Design Theory and Extremal Combinatorics

Richard Anstee Farzin Barekat Attila Sali UBC, Vancouver

AMS, January 7, 2016

通 とう ほうとう ほうど

Richard Anstee Farzin Barekat Attila SaliUBC, Vancouver Design Theory and Extremal Combinatorics

Definition Given an integer $m \ge 1$, let $[m] = \{1, 2, ..., m\}$. **Definition** Given integers $k \le m$, let $\binom{[m]}{k}$ denote all k- subsets of [m].

Definition Given parameters t, m, k, λ , a t- (m, k, λ) design \mathcal{D} is a multiset of subsets in $\binom{[m]}{k}$ such that for each $S \in \binom{[m]}{t}$ there are exactly λ blocks $B \in \mathcal{D}$ containing S.

A t- (m, k, λ) design \mathcal{D} is simple if \mathcal{D} is a set (i.e. no repeated blocks).

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition Given an integer $m \ge 1$, let $[m] = \{1, 2, ..., m\}$. **Definition** Given integers $k \le m$, let $\binom{[m]}{k}$ denote all k- subsets of [m].

Definition Given parameters t, m, k, λ , a t- (m, k, λ) design \mathcal{D} is a multiset of subsets in $\binom{[m]}{k}$ such that for each $S \in \binom{[m]}{t}$ there are exactly λ blocks $B \in \mathcal{D}$ containing S.

A t- (m, k, λ) design \mathcal{D} is simple if \mathcal{D} is a set (i.e. no repeated blocks).

Definition Given parameters t, m, k, λ , a t- (m, k, λ) packing \mathcal{P} is a set of subsets in $\binom{[m]}{k}$ such that for each $S \in \binom{[m]}{t}$ there are at most λ blocks $B \in \mathcal{P}$ containing S. (we will require a simple packing).

(四) (日) (日)

Theorem (Dehon, 1983) Let m, λ be given. Assume $m \ge \lambda + 2$ and $m \equiv 1, 3 \pmod{6}$. Then there exists a simple 2- $S(m, 3, \lambda)$ design.

< 同 > < 注 > < 注 > … 注

Theorem (Dehon, 1983) Let m, λ be given. Assume $m \ge \lambda + 2$ and $m \equiv 1, 3 \pmod{6}$. Then there exists a simple 2- $S(m, 3, \lambda)$ design.

Let $T_{m,\lambda}$ denote the element-triple incidence matrix of a simple $2-S(m,3,\lambda)$ design.

Theorem (Dehon, 1983) Let m, λ be given. Assume $m \ge \lambda + 2$ and $m \equiv 1, 3 \pmod{6}$. Then there exists a simple 2- $S(m, 3, \lambda)$ design.

Let $T_{m,\lambda}$ denote the element-triple incidence matrix of a simple 2- $S(m, 3, \lambda)$ design. Thus $T_{m,\lambda}$ is an $m \times \frac{\lambda}{3} {m \choose 2}$ simple matrix with all columns of column sum 3 and having no submatrix

Definition We say that a matrix A is *simple* if it is a (0,1)-matrix with no repeated columns.

Definition Let $\mathbf{1}_k$ denote the column of k 1's.

Definition Let $\mathbf{1}_k \mathbf{0}_\ell$ denote the column of k 1's on top of ℓ 0's.

Definition Let $s \cdot F$ denote $[F|F|\cdots|F]$. **Definition** Let K_k^{ℓ} denote the simple $k \times \binom{k}{\ell}$ matrix of all columns of sum ℓ . **Theorem** Let A be an $m \times n$ simple matrix with no submatrix

$$q \cdot \mathbf{1}_2 = \begin{bmatrix} \overbrace{1 \quad 1 \quad \cdots \quad 1}^{q} \\ 1 \quad 1 \quad \cdots \quad 1 \end{bmatrix}$$

Then

$$n \leq \binom{m}{0} + \binom{m}{1} + \binom{m}{2} + \frac{q-2}{3}\binom{m}{2}$$

with equality only for

$$A = [K_m^0 K_m^1 K_m^2 T_{m,q-2}]$$

▲■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

if $m \ge q$ and $m \equiv 1, 3 \pmod{6}$. Note that a $t - (m, k, \lambda)$ design has the maximum number of columns all of sum k with no submatrix $(\lambda + 1) \cdot \mathbf{1}_t$. **Theorem** (A., Barekat) Let q be given. Then for m > q, if A is an $m \times n$ simple matrix with no submatrix which is a row permutation of

$$q \cdot \mathbf{1}_2 \mathbf{0}_1 = \begin{bmatrix} \overbrace{1 & 1 & \cdots & 1}^{q} \\ 1 & 1 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

Then

$$n \leq \binom{m}{0} + \binom{m}{1} + \binom{m}{2} + \frac{q-2}{3}\binom{m}{2} + \binom{m}{m}$$

with equality only for

$$A = \left[K_m^0 K_m^1 K_m^2 T_{m,q-2} K_m^m\right]$$

白 と く ヨ と く ヨ と

æ

if $m \equiv 1, 3 \pmod{6}$.

Theorem (A., Barekat) Let q be given. Then there exists an M so that for m > M, if A is an $m \times n$ simple matrix with no submatrix which is a row permutation of

$$q \cdot \mathbf{1}_2 \mathbf{0}_2 = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \cdots & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \cdots & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \end{bmatrix}$$

Then

$$n \leq \binom{m}{0} + \binom{m}{1} + \binom{m}{2} + \frac{q-3}{3}\binom{m}{2} + \binom{m}{m-2} + \binom{m}{m-1} + \binom{m}{m}$$

with equality only for

$$A = [K_m^0 K_m^1 K_m^2 T_{m,a} T_{m,b}^c K_m^{m-2} K_m^{m-1} K_m^m]$$

(for some choice a, b with a + b = q - 3) if $m \ge q$ and $m \equiv 1, 3 \pmod{6}$.

Richard Anstee Farzin Barekat Attila SaliUBC, Vancouver

・ 同 ト ・ ヨ ト ・ ヨ ト

Problem Let *q* be given. Does there exists an *M* so that for m > M, if *A* is an $m \times n$ simple matrix with no $4 \times q$ submatrix which is a row permutation of

$$q \cdot \mathbf{1}_{3}\mathbf{0}_{1} = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \cdots & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \cdots & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \cdots & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \end{bmatrix}$$

Then

$$n \leq \binom{m}{0} + \binom{m}{1} + \binom{m}{2} + \binom{m}{3} + \frac{q-3}{4}\binom{m}{3} + \binom{m}{m}$$

with equality only if there exists a simple $3 - (m, 4, \lambda)$ design with $\lambda = q - 2$?

(4月) (3日) (3日) 日

Theorem (Keevash 14) Let $1/m \ll \theta \ll 1/k \le 1/(t+1)$ and $\theta \ll 1$. Suppose that $\binom{k-i}{t-i}$ divides $\binom{m-i}{t-i}$ for $0 \le i \le r-1$. Then there exists a $t-(m,k,\lambda)$ simple design for $\lambda \le \theta m^{k-t}$.

Definition We say that a matrix A is *simple* if it is a (0,1)-matrix with no repeated columns.

Definition We define ||A|| to be the number of columns in A.

Definition For a given (0,1)-matrix F, we say $F \prec A$ (or A contains F as a configuration) if there is a submatrix of A which is a row and column permutation of F

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition We say that a matrix A is *simple* if it is a (0,1)-matrix with no repeated columns.

Definition We define ||A|| to be the number of columns in A.

Definition For a given (0,1)-matrix F, we say $F \prec A$ (or A contains F as a configuration) if there is a submatrix of A which is a row and column permutation of F

Avoid $(m, F) = \{A : A \text{ is } m \text{-rowed simple, } F \not\prec A\}$

 $forb(m, F) = max_A \{ \|A\| : A \in Avoid(m, F) \}$

$$F = \left[\begin{array}{rrr} 1 & 1 \\ 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{array} \right]$$

Forbidding F forces that the columns of any $A \in Avoid(m, F)$ have the property of being 2-laminar when viewed as sets.

Theorem (Dukes 14)

$$1.3818 \leq \limsup_{m \to \infty} \frac{\operatorname{forb}(m, F)}{\binom{m}{2}} \leq 1.3821$$

同 と く き と く き と … き

We are interested in forb $(m, s \cdot F)$. An example:

Let
$$F = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Then forb(m, F) is $O(m^2)$. Now $s \cdot \mathbf{1}_3 \prec s \cdot F$ and so forb $(m, s \cdot F) \ge$ forb $(m, s \cdot \mathbf{1}_3)$ (for any s).

Theorem Let $\alpha > 0$ be given. Then forb $(m, m^{\alpha} \cdot F)$ is $\Theta(m^{3+\alpha})$.

The upper bound is a challenge but the lower bound corresponds to constructing an $A \in Avoid(m, m^{\alpha} \cdot \mathbf{1}_3)$ with ||A|| being $\Omega(m^{3+\alpha})$.

伺下 イヨト イヨト

$s \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

We find that $[\mathcal{K}_m^0 \mathcal{K}_m^1 \mathcal{K}_m^2 \mathcal{K}_m^3] \in \operatorname{Avoid}(m, m \cdot \begin{bmatrix} 1\\1 \end{bmatrix})$ and then we can show (by pigeonhole principle) that: **Theorem** forb $(m, m \cdot \begin{bmatrix} 1\\1 \end{bmatrix}) = \binom{m}{0} + \binom{m}{1} + \binom{m}{2} + \binom{m}{3}$. Thus forb $(m, m \cdot \begin{bmatrix} 1\\1 \end{bmatrix})$ is $\Theta(m^3)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

$s \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

We find that $[K_m^0 K_m^1 K_m^2 K_m^3] \in Avoid(m, m \cdot \begin{bmatrix} 1\\1 \end{bmatrix})$ and then we can show (by pigeonhole principle) that:

Theorem forb
$$(m, m \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}) = \binom{m}{0} + \binom{m}{1} + \binom{m}{2} + \binom{m}{3}.$$

Thus forb $(m, m \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix})$ is $\Theta(m^3)$.

We find that $[K_m^0 K_m^1 K_m^2 K_m^3 K_m^4] \in Avoid(m, (m + \binom{m-2}{2})) \cdot \begin{bmatrix} 1\\1 \end{bmatrix})$ and then we can show (by pigeonhole principle) that:

Theorem

forb $(m, (m + \binom{m-2}{2})) \cdot \begin{bmatrix} 1\\1 \end{bmatrix}) = \binom{m}{0} + \binom{m}{1} + \binom{m}{2} + \binom{m}{3} + \binom{m}{4}.$ Thus forb $(m, (m + \binom{m-2}{2})) \cdot \begin{bmatrix} 1\\1 \end{bmatrix})$ is $\Theta(m^4).$

向下 イヨト イヨト

We find that $[K_m^0 K_m^1 K_m^2 K_m^3] \in Avoid(m, m \cdot \begin{bmatrix} 1\\1 \end{bmatrix})$ and then we can show (by pigeonhole principle) that:

Theorem forb
$$(m, m \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}) = \binom{m}{0} + \binom{m}{1} + \binom{m}{2} + \binom{m}{3}.$$

Thus forb $(m, m \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix})$ is $\Theta(m^3)$.

We find that $[K_m^0 K_m^1 K_m^2 K_m^3 K_m^4] \in Avoid(m, (m + \binom{m-2}{2})) \cdot \begin{bmatrix} 1\\1 \end{bmatrix})$ and then we can show (by pigeonhole principle) that:

Theorem

forb $(m, (m + \binom{m-2}{2})) \cdot \begin{bmatrix} 1\\1 \end{bmatrix}) = \binom{m}{0} + \binom{m}{1} + \binom{m}{2} + \binom{m}{3} + \binom{m}{4}.$ Thus forb $(m, (m + \binom{m-2}{2})) \cdot \begin{bmatrix} 1\\1 \end{bmatrix})$ is $\Theta(m^4).$

Can we deduce the growth of forb $(m, m^{\alpha} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix})$?

Theorem (Dehon, 1983) Let m, λ be given. Assume $m \ge \lambda + 2$ and $m \equiv 1, 3 \pmod{6}$. Then there exists a simple triple system, a simple $2 - (m, 3, \lambda)$ design.

(本間) (本語) (本語) (二語)

Theorem (Dehon, 1983) Let m, λ be given. Assume $m \ge \lambda + 2$ and $m \equiv 1, 3 \pmod{6}$. Then there exists a simple triple system, a simple $2 - (m, 3, \lambda)$ design.

Let $T_{m,\lambda}$ denote the element-triple incidence matrix of a simple $2 - (m, 3, \lambda)$ design. Thus $T_{m,\lambda}$ is an $m \times \frac{\lambda}{3} {m \choose 2}$ simple matrix with all columns of column sum 3 and $T_{m,\lambda} \in Avoid(m, (\lambda + 1) \cdot \begin{bmatrix} 1\\1 \end{bmatrix})$

伺下 イヨト イヨト

Theorem (Dehon, 1983) Let m, λ be given. Assume $m \ge \lambda + 2$ and $m \equiv 1, 3 \pmod{6}$. Then there exists a simple triple system, a simple $2 - (m, 3, \lambda)$ design.

Let $T_{m,\lambda}$ denote the element-triple incidence matrix of a simple $2 - (m, 3, \lambda)$ design. Thus $T_{m,\lambda}$ is an $m \times \frac{\lambda}{3} \binom{m}{2}$ simple matrix with all columns of column sum 3 and $T_{m,\lambda} \in \operatorname{Avoid}(m, (\lambda + 1) \cdot \begin{bmatrix} 1\\1 \end{bmatrix})$

Thus, choosing
$$\lambda = m^{1/2} - 2$$
, we have
forb $(m, m^{1/2} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix})$ is $\Theta(m^{5/2})$
or more generally, forb $(m, m^{\alpha} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix})$ is $\Theta(m^{2+\alpha})$ for $0 < \alpha \leq 1$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem (Keevash 14) Let $1/m \ll \theta \ll 1/k \le 1/(t+1)$ and $\theta \ll 1$. Suppose that $\binom{k-i}{t-i}$ divides $\binom{m-i}{t-i}$ for $0 \le i \le r-1$. Then there exists a $t-(m,k,\lambda)$ simple design for $\lambda \le \theta m^{k-t}$.

This covers a fraction θ of the possible range for $\lambda \in \left(0, \binom{m}{k}\binom{k}{t}/\binom{m}{t}\right).$

Let $\mathbf{1}_t$ denote the column of t 1's. The following result follows from Keevash 14.

Weak Packing: Let α and t be given. There exist a constant $c_{\alpha,t} > 0$ so that

$$\mathsf{forb}(m, m^{lpha} \cdot \mathbf{1}_t) \geq c_{lpha, t} m^{t+lpha}$$

i.e. $\operatorname{forb}(m, m^{\alpha} \cdot \mathbf{1}_t)$ is $\Theta(m^{t+\alpha})$ We form a matrix in Avoid $(m, m^{\alpha} \cdot \mathbf{1}_t)$ by first taking all columns up to some appropriate size k, and then use the Weak Packing of k + 1-sets that follows as a Corollary to Keevash' design result. There are cases which do not yield the desired results.

Let
$$F = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$$

Theorem (Frankl, Füredi, Pach 87) forb $(m, F) = \binom{m}{2} + 2m - 1$ i.e. forb(m, F) is $O(m^2)$.

Theorem (A. and Lu 13) Let s be given. Then $forb(m, s \cdot F)$ is $\Theta(m^2)$.

Conjecture forb $(m, m^{\alpha} \cdot F)$ is $\Theta(m^{2+\alpha})$.

We can only prove that forb $(m, m^{\alpha} \cdot F)$ is $O(m^{3+\alpha})$.

マロト イヨト イヨト ニヨ

Thanks to Peter Dukes and Esther Lamken for the invite to this great minisymposium.

(日) (四) (王) (王) (王)