≥ k be given. Suppose that F is a simple, p-rowed
matrix with the following property: there exist k-sized subsets S1, S2 and S3 so that every
i ∈ {1, 2, 3}, every column of F |Si

is contained as a column of Ei(k). Then

forb(m,F ) = O(mp−k).

Proof: The proof of the theorem comes as a direct consequence of the above theorem.
In particular, we note that in the previous theorem, there were no assumptions made
about the distinctness of the simple p-rowed matrices, F1, F2, and F3 and therefore, by
assuming that F = F1 = F2 = F3, we obtain the result quite easily.

An additional part of the theorem that we have not mentioned is the following fact:
If the k – sized sets S1, S2, and S3 have the following property:

1. S1 ∩ S2 = ∅

2. S1 ∩ S3 ⊆ minS3

3. S2 ∩ S3 ⊆ maxS3

where maxS3 is the largest element of S3, then F has the property of being a boundary
case. In particular, if α is a p-rowed column such that α is not a column in F , then

forb(m, [F |α]) = Ω(mp−k+1).

We will not provide the proof of this part of the theorem, as it involves constructions
and does not provide insight into the use of repeated induction. The proof can be found
in [2].

5 Multiplicity Induction

The previous three sections have been describing inductive methods to use when one
is attempting to prove results about forbidding configurations in simple (0, 1)-matrices.
The natural progression is to investigate how the asymptotics change when forbidding
configurations in (0, 1)-matrices which are not simple. We begin the discussion of what
we call multiplicity induction, with a few definitions and remarks.

Definition 5.1 Let α be a column of a (0, 1)-matrix, A. We denote by µ(α,A), the
number of times α appears as a column in A. We call µ(α,A), the multiplicity of α in
A.
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Remark 5.2 We note that a matrix A is simple if µ(α,A) ≤ 1 for all (0, 1)-columns
α.

Definition 5.3 If A is a k × ` (0, 1)-matrix that is not necessarily simple, we define
supp(A) to be the k-rowed simple matrix consisting of all columns α of A, such that

µ(α, supp(A)) = 1⇔ µ(α,A) ≥ 1.

Remark 5.4 Observe that if A is a (0, 1)-matrix so that for every column α of A,
µ(α,A) ≤ t, then A ≺ t · supp(A) and so ‖A‖ ≤ t · ‖supp(A)‖.

Definition 5.5 Let A be a (0, 1)-matrix. We say that A is t-simple if for every column
α of A, we have that µ(α,A) ≤ t.

Definition 5.6 We denote with Avoid(m,F, t− 1) the following:

Avoid(m,F, t− 1) = {A : A is m-rowed (t− 1) simple , F 6≺ A};

as before, we define

forb(m,F, t− 1) = max{‖A‖ : A ∈ Avoid(m,F, t− 1)}.

Remark 5.7 [4] For any family of configurations F ,

forb(m,F) ≤ forb(m,F , s) ≤ s · forb(m,F).

We make some important remarks which will be very useful in some theorems that
we want to prove to show the usefulness of multiplicity induction.

Lemma 5.8 [4] Let A ∈ Avoid(m,F, t− 1), with ‖A‖ = forb(m,F, t− 1). Find a row
r, permute the columns and rows of A and obtain the following decomposition:

A =
r →

[
0 . . . 0 1 . . . 1

G H

]
.

Proof: By assumption, we note that A is (t− 1) – simple. Then µ(α,G) ≤ t− 1 and
µ(α,H) ≤ t− 1. We prove this lemma by contradiction. Assume there is some column
α of G with multiplicity greater than or equal to t. Hence, it follows that[

0 . . . 0
α . . . α

]
︸ ︷︷ ︸

≥t

≺
[
0 . . . 0

G

]
≺ A,

showing that µ(

[
0
α

]
, A) ≥ t, thereby contradicting the initial supposition that A is

(t− 1) – simple. Hence, for α columns of G, we have µ(α,G) ≤ t− 1. The exact same
argument is used to show that for all columns α of H, µ(α,H) ≤ t− 1.
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5.1 Standard Decomposition for Multiplicity Induction

Recall that in standard induction and repeated induction, we took a simple, m-rowed
(0, 1)-matrix A, which avoided some family of configurations F , performed standard de-
composition on it, and determined what the inductive children on (m− 1)-rows, [BCD]
and C, avoided. This allowed us to use simplicity of the inductive children as well as
the inductive hypothesis, to conclude results about the assumed matrix A.

Here, we give a similar method of decomposition a (t− 1)-simple matrix on m rows,
so that we can use the inductive hypothesis on the inductive children to conclude results
about the initial matrix.

Let A ∈ Avoid(m,F, t − 1) with ‖A‖ = forb(m,F, t − 1). Find a row r and obtain
the following decomposition:

A =
r →

[
0 . . . 0 1 . . . 1

G H

]
. (4)

Define
R = {α : µ(α, [GH]) ≥ t}

which is the collection of all columns α of [GH] which have a multiplicity greater than
or equal to t in [GH]. We form Cr, an (m− 1)-rowed matrix, that is (t− 1)-simple, in
the following way. Let Cr be formed by taking α ∈ R and so that

∀α ∈ R, µ(α,Cr) = min{µ(α,G), µ(α,H)}.

Then we obtain the following decomposition:

A =
r →

[
0 . . . 0 1 . . . 1
Br Cr Cr Dr

]
, (5)

where [BrCrDr] and Cr are (t − 1)-simple (m − 1)-rowed matrices. The following is a
justification as to why the former is (t− 1)-simple, as it is not very clear. We note that
for every α column of [BrCrDr],

µ(α, [BrCrDr]) = µ(α, [GH])− µ(α,Cr)

= µ(α,G) + µ(α,H)− µ(α,Cr)

= µ(α,G) + µ(α,H)−min{µ(α,G), µ(α,H)}
≤ max{µ(α,G), µ(α,H)}
≤ (t− 1)

where the last inequality comes from Lemma 5.8.
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Also,

µ(α,Cr) = min{µ(α,G), µ(α,H)} ≤ max{µ(α,G), µ(α,H)} ≤ (t− 1).

Next, we give an example to illustrate this method of standard decomposition. Take A
to be the following:

A =


0 0 0 0 0 1 1 1
1 1 0 0 1 1 1 1
1 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0

 .
We note that the above A is 3-simple, since for every column α of A, we have that
µ(α,A) ≤ 3. Also A is not 2-simple since the last column has multiplicity 3. Then using
(4) and r = 1, we obtain

G =


1 1 0 0 1
1 1 1 0 0
0 0 1 0 0
0 0 1 0 0

 , H =


1 1 1
0 0 0
0 0 0
0 0 0


and we remark that µ(

[
1 0 0 0

]T
, [GH]) = 4 > 3. Observing that for no other α

column of G or H, µ(α, [GH]) ≥ 4, we conclude that R = {
[
1 0 0 0

]T}. From the
above description of forming the inductive child C, we have that

µ(
[
1 0 0 0

]T
, C) = min{µ(

[
1 0 0 0

]T
, G), µ(

[
1 0 0 0

]T
, H)} = min{1, 3} = 1.

Then we have the following decomposition of A:

B =


1 1 0 0
1 1 1 0
0 0 1 0
0 0 1 0

 , C =


1
0
0
0

 , D =


1 1
0 0
0 0
0 0


with

A =

[
0 . . . 0 1 . . . 1
B1 C1 C1 D1

]
.

Last, we notice that [B1C1D1] is 3 – simple, as is C1.

We will use this standard decomposition for (t− 1)-simple matrices in lemmas and
theorems that follow, which will require the use of multiplicity induction. But first, we
need to state some facts that arise from this method of decomposing a matrix. [4]
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Suppose that A ∈ Avoid(m,F , t − 1), with ‖A‖ = forb(m,F , t − 1). Perform the
standard decomposition for (t−1)-simple matrices, as described above, and remark that

‖A‖ = ‖[BrCrDr]‖+ ‖Cr‖.

As in the section of standard decomposition, we have that [BrCrDr] ∈ Avoid(m −
1,F , t − 1). What remains to be determined is what Cr avoids. We first begin by
claiming that for any F ∈ F , supp(F ) 6≺ C. Notice that for every column α of Cr,
by construction, we have it so that µ(α, [GH]) ≥ t. If supp(F ) ≺ Cr, every column of
supp(F ) has multiplicity at least t in [GH] and hence,

F ≺ t · supp(F ) ≺ [GH] ≺ A

contradicting our hypothesis that A ∈ Avoid(m,F , t − 1). Therefore, we can conclude
that supp(F ) 6≺ Cr.

We remark next that for any configuration F ′ ≺ Cr, we would have
[
0 1

]
×F ′ ≺ A.

So we define the following and justify why Cr avoids this family:

G = {F ′ : ∃F ∈ F , F ≺
[
0 1

]
× F ′, F 6≺

[
0 1

]
× F ′′,∀F ′′ ≺ F ′, F ′′ 6= F ′}.

To describe in words, G consists of all configurations F ′ so that there exists some F ∈ F
which is a configuration of

[
0 1

]
× F ′ and F ′ is minimal such configuration; that is, if

F ′′ ≺ F ′ and F ≺
[
0 1

]
× F ′′, then it necessarily follows that F ′′ = F ′. By defining G

in such a way, we ensure that C is avoiding a minimal such family. Now, we conclude
that

Cr ∈ Avoid(m− 1, {supp(F ),G}, t− 1).

Finally, using the Remark 5.7, we conclude that:

‖A‖ = ‖[BrCrDr]‖+ ‖Cr‖
≤ forb(m,F , t− 1) + forb(m− 1, {supp(F ),G}, t− 1)

≤ forb(m,F , t− 1) + (t− 1) · forb(m− 1, {supp(F ),G})[4]

5.2 Examples of Multiplicity Induction

We want to illustrate the usefulness of multiplicity induction and how it has been used
to prove some significant results in the study of forbidden configurations.

Definition 5.9 Let e, f, g and h be non-negative integers. We define Fe,f,g,h as the
(e + f + g + h) × 2 matrix consisting of e rows of

[
1 1

]
, f rows of

[
1 0

]
, g rows of[

0 1
]

and h rows of
[
0 0

]
.
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Remark 5.10 We remark that

Fe,f,g,h = [1e+f0g+h|1e0f1g0h].

Recall that for a matrix F , we defined the following notation:

t · F = [F | . . . |F ]︸ ︷︷ ︸
t

.

We begin by stating a lemma and presenting a proof, which does not use multiplicity
induction but is presented because it is quite interesting and clever.

Lemma 5.11 [4] There exists a c > 0 such that forb(m, {F0,2,2,0, 2 · F0,1,2,0}) ≤ c ·m.

Proof: Let A ∈ Avoid(m, 2 · F0,2,2,0) and without loss of generality, let ‖A‖ =
forb(m, {F0,2,2,0, 2 · F0,1,2,0}). Note that A is simple by hypothesis, and hence, we dis-
regard the columns of A that are all 0’s and all 1’s. Let us consider the columns with
column sum k, where 1 ≤ k ≤ m − 1. Let Xi denote the submatrix formed by the
columns of A, which have column sum i. Fix i, and suppose that ‖Xi‖ ≥ 3. We will
argue that Xi has to be one of the following two types.

We begin by noting that Xi avoids F0,2,2,0, or otherwise, F0,2,2,0 ≺ Xi ≺ A and
we obtain a contradiction to our original hypothesis. Moreover, we note that by the
simplicity of A, as Xi is formed by a subset of columns of A, Xi is also simple. Let xi
be the number of columns of Xi. We denote by 1a×b, the a-rowed, b-columned matrix
of all 1’s. Likewise, by 0a×b, the a-rowed, b-columned matrix of all 0’s. Anstee and
Lu [4] have shown that after permutations of rows and columns, Xi has one of the two
following structures:

Xi =

 Ixi
1(i−1)×xi

0(m−xi−i+1)×xi

 or Xi =

 Icxi
1(i−xi+1)×xi
0(m−i−1)×xi

 .
We remark that in either case, every column of Xi has column sum i. In the first case,
which we shall call Type 1 as done by Anstee and Sali, each column has exactly one 1
contributed from Ixi and (i− 1) 1’s contributed from 1(i−xi+1)×1. In the second case, re-
ferred to as Type 2, Icxi contributes (i−1) 1’s while, 1(i−xi+1)×1 contributes (i−xi+1) 1’s.

Denote by Ai, the first xi rows in the above representations of Xi. Denote by Bi

and Ci, the rows of 1’s and 0’s in the above representations of Xi, respectively. We will
show some preliminary claims before proving the result.

We begin by claiming the following: if i < j, then we have that Bi ⊂ Bj. What does
this statement mean? It means that, assuming we have i < j, the rows of Xi that form
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Bi are necessarily contained in the rows that form Bj in Xj.

We show the above claim for Type 1 structures however, the argument works simi-
larly for Type 2 structures as well. First, define the following set:

T (1) = {i : Xi is of Type 1 and ‖Xi‖ ≥ 2}.

Let i, j ∈ T (1), and suppose for contradiction that there exists a row p ∈ Bi \Bj. Now
we know that |Bj| > |Bi|, and moreover, by our assumption, Bj \Bi has at least 2 rows,
and we justify it as follows. Every column of Xi has column sum i, which is strictly
less than the column sums of columns of Xj, which is j. Now if Bj = Bi, since i < j
and a row from Ixi contributes 1 to the column sum i, there are two rows from Ixj that

contribute 1 to the sum j. But this is a contradiction since

[
1
1

]
6≺ Ixj . So we must have

that Bj 6= Bi. Now suppose |Bj \ Bi| = 1. We observe that the row p contributes 1
to the column sum i but not to column sum j, and the row in Bj \ Bi contributes 1 to
column sum j but not column sum i. Then it follows that all the remaining columns
contribute either 0 to both column sums i and j, or contribute 1 to both column sums i
and j. This yields that i = j, contradicting our hypothesis that i < j. Then we conclude
that |Bj \ Bi| > 2. Let r, s ∈ Bj \ Bi. We claim that the rows p, r and s contain a
configuration that, by hypothesis, should be avoided by A. Consider the matrix [Xi|Xj],
formed by concatenating Xi and Xj. By hypothesis, since i, j ∈ T (1), ‖[Xi|Xj]‖ ≥ 4.
Since p ∈ Bi \ Bj, the row p of [Xi|Xj] has at least four 1’s; where there are 1’s in row
p, row r and s strictly contribute 0’s. Now, row r, s ∈ Bj \ Bi, so each contributes at
least four 1’s and here, row p strictly has 0’s. To demonstrate, we have the following
structure:

[Xi|Xj]|{p,r,s} =

1 . . . 1 0 . . . 0
0 . . . 0 1 . . . 1
0 . . . 0 1 . . . 1

 =

1 0 . . . 1 0
0 1 . . . 0 1
0 1 . . . 0 1


︸ ︷︷ ︸
≥2 copies of F0,2,1,0

.

We see that 2 · F0,2,1,0 ≺ [Xi|Xj] ≺ A, and so we have a contradiction. This leads us to
conclude that in fact, if i, j ∈ T (1) with i < j, then Bi ⊂ Bj.

Now, let us form a matrix, Y1 by concatenating all Xi, where i ∈ T (1). A simple
observation is that

‖Y ‖ =
∑
i∈T (1)

‖Xi‖ =
∑
i∈T (1)

xi =
∑
i∈T (1)

|Ai|.

For contradiction, assume that ‖Y ‖ =
∑

i∈T (1) |Ai| > 3m. Since Ai is the set of rows

of Xi which contain the identity matrix, if ‖Y ‖ > 3m, we have that in total we have
more than 4m 1’s in the matrix Y |{Ai}i∈T (1)

. In particular since each row and column in
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Ai has exactly one 1. Since Y ≺ A, Y has at most m rows and so, it follows that there
exists a row p and a size 4 set, say {ik1 , ik2 , ik3 , ik4} with so that ik1 < ik2 < ik3 < ik4
so that p ∈ Aikj for all j ∈ {1, 2, 3, 4}. We claim then that the configuration 2 · F0,1,2,0

occurs in Y , leading us to a contradiction. First, we note that |Bik4
\ Bik2

| ≥ 2 as
Bik1

⊂ Bik2
⊂ Bik4

, and so we can choose rows r, s ∈ Bik4
\ Bik2

. Let’s consider the
columns p, r, and s; notice that we can have a column from each of Aik1 and Aik2 , which
contain the lone 1, and it will have 0’s in the rows r and s. Moreover, since p 6∈ Bik4

\Bik2
,

it will have 0’s the columns where r and s have 1’s. So we have found four columns, a
column each from Aik1 and Aik2 which contain 1’s in row p and 0’s in rows r and s, and
columns from Xik4

which contain 1’s in rows r and s and 0’s in row p. This is precisely
the structure 2 ·F0,1,2,0. Since 2 ·F0,1,2,0 ≺ Y ≺ A, we get a contradiction to our original
hypothesis. We conclude that indeed ‖Y ‖ ≤ 3m.

Through a similar procedure, we would define T (2) = {i : i is of Type 1 and ‖Xi‖ ≥
2} and form a matrix Z by concatenating all Xi where i ∈ T (2). By the same argument
as above, we obtain that ‖Z‖ ≤ 3m.

Finally, we observe that

‖A‖ = forb(m, {F0,2,2,0, 2 · F0,1,2,0}) ≤ ‖Y ‖+ ‖Z‖+ 3(m− 1) + 2,

where the last term comes from a possible column of all 1’s and a possible column of all
0’s, while the second last term represents all i ∈ [m]\{0,m} such that i 6∈ T (1), i 6∈ T (2).
We observe then that

‖A‖ ≤ 3m+ 3m+ 3(m− 1) + 2 ≤ 9m,

proving our claim.

A very similar proof gives us the more general lemma below:

Lemma 5.12 forb(m, {F0,2,2,0, t · F0,1,2,0}) is O(m).

Now we prove the theorem that requires Lemma 5.11 above.

Theorem 5.13 [4] We have that forb(m, 2 · F0,2,2,0) = O(m2).

Proof: We perform induction on the rows, m. Assume our inductive hypothesis: for
1 ≤ k ≤ m− 1, there exists a c > 0 such that we have

forb(k, 2 · F0,2,2,0)c · k2.

Additionally, remark that F0,2,2,0 = supp(t · F0,2,2,0) and the maximum column multi-
plicity in t · F0,2,2,0 is t. With t = 2, we can apply the result we obtained using Remark
6.7 and conclude:

forb(m, 2 · F0,2,2,0) ≤ forb(m− 1, 2 · F0,2,2,0) + forb(m− 1, {F0,2,2,0, 2 · F0,1,2,0}).
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We have shown that the inductive children of A ∈ forb(m, t · F0,2,2,0) avoid {F0,2,2,0, t ·
F0,1,2,0} in the result that follows. As such, we have omitted the reasoning that if
A ∈ Avoid(m, 2 · F0,2,2,0) then the inductive children avoid {F0,2,2,0, 2 · F0,1,2,0}.
From Lemma 5.11, we know there exists a c′ > 0 so that

forb(m− 1, {F0,2,2,0, 2 · F0,1,2,0}) ≤ c′ · (m− 1).

By induction on m, and our calculation above, we have that

forb(m, 2 · F0,2,2,0) ≤ c · (m− 1)2 + c′ · (m− 1) ≤ d ·m2

where d = max{c, c′}.

Theorem 5.14 For t ≥ 2, forb(m, t · F0,2,2,0) = O(m2). [4]

Proof: By Lemma 5.13, there exists a c′ > 0 such that forb(m−1, {F0,2,2,0, t·F0,1,2,0}) ≤
c′ ·m. We perform induction on the rows, m. Assume that for all 1 ≤ k ≤ m − 1, we
have

forb(k, t · F0,2,2,0, t− 1) = O(k2).

So, we can find a c > c′ such that forb(k, t · {F0,2,2,0, t− 1) ≤ c · k2. Additionally, remark
that F0,2,2,0 = supp(t · F0,2,2,0) and the maximum column multiplicity in t · F0,2,2,0 is t.
Moreover, we make the following observation:

t · F0,2,2,0 = [F0,2,2,0| . . . |F0,2,2,0]︸ ︷︷ ︸
t

=




1 . . . 1
1 . . . 1
0 . . . 0
0 . . . 0


︸ ︷︷ ︸

t

∣∣∣∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣∣∣∣


1 . . . 1
1 . . . 1
0 . . . 0
0 . . . 0


︸ ︷︷ ︸

t

 =

[
t ·
[
1 1 0 0

]T ∣∣∣∣t · [0 0 1 1
]T]

Then deleting the first row gives us
[
t ·
[
1 0 0

]T ∣∣t · [0 1 1
]T]

. We observe the

following:

[0 1]×
[
t ·
[
1 0 0

]T ∣∣t · [0 1 1
]T]

=




0 . . . 0
1 . . . 1
0 . . . 0
0 . . . 0


︸ ︷︷ ︸

t


1 . . . 1
1 . . . 1
0 . . . 0
0 . . . 0


︸ ︷︷ ︸

t


0 . . . 0
0 . . . 0
1 . . . 1
1 . . . 1


︸ ︷︷ ︸

t


1 . . . 1
0 . . . 0
1 . . . 1
1 . . . 1


︸ ︷︷ ︸

t


and we remark that

F0,2,2,0 ≺ [0 1]×
[
t ·
[
1 0 0

]T |t · [0 1 1
]T]
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since the second and third blocks of t columns are precisely F0,2,2,0. Now, let A ∈
Avoid(m, t ·F0,2,2,0, t−1) with ‖A‖ = forb(m, t ·F0,2,2,0, t−1). Find a row r and perform
the standard decomposition as described for (t − 1) – simple (0, 1)-matrices. Then by
our remark, we have the following result:

‖A‖ = ‖[BCD]‖+ ‖C‖
≤ forb(m− 1, t · F0,2,2,0, t− 1) + forb(m− 1, {F0,2,2,0, t · F0,1,2,0})
≤ c · (m− 1)2 + c′ · (m− 1)

≤ c ·m2.

So we conclude that forb(k, t · F0,2,2,0, t− 1) ≤ c ·m2, which gives us

forb(k, t · F0,2,2,0) ≤ forb(k, t · F0,2,2,0, t− 1) ≤ t · forb(k, t · F0,2,2,0) ≤ c · tm2.

In fact, the above results can be generalized. We looked at the asymptotics of
forbidding t · F0,2,2,0; naturally, we would try and extend this to find the asymptotics
of forbidding t · F0,k,k,0. Anstee and Lu[4] have found the following results, generalizing
the above lemma and theorem for a general k.

Lemma 5.15 For t ≥ 2, forb(m, {F0,k,k,0, t · F0,k−1,k,0) = O(mk−1).

Theorem 5.16 For t ≥ 2, forb(m, t · F0,k,k,0) = O(mk). [4]

The following is another application of multiplicity induction.

Theorem 5.17 [4] Suppose that F is a simple (0, 1)-matrix and forb(m,F ) = O(m`).
Then it follows that for any t ∈ N, t ≥ 2 we have forb(m, t · F ) = O(m`+1).

Proof: We assume the inductive hypothesis for all 1 ≤ k ≤ m−1, that forb(k, t ·F ) =
O(m`+1). As before, define

G = {F ′ : F ≺
[
0 1

]
× F ′ and F 6≺

[
0 1

]
× F ′′ for all F ′′ ≺ F ′, F ′′ 6= F ′}.

As in the above subsection, where we explained the process of standard decomposition
for t – simple matrices, we observe that F ′ ≺ F . In particular, G ≺ F .

Then, from our discussion above and induction on m, we have that:

forb(m, t · F ) ≤ forb(m, t · F, t− 1)

≤ forb(m− 1, t · F, t− 1) + (t− 1) · forb(m− 1, {G ∪ F})

We would like to show that forb(m, t · F ) ≤ c ·m`+1 for some constant c > 0. We know
from our inductive hypothesis that there exists a constant c′ such that

forb(m− 1, {G ∪ F}) ≤ c′ · (m− 1)`.
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By induction on m, we know that for some c > 0,

forb(m− 1, t · F ) ≤ c · (m− 1)`+1.

Putting it all together, we obtain that

forb(m, t · F ) ≤ c′ · (m− 1)` + c · (m− 1)`+1 ≤ c ·m`+1.

and that completes the proof of our claim.

Recall the Sauer-Perles-Shelah bound for Kk, which is forb(m,Kk) = O(mk−1).
Using this bound and the above theorem we have proved, we get a natural result as our
last example of how multiplicity induction can be useful.

Theorem 5.18 [4] If F is any k-rowed matrix, then forb(m,F ) = O(mk).

Proof: First, we remark that Kk is the maximal simple (0, 1)-matrix on k rows. Hence,
for any k-rowed matrix F , we know that supp(F ) ≺ Kk and hence, if F has maximum
column multiplicity t, F ≺ t · supp(F ) ≺ t ·Kk. Therefore,

forb(m,F ) ≤ forb(m, t · supp(F )) ≤ forb(m, t ·Kk).

Since forb(m,Kk) is O(mk−1) then by Theorem 5.17, forb(m, t ·Kk) is O(mk).

6 Sporadic Induction

There are other methods of induction that have proven useful in the study of forbidden
configurations. Below we state another induction idea as a theorem and give examples.

We begin by stating a general remark.

Remark 6.1 Suppose f : N → R is an arithmetic function, with f(m) = O(mα) for
some α ≥ 0. Then, it is necessarily true that

m∑
i=0

f(i) = O(mα+1).

Using the above remark, we state and prove the theorem below:

Theorem 6.2 [1] Suppose that G is a k-rowed, `-columned (0, 1)-matrix, with forb(m,G) =
O(mα), for some α ≥ 0. Suppose F is of the following form:

F =

0 . . . 0
1 . . . 1

G

 .
Then, forb(m,F ) = O(mα+1).
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Proof: The proof is due to Anstee and Sali. We begin by taking A ∈ Avoid(m,F ) with
‖A‖ = forb(m,F ). Assume the following inductive hypothesis: for all 3 ≤ n ≤ m − 1,
we have that forb(n, F ) = O(nα+1). Next, let us denote by Zi the set of columns of
A with the first i + 1 rows of the form 1i01, and with Ji, denote the set of columns of
A with the first i + 1 rows of the form 0i11. This has potentially not considered the
columns of 1’s and the columns of 0’s if they are present in A.

Now we appeal to the inductive hypothesis: note that if G ≺ Zi or G ≺ Ji for
any i, we have that F ≺ A, violating the assumption on A. Therefore, for all i, Zi ∈
Avoid(m − i − 1, G) and Ji ∈ Avoid(m − i − 1, G). Hence, ‖Zi‖ ≤ forb(m − i − 1, G)
and ‖Ji‖ ≤ forb(m − i − 1, G). Since for all i, forb(m − i − 1, G) = O((m − i − 1)α),
summing over all 1 ≤ i ≤ m− 1 gives us:

‖A‖ ≤ 2
m−1∑
i=1

forb(m− i− 1, G) + 2 = O(mα+1),

where O(mα+1) is obtained from Remark 6.1 that we stated and did not prove.
Now we present an example where this sporadic induction, one which appears rarely,

but can be useful. Let

F =


1
1
0
0
0

 =


1
0
1
0
0

 =

1
0
G

 , G =

1
0
0

 .
We will show that forb(m,F ) = O(m2), once using the sporadic induction above, and
using counting methods to prove it a second way, in order to confirm that the sporadic
induction does actually work.

We first show that forb(m,G) = O(m). LetA ∈ Avoid(m,G), with ‖A‖ = forb(m,G).
We will count the maximum number of columns A can have before the configuration G
shows up. A can have a column of 0’s and 1’s. Next, any other column of A must have
at least one 1, and one 0. But observe that none of these columns can have two copies
of 0, or otherwise we have the existence of some row permutation of configuration G.
So we count how many distinct ways we can place exactly one 0 in m different rows,
which is precisely

(
m
1

)
= m different ways. So we have that A can have at most m + 2

columns to avoid G. Therefore, forb(m,G) = O(m).

By the sporadic induction theorem above, we conclude that forb(m,F ) = O(m2).
Now let us show another way that forb(m,F ) = O(m2), so that we can see that the
two answers coincide. If A ∈ Avoid(m,F ) with ‖A‖ = forb(m,F ), we count what the
maximum number of distinct columns A can have. Disregarding the columns with all
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1’s and 0’s, we look at how many other columns A can have. Every additional column
has to have at least one 1 and one 0. To avoid G, we must make sure that there are at
most two 0’s or at most one 1. There are

(
m
2

)
+
(
m
1

)
distinct columns with either one 0

or two 0’s. There are
(
m
1

)
distinct columns with exactly one 1. So in total we have that

‖A‖ =

(
m

2

)
+ 2 ·

(
m

1

)
+ 2.

And so ‖A‖ is O(m2).
We have remarked above that this sporadic induction may not be useful in all situ-

ations. The following example is one where we show that sporadic induction will give
an asymptotic bound that is correct, yet not sharp enough. Recall the matrix G6×3:

G6×3 =


1 1 1
1 1 0
1 0 1
0 1 0
0 0 1
0 0 0

 =


0 0 0
1 1 1
1 1 0
1 0 1
0 1 0
0 0 1

 .

Deleting the first two rows of 0’s and 1’s, we yield a matrix G:

G =


1 1 0
1 0 1
0 1 0
0 0 1


We note that the last two columns of G is F0,2,2,0, a configuration explored in the section
on multiplicity induction. Anstee and Sali have shown that if F is a configuration
such that F0,2,2,0 ≺ F , then forb(m,F ) = Θ(m2). Therefore, we can conclude that
forb(m,G) = Θ(m2). By the sporadic induction above, since forb(m,G) = Θ(m2),
and in particular, forb(m,G) = O(m2), we conclude that forb(m,G6×3) = O(m3).
Recall that we have already noted that forb(m,G6×3) is O(m2). We observe that the
sporadic induction above, yielded O(m3); this is a correct but not a sharp bound.
This demonstrates the limitations of using induction in the study of certain forbidden
configurations.

7 Conclusion

We observed how useful and multi-faceted induction can be, when facing problems in
forbidden configurations. An important result in extremal theory, the Shattered Set
Lemma, was proven using the simplest of induction which we called basic induction.
The Sauer bound was cleverly proven using the method of standard induction. This re-
sult can itself be used inductively, such as in the section on repeated induction. Lastly,
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we saw how the results applied to non-simple (t − 1)-simple matrices were useful in
determining bounds of matrices which were simple.

At the same time, we saw that induction may fall short at times, yielding bounds
which may be correct but not sharp. This was observed in particular, in Section 6.
This emphasizes the fact that induction, although ubiquitous throughout the study
of forbidden configurations, has its drawbacks. It is undoubtedly in the interest to
the curious mathematician to develop other clever induction methods (or indeed other
methods) which may be of use, if the first attempt with induction fails.
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