Math 267, Section 202 : HW 4

All five questions are due Wednesday, January 30th.

1. Consider the periodic signal, period $T=4$, given by:

$$
g(x)= \begin{cases}0 & \text { for }-2<x<-1 \\ x & \text { for }-1<x<1 \\ 0 & \text { for } 1<x<2\end{cases}
$$

(and repeated periodically.)
Compute the Fourier coefficients c_{k} of $g(x)$. Write out the Fourier series.
Answer

$$
\begin{aligned}
c_{k} & =\frac{1}{\mathrm{~T}} \int_{a}^{a+\mathrm{T}} g(x) e^{-i k \frac{2 \pi}{\mathrm{~T}} x} \\
& =\frac{1}{4} \int_{-1}^{1} x e^{-i k \frac{\pi}{2} x} \\
& =\left.\frac{1}{4} x \frac{e^{-i k \frac{\pi}{2} x}}{-i k \frac{\pi}{2}}\right|_{x=-1} ^{1}-\frac{1}{4} \int_{-1}^{1} \frac{e^{-i k \frac{\pi}{2} x}}{-i k \frac{\pi}{2}} \\
& =\left.\frac{1}{4}\left(\frac{x}{-i k \frac{\pi}{2}}-\frac{1}{\left(-i k \frac{\pi}{2}\right)^{2}}\right) e^{-i k \frac{\pi}{2} x}\right|_{x=-1} ^{1}
\end{aligned}
$$

There are several ways to simplify this using $e^{-i k \frac{\pi}{2}(\pm 1)}=\left(e^{i \frac{\pi}{2}}\right)^{\mp k}=i^{\mp k}$, and $i^{-k}=(-1)^{k} i^{k}$. In particular:

$$
c_{k}=\frac{i^{k+1}}{2 k \pi}\left((-1)^{k}+1\right)+\frac{i^{k}}{k^{2} \pi^{2}}\left((-1)^{k}-1\right)
$$

2. Let $f(x)$ be a 2-periodic function (i.e. period $T=2$) and

$$
f(x)= \begin{cases}0 & \text { for } 100<x<101 \\ x & \text { for } 101 \leq x<102\end{cases}
$$

(a) What is the value of $f(301.5)$?
(b) Compute the Fourier coefficients c_{k} of $f(x)$.

Answer
(a) Since the period is $\mathrm{T}=2, f(x)=f(x-k * 2)$ whenever k is an integer.

$$
f(301.5)=f(301.5-100 * 2)=f(101.5)=101.5
$$

(b)

$$
\begin{aligned}
c_{k} & =\frac{1}{\mathrm{~T}} \int_{a}^{a+\mathrm{T}} f(x) e^{-i k \frac{2 \pi}{\mathrm{~T}} x} \\
& =\frac{1}{2} \int_{100}^{102} f(x) e^{-i k \pi x} \\
& =0+\frac{1}{2} \int_{101}^{102} x e^{-i k \pi x} \\
& =\left.\frac{1}{2}\left(x \frac{e^{-i k \pi x}}{-i k \pi}-\frac{e^{-i k \pi x}}{(-i k \pi)^{2}}\right)\right|_{x=101} ^{102}
\end{aligned}
$$

To simplify, we will use $e^{-i k \pi 101}=(-1)^{k}$ and $e^{-i k \pi 102}=1$, since $102 \cdot k$ is even and $101 \cdot k$ is odd if and only if k is odd.

$$
c_{k}=\frac{i}{2 k \pi}\left(102-(-1)^{k} \cdot 101\right)+\frac{1}{2 k^{2} \pi^{2}}\left(1-(-1)^{k}\right)
$$

3. Consider a pair of periodic signals $f(t)$ and $g(t)$, both with period $\mathrm{T}=2 \pi$. Suppose that all we know is that the Fourier coefficients c_{k} of $f(t)$ and the Fourier coefficients d_{k} of $g(t)$ satisfy:

$$
\begin{cases}c_{k}=d_{k} & \text { for }-100 \leq k \leq 100 \\ c_{k}=d_{k}+3^{-|k|} & \text { for }|k|>100\end{cases}
$$

Compute $\int_{-\pi}^{\pi}|f(t)-g(t)|^{2} d t$.
Answer
Since $f(t)$ and $g(t)$ both have period $\mathrm{T}=2 \pi$, then so does $h(t)=f(t)-$ $g(t)$. Moreover:

$$
\left.\begin{array}{l}
f(t)=\sum_{k} c_{k} e^{i k \frac{2 \pi}{\mathrm{~T}} t} \\
g(t)=\sum_{k} d_{k} e^{i k \frac{2 \pi}{\mathrm{~T}} t}
\end{array}\right\} \Rightarrow f(t)-g(t)=h(t)=\sum_{k}\left(c_{k}-d_{k}\right) e^{i k \frac{2 \pi}{\mathrm{~T}} t}
$$

Now forget for a minute where $h(t)$ comes from - it has period 2π, so by Parseval's theorem (or orthogonality):

$$
\frac{1}{2 \pi} \int_{-\pi}^{-\pi+2 \pi}|h(t)|^{2} d t=\sum_{k}\left|h_{k}\right|^{2}
$$

where h_{k} are the Fourier series coefficients for $h(t)$. We found above that,

$$
h_{k}=c_{k}-d_{k}= \begin{cases}0 & \text { for }-100 \leq k \leq 100 \\ -3^{-|k|} & \text { for }|k|>100\end{cases}
$$

This means:

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{-\pi}^{+\pi}|h(t)|^{2} d t & =\sum_{k=-\infty}^{-101}\left|-3^{-|k|}\right|^{2}+\sum_{k=-100}^{100} 0+\sum_{k=101}^{\infty}\left|-3^{-|k|}\right|^{2} \\
& =2 \sum_{k=101}^{\infty} 3^{-2|k|} \\
& =2\left(\sum_{k=0}^{\infty}\left(\frac{1}{9}\right)^{k}-\sum_{k=0}^{100}\left(\frac{1}{9}\right)^{k}\right) \\
& =2\left(\frac{1-\left(\frac{1}{9}\right)^{\infty}}{1-\frac{1}{9}}-\frac{1-\left(\frac{1}{9}\right)^{101}}{1-\frac{1}{9}}\right)
\end{aligned}
$$

Don't forget about $\frac{1}{\mathrm{~T}}$ from the left side. Conclude that:

$$
\int_{-\pi}^{\pi}|f(t)-g(t)|^{2} d t=\int_{-\pi}^{+\pi}|h(t)|^{2} d t=\frac{\pi}{2 \cdot 9^{100}}
$$

4. Consider the function, defined for $0<x<2$ by:

$$
f(x)= \begin{cases}0 & \text { for } 0<x<1 \\ 1 & \text { for } 1<x<2\end{cases}
$$

(a) Sketch the graph of even extension, $f_{\text {even }}(x)$.
(b) Compute the Fourier coefficients c_{k} of the even extension.
(c) What is the sum of the resulting Fourier series for $x=2$? Give a numeric value.

Answer
(a) The even extension is +1 for $-2<x<-1$, zero for $-1<x<1$, then +1 for $1<x<2$. This pattern is repeated.
The even extension has period $\mathrm{T}=4$. It is convenient to think of a period as starting at $a=-1$, because then the first cycle is easy to describe: zero for $-1<x<1$ and +1 for $1<x<3$.
(b)

$$
\begin{aligned}
c_{k} & =\frac{1}{\mathrm{~T}} \int_{a}^{a+\mathrm{T}} f_{\text {even }}(x) \overline{e^{i k \frac{2 \pi}{\mathrm{~T}} x}} \\
& =\frac{1}{4} \int_{-1}^{-1+4} f_{\text {even }}(x) e^{-i k \frac{2 \pi}{4} x} \\
& =0+\frac{1}{4} \int_{1}^{3} 1 \cdot e^{-i k \frac{\pi}{2} x} \\
& =\frac{i}{2 k \pi}\left(e^{-i 3 k \frac{\pi}{2}}-e^{-i k \frac{\pi}{2}}\right) \\
& =\frac{i}{2 k \pi} e^{-i k \pi}\left(e^{-i k \frac{\pi}{2}}-e^{+i k \frac{\pi}{2}}\right) \\
& =\frac{i^{k+1}(-1)^{k}\left((-1)^{k}-1\right)}{2 k \pi} \\
c_{0} & =\frac{1}{\mathrm{~T}} \int_{a}^{a+\mathrm{T}} f_{\text {even }}(x) \cdot 1 \\
& =0+\frac{1}{4} \int_{1}^{3} 1 \cdot 1 \\
& =\frac{1}{2}
\end{aligned}
$$

Don't forget to calculate c_{0} separately! It is not necessary to simplify c_{k} to the level shown.
5. For $-1<x<1$,

$$
x^{3}=\sum_{k \neq 0} i\left(\frac{1}{k \pi}-\frac{3}{2} \frac{1}{k^{3} \pi^{3}}\right) e^{i k \pi x}
$$

Rewrite this as a real Fourier series.
Answer
Use Euler: $e^{i k \pi x}=\cos (k \pi x)+i \sin (k \pi x)$, and split the sum:
$x^{3}=\sum_{m=-\infty}^{-1} i\left(\frac{1}{m \pi}-\frac{3}{2} \frac{1}{m^{3} \pi^{3}}\right)(\cos (m \pi x)+i \sin (m \pi x))+\sum_{k=1}^{\infty} i\left(\frac{1}{k \pi}-\frac{3}{2} \frac{1}{k^{3} \pi^{3}}\right)(\cos (k \pi x)+i \sin (k \pi x))$
Now flip the sign of m, and match like terms. In particular, note that $\cos (-k \pi x)=\cos (k \pi x)$ and $\sin (-k \pi x)=-\sin (k \pi x)$.

$$
\begin{aligned}
x^{3}= & \sum_{k=1}^{\infty}\left(i\left(\frac{1}{-k \pi}-\frac{3}{2} \frac{1}{(-k)^{3} \pi^{3}}\right)+i\left(\frac{1}{k \pi}-\frac{3}{2} \frac{1}{k^{3} \pi^{3}}\right)\right) \cos (k \pi x) \\
& +\sum_{k=1}^{\infty}\left(-i\left(\frac{1}{-k \pi}-\frac{3}{2} \frac{1}{(-k)^{3} \pi^{3}}\right)+i\left(\frac{1}{k \pi}-\frac{3}{2} \frac{1}{k^{3} \pi^{3}}\right)\right) i \sin (k \pi x) \\
= & \sum_{k=1}^{\infty}(-2)\left(\frac{1}{k \pi}-\frac{3}{2} \frac{1}{k^{3} \pi^{3}}\right) \sin (k \pi x)
\end{aligned}
$$

