Design Theory and Extremal Combinatorics

Richard Anstee
Farzin Barekat Attila Sali
UBC, Vancouver

AMS, January 7, 2016

Design Theory

Definition Given an integer $m \geq 1$, let $[m]=\{1,2, \ldots, m\}$. Definition Given integers $k \leq m$, let $\binom{[m]}{k}$ denote all k - subsets of [m].

Definition Given parameters t, m, k, λ, a $t-(m, k, \lambda)$ design \mathcal{D} is a multiset of subsets in $\binom{[m]}{k}$ such that for each $S \in\binom{[m]}{t}$ there are exactly λ blocks $B \in \mathcal{D}$ containing S.

A $t-(m, k, \lambda)$ design \mathcal{D} is simple if \mathcal{D} is a set (i.e. no repeated blocks).

Design Theory

Definition Given an integer $m \geq 1$, let $[m]=\{1,2, \ldots, m\}$. Definition Given integers $k \leq m$, let $\binom{[m]}{k}$ denote all k - subsets of [m].
Definition Given parameters t, m, k, λ, a $t-(m, k, \lambda)$ design \mathcal{D} is a multiset of subsets in $\binom{[m]}{k}$ such that for each $S \in\binom{[m]}{t}$ there are exactly λ blocks $B \in \mathcal{D}$ containing S.
A $t-(m, k, \lambda)$ design \mathcal{D} is simple if \mathcal{D} is a set (i.e. no repeated blocks).
Definition Given parameters t, m, k, λ, a $t-(m, k, \lambda)$ packing \mathcal{P} is a set of subsets in $\binom{[m]}{k}$ such that for each $S \in\binom{[m]}{t}$ there are at most λ blocks $B \in \mathcal{P}$ containing S. (we will require a simple packing).

Theorem (Dehon, 1983) Let m, λ be given. Assume $m \geq \lambda+2$ and $m \equiv 1,3(\bmod 6)$. Then there exists a simple $2-S(m, 3, \lambda)$ design.

Theorem (Dehon, 1983) Let m, λ be given. Assume $m \geq \lambda+2$ and $m \equiv 1,3(\bmod 6)$. Then there exists a simple $2-S(m, 3, \lambda)$ design.

Let $T_{m, \lambda}$ denote the element-triple incidence matrix of a simple $2-S(m, 3, \lambda)$ design.

Theorem (Dehon, 1983) Let m, λ be given. Assume $m \geq \lambda+2$ and $m \equiv 1,3(\bmod 6)$. Then there exists a simple $2-S(m, 3, \lambda)$ design.

Let $T_{m, \lambda}$ denote the element-triple incidence matrix of a simple $2-S(m, 3, \lambda)$ design.
Thus $T_{m, \lambda}$ is an $m \times \frac{\lambda}{3}\binom{m}{2}$ simple matrix with all columns of column sum 3 and having no submatrix

Definition We say that a matrix A is simple if it is a $(0,1)$-matrix with no repeated columns.

Definition Let 1_{k} denote the column of k 1's.
Definition Let $\mathbf{1}_{k} \mathbf{0}_{\ell}$ denote the column of k 's on top of $\ell 0$'s.
Definition Let $s \cdot F$ denote $[\overbrace{F|F| \cdots \mid F}]$.
Definition Let K_{k}^{ℓ} denote the simple $k \times\binom{ k}{\ell}$ matrix of all columns of sum ℓ.

Theorem Let A be an $m \times n$ simple matrix with no submatrix

$$
q \cdot \mathbf{1}_{2}=\left[\begin{array}{llll}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1
\end{array}\right]
$$

Then

$$
n \leq\binom{ m}{0}+\binom{m}{1}+\binom{m}{2}+\frac{q-2}{3}\binom{m}{2}
$$

with equality only for

$$
A=\left[K_{m}^{0} K_{m}^{1} K_{m}^{2} T_{m, q-2}\right]
$$

if $m \geq q$ and $m \equiv 1,3(\bmod 6)$.
Note that a $t-(m, k, \lambda)$ design has the maximum number of columns all of sum k with no submatrix $(\lambda+1) \cdot \mathbf{1}_{t}$.

Theorem (A., Barekat) Let q be given. Then for $m>q$, if A is an $m \times n$ simple matrix with no submatrix which is a row permutation of

$$
q \cdot \mathbf{1}_{2} \mathbf{0}_{1}=\left[\begin{array}{cccc}
\overbrace{1} & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
0 & 0 & \cdots & 0
\end{array}\right]
$$

Then

$$
n \leq\binom{ m}{0}+\binom{m}{1}+\binom{m}{2}+\frac{q-2}{3}\binom{m}{2}+\binom{m}{m}
$$

with equality only for

$$
A=\left[K_{m}^{0} K_{m}^{1} K_{m}^{2} T_{m, q-2} K_{m}^{m}\right]
$$

if $m \equiv 1,3(\bmod 6)$.

Theorem (A., Barekat) Let q be given. Then there exists an M so that for $m>M$, if A is an $m \times n$ simple matrix with no submatrix which is a row permutation of

$$
q \cdot \mathbf{1}_{2} \mathbf{0}_{2}=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0
\end{array}\right]
$$

Then
$n \leq\binom{ m}{0}+\binom{m}{1}+\binom{m}{2}+\frac{q-3}{3}\binom{m}{2}+\binom{m}{m-2}+\binom{m}{m-1}+\binom{m}{m}$
with equality only for

$$
A=\left[K_{m}^{0} K_{m}^{1} K_{m}^{2} T_{m, a} T_{m, b}^{c} K_{m}^{m-2} K_{m}^{m-1} K_{m}^{m}\right]
$$

(for some choice a, b with $a+b=q-3$)
if $m \geq q$ and $m \equiv 1,3(\bmod 6)$.

Problem Let q be given. Does there exists an M so that for $m>M$, if A is an $m \times n$ simple matrix with no $4 \times q$ submatrix which is a row permutation of

$$
\boldsymbol{q} \cdot \mathbf{1}_{3} \mathbf{0}_{1}=\left[\begin{array}{cccc}
\overbrace{1} & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
0 & 0 & \cdots & 0
\end{array}\right]
$$

Then

$$
n \leq\binom{ m}{0}+\binom{m}{1}+\binom{m}{2}+\binom{m}{3}+\frac{q-3}{4}\binom{m}{3}+\binom{m}{m}
$$

with equality only if there exists a simple $3-(m, 4, \lambda)$ design with $\lambda=q-2$?

Theorem (Keevash 14) Let $1 / m \ll \theta \ll 1 / k \leq 1 /(t+1)$ and $\theta \ll 1$. Suppose that $\binom{k-i}{t-i}$ divides $\binom{c-i}{t-i}$ for $0 \leq i \leq r-1$. Then there exists a $t-(m, k, \lambda)$ simple design for $\lambda \leq \theta m^{k-t}$.

Our Extremal Problem

Definition We say that a matrix A is simple if it is a (0,1)-matrix with no repeated columns.

Definition We define $\|A\|$ to be the number of columns in A.
Definition For a given (0,1)-matrix F, we say $F \prec A$ (or A contains F as a configuration) if there is a submatrix of A which is a row and column permutation of F

Our Extremal Problem

Definition We say that a matrix A is simple if it is a (0,1)-matrix with no repeated columns.

Definition We define $\|A\|$ to be the number of columns in A.
Definition For a given (0,1)-matrix F, we say $F \prec A$ (or A contains F as a configuration) if there is a submatrix of A which is a row and column permutation of F

Avoid $(m, F)=\{A: A$ is m-rowed simple, $F \nprec A\}$
forb $(m, F)=\max _{A}\{\|A\|: A \in \operatorname{Avoid}(m, F)\}$

Nearly exact bounds

$$
F=\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

Forbidding F forces that the columns of any $A \in \operatorname{Avoid}(m, F)$ have the property of being 2-laminar when viewed as sets.

Theorem (Dukes 14)

$$
1.3818 \leq \limsup _{m \rightarrow \infty} \frac{\text { forb }(m, F)}{\binom{m}{2}} \leq 1.3821
$$

Asymptotic Bounds

We are interested in forb $(m, s \cdot F)$. An example:

$$
\text { Let } F=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Then forb (m, F) is $O\left(m^{2}\right)$. Now $s \cdot \mathbf{1}_{3} \prec s \cdot F$ and so forb $(m, s \cdot F) \geq$ forb $\left(m, s \cdot \mathbf{1}_{3}\right)$ (for any s).
Theorem Let $\alpha>0$ be given. Then forb $\left(m, m^{\alpha} \cdot F\right)$ is $\Theta\left(m^{3+\alpha}\right)$.
The upper bound is a challenge but the lower bound corresponds to constructing an $A \in \operatorname{Avoid}\left(m, m^{\alpha} \cdot \mathbf{1}_{3}\right)$ with $\|A\|$ being $\Omega\left(m^{3+\alpha}\right)$.

$S \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]$

We find that $\left[K_{m}^{0} K_{m}^{1} K_{m}^{2} K_{m}^{3}\right] \in \operatorname{Avoid}\left(m, m \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ and then we can show (by pigeonhole principle) that:
Theorem forb $\left(m, m \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\binom{m}{0}+\binom{m}{1}+\binom{m}{2}+\binom{m}{3}$.
Thus forb $\left(m, m \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ is $\Theta\left(m^{3}\right)$.

$$
S \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

We find that $\left[K_{m}^{0} K_{m}^{1} K_{m}^{2} K_{m}^{3}\right] \in \operatorname{Avoid}\left(m, m \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ and then we can show (by pigeonhole principle) that:
Theorem forb $\left(m, m \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\binom{m}{0}+\binom{m}{1}+\binom{m}{2}+\binom{m}{3}$.
Thus forb $\left(m, m \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ is $\Theta\left(m^{3}\right)$.
We find that $\left[K_{m}^{0} K_{m}^{1} K_{m}^{2} K_{m}^{3} K_{m}^{4}\right] \in \operatorname{Avoid}\left(m,\left(m+\binom{m-2}{2}\right) \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ and then we can show (by pigeonhole principle) that:
Theorem
forb $\left(m,\left(m+\binom{m-2}{2}\right) \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\binom{m}{0}+\binom{m}{1}+\binom{m}{2}+\binom{m}{3}+\binom{m}{4}$.
Thus forb $\left(m,\left(m+\binom{m-2}{2}\right) \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ is $\Theta\left(m^{4}\right)$.

$$
S \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

We find that $\left[K_{m}^{0} K_{m}^{1} K_{m}^{2} K_{m}^{3}\right] \in \operatorname{Avoid}\left(m, m \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ and then we can show (by pigeonhole principle) that:
Theorem forb $\left(m, m \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\binom{m}{0}+\binom{m}{1}+\binom{m}{2}+\binom{m}{3}$.
Thus forb $\left(m, m \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ is $\Theta\left(m^{3}\right)$.
We find that $\left[K_{m}^{0} K_{m}^{1} K_{m}^{2} K_{m}^{3} K_{m}^{4}\right] \in \operatorname{Avoid}\left(m,\left(m+\binom{m-2}{2}\right) \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ and then we can show (by pigeonhole principle) that:
Theorem
forb $\left(m,\left(m+\binom{m-2}{2}\right) \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\binom{m}{0}+\binom{m}{1}+\binom{m}{2}+\binom{m}{3}+\binom{m}{4}$.
Thus forb $\left(m,\left(m+\binom{m-2}{2}\right) \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ is $\Theta\left(m^{4}\right)$.
Can we deduce the growth of forb $\left(m, m^{\alpha} \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$?

Simple Triple Systems

Theorem (Dehon, 1983) Let m, λ be given. Assume $m \geq \lambda+2$ and $m \equiv 1,3(\bmod 6)$. Then there exists a simple triple system, a simple $2-(m, 3, \lambda)$ design.

Simple Triple Systems

Theorem (Dehon, 1983) Let m, λ be given. Assume $m \geq \lambda+2$ and $m \equiv 1,3(\bmod 6)$. Then there exists a simple triple system, a simple $2-(m, 3, \lambda)$ design.

Let $T_{m, \lambda}$ denote the element-triple incidence matrix of a simple $2-(m, 3, \lambda)$ design. Thus $T_{m, \lambda}$ is an $m \times \frac{\lambda}{3}\binom{m}{2}$ simple matrix with all columns of column sum 3 and $T_{m, \lambda} \in \operatorname{Avoid}\left(m,(\lambda+1) \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$

Simple Triple Systems

Theorem (Dehon, 1983) Let m, λ be given. Assume $m \geq \lambda+2$ and $m \equiv 1,3(\bmod 6)$. Then there exists a simple triple system, a simple $2-(m, 3, \lambda)$ design.

Let $T_{m, \lambda}$ denote the element-triple incidence matrix of a simple $2-(m, 3, \lambda)$ design. Thus $T_{m, \lambda}$ is an $m \times \frac{\lambda}{3}\binom{m}{2}$ simple matrix with all columns of column sum 3 and $T_{m, \lambda} \in \operatorname{Avoid}\left(m,(\lambda+1) \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$

Thus, choosing $\lambda=m^{1 / 2}-2$, we have forb $\left(m, m^{1 / 2} \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ is $\Theta\left(m^{5 / 2}\right)$
or more generally, forb $\left(m, m^{\alpha} \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ is $\Theta\left(m^{2+\alpha}\right)$ for $0<\alpha \leq 1$.

Theorem (Keevash 14) Let $1 / m \ll \theta \ll 1 / k \leq 1 /(t+1)$ and $\theta \ll 1$. Suppose that $\binom{k-i}{t-i}$ divides $\binom{m-i}{t-i}$ for $0 \leq i \leq r-1$. Then there exists a $t-(m, k, \lambda)$ simple design for $\lambda \leq \theta m^{k-t}$.

This covers a fraction θ of the possible range for
$\lambda \in\left(0,\binom{m}{k}\binom{k}{t} /\binom{m}{t}\right)$.
Let $\mathbf{1}_{t}$ denote the column of t 's. The following result follows from Keevash 14.

Weak Packing: Let α and t be given. There exist a constant $c_{\alpha, t}>0$ so that

$$
\text { forb }\left(m, m^{\alpha} \cdot \mathbf{1}_{t}\right) \geq c_{\alpha, t} m^{t+\alpha}
$$

i.e. forb $\left(m, m^{\alpha} \cdot \mathbf{1}_{t}\right)$ is $\Theta\left(m^{t+\alpha}\right)$

We form a matrix in $\operatorname{Avoid}\left(m, m^{\alpha} \cdot \mathbf{1}_{t}\right)$ by first taking all columns up to some appropriate size k, and then use the Weak Packing of $k+1$-sets that follows as a Corollary to Keevash' design result.

There are cases which do not yield the desired results.

$$
\text { Let } F=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right]
$$

Theorem (Frankl, Füredi, Pach 87) forb $(m, F)=\binom{m}{2}+2 m-1$ i.e. forb (m, F) is $O\left(m^{2}\right)$.

Theorem (A. and Lu 13) Let s be given. Then forb $(m, s \cdot F)$ is $\Theta\left(m^{2}\right)$.
Conjecture forb $\left(m, m^{\alpha} \cdot F\right)$ is $\Theta\left(m^{2+\alpha}\right)$.
We can only prove that forb $\left(m, m^{\alpha} \cdot F\right)$ is $O\left(m^{3+\alpha}\right)$.

Thanks to Peter Dukes and Esther Lamken for the invite to this great minisymposium.

