Forbidden Configurations: Asymptotic bounds

Richard Anstee, UBC, Vancouver

Chern Institute of Mathematics, Nankai University, Tianjin,
China.
May 14, 2016

Introduction

I have worked with a number of coauthors in this area: Farzin Barekat, Laura Dunwoody, Ron Ferguson, Balin Fleming, Zoltan Füredi, Jerry Griggs, Nima Kamoosi, Steven Karp, Peter Keevash, Linyuan Lu, Christina Koch, Connor Meehan, U.S.R. Murty, Miguel Raggi and Attila Sali but there are works of other authors impinging on this problem as well.

Survey at www.math.ubc.ca/~anstee

One birdwatcher and one pack animal

Jerry in South Carolina

Richard Anstee,UBC, Vancouver
Forbidden Configurations: Asymptotic bounds

Deynise, Malia and Jerry in South Carolina

Simple Matrices and Set Systems

Definition We say that a matrix A is simple if it is a $(0,1)$-matrix with no repeated columns.

Simple Matrices and Set Systems

Definition We say that a matrix A is simple if it is a $(0,1)$-matrix with no repeated columns.
i.e. if A is m-rowed then A is the incidence matrix of some family \mathcal{A} of subsets of $[m]=\{1,2, \ldots, m\}$.

$$
\begin{gathered}
A=\left[\begin{array}{lll|l|l}
0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right] \\
\mathcal{A}=\{\emptyset,\{2\},\{3\},\{1,3\},\{1,2,3\}\}
\end{gathered}
$$

Configurations

Definition Given a matrix F, we say that A has F as a configuration written $F \prec A$ if there is a submatrix of A which is a row and column permutation of F.

$$
F=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \prec\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right]=A
$$

Our Extremal Problem

Definition We define $\|A\|$ to be the number of columns in A.
Avoid $(m, \mathcal{F})=\{A: A$ is m-rowed simple, $F \nprec A$ for $F \in \mathcal{F}\}$

Our Extremal Problem

Definition We define $\|A\|$ to be the number of columns in A.
Avoid $(m, \mathcal{F})=\{A: A$ is m-rowed simple, $F \nprec A$ for $F \in \mathcal{F}\}$
forb $(m, \mathcal{F})=\max _{A}\{\|A\|: A \in \operatorname{Avoid}(m, \mathcal{F})\}$

Our Extremal Problem

Definition We define $\|A\|$ to be the number of columns in A.
$\operatorname{Avoid}(m, \mathcal{F})=\{A: A$ is m-rowed simple, $F \nprec A$ for $F \in \mathcal{F}\}$
forb $(m, \mathcal{F})=\max _{A}\{\|A\|: A \in \operatorname{Avoid}(m, \mathcal{F})\}$

There are other possibilities for extremal problems for $\operatorname{Avoid}(m, F)$ including maximizing the weighted sum over columns where a column of column sum i is weighted by $1 /\binom{m}{i}$ (e.g. Johnson and Lu) or maximizing the number of 1 's.

A Product Construction

As with any extremal problem, the results are often motivated by constructions, namely matrices in $\operatorname{Avoid}(m, F)$. Early investigations with Jerry Griggs and Attila Sali suggested a product construction might be very helpful.
The building blocks of our product constructions are I, I^{c} and T :

$$
I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad I_{4}^{c}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right], \quad T_{4}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Definition Given an $m_{1} \times n_{1}$ matrix A and a $m_{2} \times n_{2}$ matrix B we define the product $A \times B$ as the $\left(m_{1}+m_{2}\right) \times\left(n_{1} n_{2}\right)$ matrix consisting of all $n_{1} n_{2}$ possible columns formed from placing a column of A on top of a column of B. If A, B are simple, then $A \times B$ is simple. (A, Griggs, Sali 97)

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll|lll|lll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Given p simple matrices $A_{1}, A_{2}, \ldots, A_{p}$, each of size $m / p \times m / p$, the p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$ is a simple matrix of size $m \times\left(m^{p} / p^{p}\right)$ i.e. $\Theta\left(m^{p}\right)$ columns.

Definition Given an $m_{1} \times n_{1}$ matrix A and a $m_{2} \times n_{2}$ matrix B we define the product $A \times B$ as the $\left(m_{1}+m_{2}\right) \times\left(n_{1} n_{2}\right)$ matrix consisting of all $n_{1} n_{2}$ possible columns formed from placing a column of A on top of a column of B. If A, B are simple, then $A \times B$ is simple. (A, Griggs, Sali 97)

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll|lll|lll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Given p simple matrices $A_{1}, A_{2}, \ldots, A_{p}$, each of size $m / p \times m / p$, the p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$ is a simple matrix of size $m \times\left(m^{p} / p^{p}\right)$ i.e. $\Theta\left(m^{p}\right)$ columns.

The Conjecture

Definition Let $x(F)$ denote the largest p such that there is a p-fold product which does not contain F as a configuration where the p-fold product is $A_{1} \times A_{2} \times \cdots \times A_{p}$ where each $A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.

The Conjecture

Definition Let $x(F)$ denote the largest p such that there is a p-fold product which does not contain F as a configuration where the p-fold product is $A_{1} \times A_{2} \times \cdots \times A_{p}$ where each
$A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.
Conjecture (A, Sali 05) forb (m, F) is $\Theta\left(m^{\times(F)}\right)$.
In other words, we predict our product constructions with the three building blocks $\left\{I, I^{c}, T\right\}$ determine the asymptotically best constructions. The conjecture has now been verified in many cases.

The Conjecture

Definition Let $x(F)$ denote the largest p such that there is a p-fold product which does not contain F as a configuration where the p-fold product is $A_{1} \times A_{2} \times \cdots \times A_{p}$ where each
$A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.
Conjecture (A, Sali 05) forb (m, F) is $\Theta\left(m^{\times(F)}\right)$.
In other words, we predict our product constructions with the three building blocks $\left\{I, I^{c}, T\right\}$ determine the asymptotically best constructions. The conjecture has now been verified in many cases.

Attila Sali

Linyuan and his kids

An Unavoidable Forbidden Family

Theorem (Balogh and Bollobás 05) Let k be given. Then

$$
\text { forb }\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right) \leq 2^{2^{k}}
$$

An Unavoidable Forbidden Family

Theorem (Balogh and Bollobás 05) Let k be given. Then

$$
\text { forb }\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right) \leq 2^{2^{k}}
$$

We note that there is no product construction of I, I^{c}, T so this is consistent with the conjecture. It has the spirit of Ramsey Theory.

An Unavoidable Forbidden Family

Theorem (Balogh and Bollobás 05) Let k be given. Then

$$
\text { forb }\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right) \leq 2^{2^{k}}
$$

We note that there is no product construction of I, I^{c}, T so this is consistent with the conjecture. It has the spirit of Ramsey Theory.

Theorem (A., Lu 14) Let k be given. Then there is a constant c

$$
\text { forb }\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right) \leq 2^{c k^{2}}
$$

An Unavoidable Forbidden Family

Theorem (Balogh and Bollobás 05) Let k be given. Then

$$
\text { forb }\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right) \leq 2^{2^{k}}
$$

We note that there is no product construction of $I^{\prime} I^{c}, T$ so this is consistent with the conjecture. It has the spirit of Ramsey Theory.

Theorem (A., Lu 14) Let k be given. Then there is a constant c

$$
\operatorname{forb}\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right) \leq 2^{c k^{2}}
$$

If you take all columns of column sum at most $k-1$ that arise from the $k-1$-fold product $T_{k-1} \times T_{k-1} \times \cdots \times T_{k-1}$ then this yields $\binom{2 k-2}{k-1} \approx 2^{2 k}$ columns. A probabalistic construction in Avoid $\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right)$ has $2^{c k \log k}$ columns.

Ramsey Theory

Our proof uses lots of induction and multicoloured Ramsey numbers: $R\left(k_{1}, k_{2}, \ldots, k_{\ell}\right)$ is the smallest value of n such than any colouring of the edges of K_{n} with ℓ colours $1,2, \ldots, \ell$ will have some colour i and a clique of k_{i} vertices with all edges of colour i. These numbers are readily bounded by multinomial coefficients:

$$
\begin{gathered}
R\left(k_{1}, k_{2}, \ldots, k_{\ell}\right) \leq\binom{\sum_{i=1}^{\ell} k_{i}}{k_{1} k_{2} k_{3} \cdots k_{\ell}} \\
R\left(k_{1}, k_{2}, \ldots, k_{\ell}\right) \leq \ell^{k_{1}+k_{2}+\cdots+k_{\ell}}
\end{gathered}
$$

Our first proof had something like forb $\left(m\left\{, I_{k}, I_{k}^{c}, T_{k}\right\}\right)<R(R(k, k), R(k, k))$ yielding a doubly exponential bound.

Let $u=R(k, k+1, k, k, k+1, k)<6^{6 k+2}$.
As part of our proof we show that for $A \in \operatorname{Avoid}\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right)$, A cannot have a $u \times 2 u(0,1)$-submatrix of the form

0	1	$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$
a	a	0	1	$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$
b	b	c	c	0	1	$*$	$*$	$*$	$*$	$*$	$*$
d	d	e	e	f	f	0	1	$*$	$*$	$*$	$*$
g	g	h	h	i	i	j	j	0	1	$*$	$*$
k	k	l	l	m	m	n	n	o	o	0	1

One can interpret the entries of the matrix as 1×2 blocks yielding a $u \times u$ matrix with the blocks below the diagonal either 00 or 11 with blocks on the diagonal 01 and arbitrary (0,1)-blocks above the diagonal.

We consider a colouring of the complete graph K_{u} with edge i, j getting a colour based on the entries in the block j, i and the block i, j.

We consider a colouring of the complete graph K_{u} with edge i, j getting a colour based on the entries in the block j, i and the block i, j.

There are 6 colours to consider

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & * \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
* & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & * \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
* & 0 \\
1 & 1
\end{array}\right]
$$

We are able to show that $u<R(k, k+1, k, k, k+1, k)$ and so we get a singly exponential bound on $u \leq 6^{6 k+2}$. The proof has more to do than this but this is a critical step.

We say that the edge i, j is colour $\left[\begin{array}{ll}1 & * \\ 0 & 0\end{array}\right]$ if we have 00 in entry (j, i) and $1 *$ in entry (i, j) :

$$
\begin{array}{cccc}
& i & & j \\
i & 01 & & 1 * \\
& & \ddots & \\
j & 00 & & 01
\end{array}
$$

Now consider a clique of size $k+1$ of colour $\left[\begin{array}{ll}1 & * \\ 0 & 0\end{array}\right]$:

0	1	1	$*$	1	$*$	1	$*$	1	$*$
0	0	0	1	1	$*$	1	$*$	1	$*$
0	0	0	0	0	1	1	$*$	1	$*$
0	0	0	0	0	0	0	1	1	$*$
0	0	0	0	0	0	0	0	0	1

We say that the edge i, j is colour $\left[\begin{array}{ll}1 & * \\ 0 & 0\end{array}\right]$ if we have 00 in entry (j, i) and $1 *$ in entry (i, j) :

$$
\begin{array}{cccc}
& i & & j \\
i & 01 & & 1 * \\
& & \ddots & \\
j & 00 & & 01
\end{array}
$$

Now consider a clique of size $k+1$ of colour $\left[\begin{array}{ll}1 & * \\ 0 & 0\end{array}\right]$:

$$
\begin{array}{ll|l|l|l|l|l|l|l|ll}
0 & 1 & 1 & * & 1 & * & 1 & * & 1 & * & \\
0 & 0 & 0 & 1 & 1 & * & 1 & * & 1 & * & \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & * & 1 & * & \text { yields } T_{k} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & * & \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}
$$

We say that the edge i, j is colour $\left[\begin{array}{ll}* & 1 \\ 0 & 0\end{array}\right]$ if we have 00 in entry (j, i) and $1 *$ in entry (i, j) :

$$
\begin{array}{cccc}
& i & & j \\
i & 01 & & * 1 \\
& & \ddots & \\
j & 00 & & 01
\end{array}
$$

Now consider a clique of size k of colour $\left[\begin{array}{ll}* & 1 \\ 0 & 0\end{array}\right]$:

0	1	$*$	1	$*$	1	$*$	1	$*$	1
0	0	0	1	$*$	1	$*$	1	$*$	1
0	0	0	0	0	1	$*$	1	$*$	1
0	0	0	0	0	0	0	1	$*$	1
0	0	0	0	0	0	0	0	0	1

We say that the edge i, j is colour $\left[\begin{array}{ll}* & 1 \\ 0 & 0\end{array}\right]$ if we have 00 in entry (j, i) and $1 *$ in entry (i, j) :

$$
\begin{array}{cccc}
& i & & j \\
i & 01 & & * 1 \\
& & \ddots & \\
j & 00 & & 01
\end{array}
$$

Now consider a clique of size k of colour $\left[\begin{array}{cc}* & 1 \\ 0 & 0\end{array}\right]$:

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|}
0 & 1 & * & 1 & * & 1 & * & 1 & * & 1 \\
0 & 0 & 0 & 1 & * & 1 & * & 1 & * & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & * & 1 & * & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & * & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
& &
\end{array} \text { yields } T_{k}
$$

We say that the edge i, j is colour $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ if we have 00 in entry (j, i) and 00 in entry (i, j) :

$$
\begin{array}{cccc}
& i & & j \\
i & 01 & & 00 \\
& & \ddots & \\
j & 00 & & 01
\end{array}
$$

Now consider a clique of size k of colour $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$:

0	1	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	1

We say that the edge i, j is colour $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ if we have 00 in entry (j, i) and 00 in entry (i, j) :

$$
\begin{array}{cccc}
& i & & j \\
i & 01 & & 00 \\
& & \ddots & \\
j & 00 & & 01
\end{array}
$$

Now consider a clique of size k of colour $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$:

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\cline { 2 - 6 } & &
\end{array}
$$

Thus if we have $u=R(k, k+1, k, k, k+1, k)$ then we find a copy of I_{k} or I_{k}^{c} or T_{k}^{c}. a contradiction to $A \in \operatorname{Avoid}\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right)$. We conclude $u<R(k, k+1, k, k, k+1, k)$ and so we get a singly exponential bound $u \leq 6^{6 k+2}=2^{c k}$.

Multiple Columns

Let $s \cdot F$ denote $\overbrace{[F|F| \cdots \mid F]}^{s}$.
Theorem (A, Füredi 86) Let $s \geq 2$ be given. Let K_{k} denote the $k \times 2^{k}$ simple matrix of all possible (0,1)-columns on k rows. Then forb $\left(m, s \cdot K_{k}\right)$ is $\Theta\left(m^{k}\right)$.

Theorem (A, Lu 14) Let $s \geq 2$ be given. Then there exists a (largish) constant C with

$$
\text { forb }\left(m,\left\{s \cdot I_{k}, s \cdot I_{k}^{c}, s \cdot T_{k}\right\}\right) \leq(4 s-3) m+C
$$

Exact bounds and asymptotic bounds

$$
\text { Let } F=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right]
$$

Theorem (Frankl, Füredi, Pach 87) forb $(m, F)=\binom{m}{2}+2 m-1$ i.e. forb (m, F) is $\Theta\left(m^{2}\right)$.

Theorem (A. and Lu 13) Let s be given. Then forb $(m, s \cdot F)$ is $\Theta\left(m^{2}\right)$.
Note $x(F)=2=x(s \cdot F)$ so this is consistent with conjecture
Problem Let α be given and imagine m^{α} as an honourary integer. Show forb $\left(m, m^{\alpha} \cdot F\right)$ is $\Theta\left(m^{2+\alpha}\right)$.
We can only prove that forb $\left(m, m^{\alpha} \cdot F\right)$ is $O\left(m^{\min \{3+\alpha, 2+2 \alpha\}}\right)$.

We say a matrix with entries in $\{0,1, \ldots, r-1\}$ is an r-matrix. An r-matrix is simple if there are no repeated columns. forb $(m, r, \mathcal{F})=\max \{\|A\|: A$ is a simple r-matrix, $F \nprec A, F \in \mathcal{F}\}$

We say a matrix with entries in $\{0,1, \ldots, r-1\}$ is an r-matrix. An r-matrix is simple if there are no repeated columns. forb $(m, r, \mathcal{F})=\max \{\|A\|: A$ is a simple r-matrix, $F \nprec A, F \in \mathcal{F}\}$
Theorem (A, Lu 14) Given r there exists a constant c_{r} so that forb $\left(m, \mathcal{T}_{k}(r)\right) \leq 2^{c_{r} k^{2}}$.

$$
\begin{aligned}
& \mathcal{T}_{k}(3) \backslash \mathcal{T}_{k}(2)= \\
& {\left[\begin{array}{cccc}
1 & 2 & \cdots & 2 \\
2 & 1 & \cdots & 2 \\
\vdots & \vdots & \ddots & \\
2 & 2 & \cdots & 1
\end{array}\right],\left[\begin{array}{cccc}
0 & 2 & \cdots & 2 \\
2 & 0 & \cdots & 2 \\
\vdots & \vdots & \ddots & \\
2 & 2 & \cdots & 0
\end{array}\right],\left[\begin{array}{cccc}
2 & 0 & \cdots & 0 \\
0 & 2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \\
0 & 0 & \cdots & 2
\end{array}\right],} \\
& {\left[\begin{array}{cccc}
2 & 1 & \cdots & 1 \\
1 & 2 & \cdots & 1 \\
\vdots & \vdots & \ddots & \\
1 & 1 & \cdots & 2
\end{array}\right],\left[\begin{array}{cccc}
2 & 2 & \cdots & 2 \\
0 & 2 & \cdots & 2 \\
\vdots & \vdots & \ddots & \\
0 & 0 & \cdots & 2
\end{array}\right],\left[\begin{array}{cccc}
2 & 2 & \cdots & 2 \\
1 & 2 & \cdots & 2 \\
\vdots & \vdots & \ddots & \\
1 & 1 & \cdots & 2
\end{array}\right],} \\
& {\left[\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
2 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \\
2 & 2 & \cdots & 0
\end{array}\right],\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
2 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \\
2 & 2 & \cdots & 1
\end{array}\right] .}
\end{aligned}
$$

Problem Let \mathcal{F} be a family of $(0,1)$-matrices. forb $\left(m,\left(\mathcal{T}_{k}(3) \backslash \mathcal{T}_{k}(2) \cup \mathcal{F}\right)\right)$ is $\Theta(f o r b(m, \mathcal{F}))$.

THANKS to Linyuan and all those who helped in organizing this wonderful event.

And of course Happy Birthday to Jerry!!

