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Design Theory

Definition Given an integer m ≥ 1, let [m] = {1, 2, . . . ,m}.
Definition Given integers k ≤ m, let

([m]
k

)
denote all k- subsets of

[m].

Definition Given parameters t,m, k, λ, a t-(m, k , λ) design D is a

multiset of subsets in
([m]

k

)
such that for each S ∈

([m]
t

)
there are

exactly λ blocks B ∈ D containing S .

A t-(m, k , λ) design D is simple if D is a set (i.e. no repeated
blocks).

Definition Given parameters t,m, k, λ, a t-(m, k , λ) packing P is

a set of subsets in
([m]

k

)
such that for each S ∈

([m]
t

)
there are at

most λ blocks B ∈ P containing S .
(we will require a simple packing).
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Theorem (Dehon, 1983) Let m, λ be given. Assume m ≥ λ+ 2
and m ≡ 1, 3(mod 6). Then there exists a simple 2-S(m, 3, λ)
design.

Let Tm,λ denote the element-triple incidence matrix of a simple
2-S(m, 3, λ)design.
Thus Tm,λ is an m × λ

3

(m
2

)
simple matrix with all columns of

column sum 3 and having no submatrix

[ λ+1︷ ︸︸ ︷
1 1 · · · 1
1 1 · · · 1

]
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Definition We say that a matrix A is simple if it is a (0,1)-matrix
with no repeated columns.

Definition Let 1k denote the column of k 1’s.

Definition Let 1k0` denote the column of k 1’s on top of ` 0’s.

Definition Let s · F denote [

s︷ ︸︸ ︷
F |F | · · · |F ].

Definition Let K `
k denote the simple k ×

(k
`

)
matrix of all columns

of sum `.

Richard Anstee Farzin Barekat Attila SaliUBC, Vancouver Design Theory and Extremal Combinatorics



Theorem Let A be an m × n simple matrix with no submatrix

q · 12 =

[ q︷ ︸︸ ︷
1 1 · · · 1
1 1 · · · 1

]
Then

n ≤
(
m

0

)
+

(
m

1

)
+

(
m

2

)
+

q − 2

3

(
m

2

)
with equality only for

A = [K 0
mK

1
mK

2
mTm,q−2]

if m ≥ q and m ≡ 1, 3(mod 6).
Note that a t − (m, k, λ) design has the maximum number of
columns all of sum k with no submatrix (λ+ 1) · 1t .
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Theorem (A., Barekat) Let q be given. Then for m > q, if A is an
m× n simple matrix with no submatrix which is a row permutation
of

q · 1201 =


q︷ ︸︸ ︷

1 1 · · · 1
1 1 · · · 1
0 0 · · · 0


Then

n ≤
(
m

0

)
+

(
m

1

)
+

(
m

2

)
+

q − 2

3

(
m

2

)
+

(
m

m

)
with equality only for

A = [K 0
mK

1
mK

2
mTm,q−2K

m
m ]

if m ≡ 1, 3(mod 6).
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Theorem (A., Barekat) Let q be given. Then there exists an M so
that for m > M, if A is an m × n simple matrix with no submatrix
which is a row permutation of

q · 1202 =


q︷ ︸︸ ︷

1 1 · · · 1
1 1 · · · 1
0 0 · · · 0
0 0 · · · 0


Then

n ≤
(
m

0

)
+

(
m

1

)
+

(
m

2

)
+
q − 3

3

(
m

2

)
+

(
m

m − 2

)
+

(
m

m − 1

)
+

(
m

m

)
with equality only for

A = [K 0
mK

1
mK

2
mTm,aT

c
m,bK

m−2
m Km−1

m Km
m ]

(for some choice a, b with a + b = q − 3)
if m ≥ q and m ≡ 1, 3(mod 6).
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Problem Let q be given. Does there exists an M so that for
m > M, if A is an m × n simple matrix with no 4× q submatrix
which is a row permutation of

q · 1301 =


q︷ ︸︸ ︷

1 1 · · · 1
1 1 · · · 1
1 1 · · · 1
0 0 · · · 0


Then

n ≤
(
m

0

)
+

(
m

1

)
+

(
m

2

)
+

(
m

3

)
+

q − 3

4

(
m

3

)
+

(
m

m

)
with equality only if there exists a simple 3− (m, 4, λ) design with
λ = q − 2?
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Theorem (Keevash 14) Let 1/m� θ � 1/k ≤ 1/(t + 1) and
θ � 1. Suppose that

(k−i
t−i
)

divides
(m−i
t−i
)

for 0 ≤ i ≤ r − 1. Then

there exists a t-(m, k , λ) simple design for λ ≤ θmk−t .

Richard Anstee Farzin Barekat Attila SaliUBC, Vancouver Design Theory and Extremal Combinatorics



Our Extremal Problem

Definition We say that a matrix A is simple if it is a (0,1)-matrix
with no repeated columns.

Definition We define ‖A‖ to be the number of columns in A.

Definition For a given (0,1)-matrix F , we say F ≺ A (or A
contains F as a configuration) if there is a submatrix of A which is
a row and column permutation of F

Avoid(m,F ) = {A : A is m-rowed simple, F 6≺ A}
forb(m,F ) = maxA{‖A‖ : A ∈ Avoid(m,F )}
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Nearly exact bounds

F =


1 1
1 1
1 0
0 1


Forbidding F forces that the columns of any A ∈ Avoid(m,F ) have
the property of being 2-laminar when viewed as sets.

Theorem (Dukes 14)

1.3818 ≤ lim sup
m→∞

forb(m,F )(m
2

) ≤ 1.3821
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Asymptotic Bounds

We are interested in forb(m, s · F ). An example:

Let F =



1 1 1
1 1 0
1 0 1
0 1 0
0 0 1
0 0 0


Then forb(m,F ) is O(m2). Now s · 13 ≺ s · F and so
forb(m, s · F ) ≥ forb(m, s · 13) (for any s).

Theorem Let α > 0 be given. Then forb(m,mα · F ) is Θ(m3+α).

The upper bound is a challenge but the lower bound corresponds to
constructing an A ∈ Avoid(m,mα · 13) with ‖A‖ being Ω(m3+α).
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s ·
[

1
1

]
We find that [K 0

mK
1
mK

2
mK

3
m] ∈ Avoid(m,m ·

[
1
1

]
) and then we can

show (by pigeonhole principle) that:

Theorem forb(m,m ·
[
1
1

]
) =

(m
0

)
+
(m
1

)
+
(m
2

)
+
(m
3

)
.

Thus forb(m,m ·
[
1
1

]
) is Θ(m3).

We find that [K 0
mK

1
mK

2
mK

3
mK

4
m] ∈ Avoid(m, (m +

(m−2
2

)
) ·
[
1
1

]
) and

then we can show (by pigeonhole principle) that:

Theorem
forb(m, (m +

(m−2
2

)
) ·
[
1
1

]
) =

(m
0

)
+
(m
1

)
+
(m
2

)
+
(m
3

)
+
(m
4

)
.

Thus forb(m, (m +
(m−2

2

)
) ·
[
1
1

]
) is Θ(m4).

Can we deduce the growth of forb(m,mα ·
[
1
1

]
)?
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Simple Triple Systems

Theorem (Dehon, 1983) Let m, λ be given. Assume m ≥ λ+ 2
and m ≡ 1, 3(mod 6). Then there exists a simple triple system, a
simple 2− (m, 3, λ) design.

Let Tm,λ denote the element-triple incidence matrix of a simple
2− (m, 3, λ) design. Thus Tm,λ is an m× λ

3

(m
2

)
simple matrix with

all columns of column sum 3 and Tm,λ ∈ Avoid(m, (λ+ 1) ·
[
1
1

]
)

Thus, choosing λ = m1/2 − 2, we have

forb(m,m1/2 ·
[
1
1

]
) is Θ(m5/2)

or more generally, forb(m,mα ·
[
1
1

]
) is Θ(m2+α) for 0 < α ≤ 1.
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Theorem (Keevash 14) Let 1/m� θ � 1/k ≤ 1/(t + 1) and
θ � 1. Suppose that

(k−i
t−i
)

divides
(m−i
t−i
)

for 0 ≤ i ≤ r − 1. Then

there exists a t-(m, k , λ) simple design for λ ≤ θmk−t .

This covers a fraction θ of the possible range for

λ ∈
(

0,
(m
k

)(k
t

)
/
(m
t

))
.

Let 1t denote the column of t 1’s. The following result follows
from Keevash 14.

Weak Packing: Let α and t be given. There exist a constant
cα,t > 0 so that

forb(m,mα · 1t) ≥ cα,tm
t+α

i.e. forb(m,mα · 1t) is Θ(mt+α)
We form a matrix in Avoid(m,mα · 1t) by first taking all columns
up to some appropriate size k , and then use the Weak Packing of
k + 1-sets that follows as a Corollary to Keevash’ design result.
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There are cases which do not yield the desired results.

Let F =


1 0
1 0
0 1
0 1


Theorem (Frankl, Füredi, Pach 87) forb(m,F ) =

(m
2

)
+ 2m − 1

i.e. forb(m,F ) is O(m2).

Theorem (A. and Lu 13) Let s be given. Then forb(m, s · F ) is
Θ(m2).

Conjecture forb(m,mα · F ) is Θ(m2+α).

We can only prove that forb(m,mα · F ) is O(m3+α).
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Thanks to Peter Dukes and Esther Lamken for the invite to this
great minisymposium.
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