Math 267 - Midterm 2
 $7-8 \mathrm{pm}$, March $7^{\text {st }} 2013$

Last Name:

First Name:

SID:

Instructor:
Section:

Instructions

- Do not open this test until instructed to do so.
- This exam should have $\mathbf{7}$ pages. The last page is a formula sheet.
- Use the reverse side of each page if you need extra space.
- Show all your work and write answers in the spaces indicated. A correct answer without intermediate steps will receive no credit.
- Calculators, phones, textbooks and notes are not allowed.
- The total time allowed is 60 minutes.

Part	Out of	Score
I.	17	
II.	8	
TOTAL	25	

Part I. [17 points]

(A) (4 points)

Compute the Fourier transform of $f(t)$, where:

Solution Notice that $\frac{d}{d t} f(t)=\operatorname{rect}(t-1 / 2)-\operatorname{rect}(t-3 / 2)$. Since $\mathcal{F}\left[\frac{d}{d t} f(t)\right]=i \omega \mathcal{F}[f(t)]$, for $\omega \neq 0$,

$$
\begin{aligned}
\mathcal{F}[f(t)](\omega) & =\frac{1}{i \omega} \mathcal{F}[\operatorname{rect}(t-1 / 2)-\operatorname{rect}(t-3 / 2)](\omega) \\
& =\frac{1}{i \omega}\left(e^{-i \omega / 2} \operatorname{sinc}(\omega / 2)-e^{-i 3 \omega / 2} \operatorname{sinc}(\omega / 2)\right) \\
& =\frac{1}{i \omega}\left(e^{-i \omega}\left(e^{i \omega / 2}-e^{-i \omega / 2}\right) \operatorname{sinc}(\omega / 2)\right. \\
& =e^{-i \omega} \operatorname{sinc}(\omega / 2)^{2}
\end{aligned}
$$

For $\omega=0, \mathcal{F}(f(t)](0)=\int_{-\infty}^{\infty} f(t) d t=1$.

Answer:

$$
e^{-i \omega} \operatorname{sinc}(\omega / 2)^{2} .
$$

(B) (4 points)

Let $f(t)=t$ and $g(t)=\operatorname{rect}(t)$. Calculate $(f * g)(t)$. Solution:

$$
\begin{aligned}
(f * g)(t) & =(g * f)(t)=\int_{-\infty}^{\infty}(t-s) \operatorname{rect}(s) d s \\
& =\int_{-1 / 2}^{1 / 2}(t-s) d s \\
& =\int_{-1 / 2}^{1 / 2} t d s-\int_{-1 / 2}^{1 / 2} s d s \\
& =t \int_{-1 / 2}^{1 / 2} 1 d s-\int_{-1 / 2}^{1 / 2} s d s \\
& =t
\end{aligned}
$$

(C) (4 points)

Compute the Fourier transform of $h(t)=\cos (-3 t) \sin (2 t)$.

SolutionNote that

$$
\begin{aligned}
\cos (-3 t) \sin (2 t) & =\frac{1}{2}\left(e^{-i 3 t}+e^{i 3 t}\right) \frac{1}{2 i}\left(e^{i 2 t}-e^{-i 2 t}\right) \\
& =\frac{1}{4 i}\left(e^{-i t}-e^{-i 5 t}+e^{i 5 t}-e^{i t}\right)
\end{aligned}
$$

Thus, its Fourier transform is $\frac{2 \pi}{4 i}(\delta(t+1)-\delta(t+5)+\delta(t-5)-\delta(t-1))$

Answer:

$$
\frac{\pi}{2 i}(\delta(t+1)-\delta(t+5)+\delta(t-5)-\delta(t-1))
$$

(D) (5 points)

Consider the ODE:

$$
y^{\prime \prime}(t)-y(t)=x(t)
$$

Using the Fourier transform, find $y(t)$ when $x(t)=\delta(t)$.

Solution: Take Fourier transform of the differential equation to get

$$
(i \omega)^{2} \widehat{y}(\omega)-\widehat{y}(\omega)=\widehat{x}(\omega)
$$

Since $\mathcal{F}[\delta(t)](\omega)=1$,

$$
\begin{aligned}
\widehat{y}(\omega) & =\frac{1}{(i \omega)^{2}-1} \\
& =\frac{1}{2}\left(\frac{1}{i \omega-1}-\frac{1}{i \omega+1}\right)
\end{aligned}
$$

Thus, from Fourier inversion,

$$
y(t)=\frac{1}{2}\left(-e^{t} u(-t)-e^{-t} u(t)\right)
$$

Answer:

$$
y(t)=\frac{1}{2}\left(-e^{t} u(-t)-e^{-t} u(t)\right)
$$

Part II. [8 points]:

(A) (4 points)

Find $g(t)$ if $\widehat{g}(\omega)=i \omega \operatorname{rect}(\omega)$.
SolutionDifferentiation property implies

$$
i \omega \operatorname{rect}(\omega)=\mathcal{F}\left[\frac{d}{d t} f(t)\right](\omega)
$$

where $f(t)$ is the Fourier inversion of $\operatorname{rect}(\omega)$. From duality, $f(t)=\frac{1}{2 \pi} \operatorname{sinc}(t / 2)$. Thus,

$$
g(t)=\frac{d}{d t} \frac{1}{2 \pi} \operatorname{sinc}(t / 2)
$$

Here, for $t \neq 0$,

$$
\begin{aligned}
\frac{d}{d t} \operatorname{sinc}(t) & =\frac{d}{d t} \frac{2}{t} \sin (t / 2) \\
& =\left(\frac{-2}{t^{2}} \sin (t / 2)+\frac{2}{t} \cdot \frac{1}{2} \cos (t / 2)\right)
\end{aligned}
$$

Note that for $t=0,\left.\frac{d}{d t} \operatorname{sinc}(t)\right|_{t=0}=0$. Thus,

$$
g(t)=\left\{\begin{array}{lr}
\frac{1}{\pi}\left(\frac{-1}{t^{2}} \sin (t / 2)+\frac{1}{2 t} \cos (t / 2)\right) & t \neq 0 \\
0 & t=0
\end{array}\right.
$$

Answer:

$$
g(t)=\left\{\begin{array}{lr}
\frac{1}{\pi}\left(\frac{-1}{t^{2}} \sin (t / 2)+\frac{1}{2 t} \cos (t / 2)\right) & t \neq 0 \\
0 & t=0
\end{array}\right.
$$

(B) (4 points)

Suppose $\widehat{y}(\omega)=\widehat{H}(\omega) \widehat{x}(\omega)$. Let

$$
\widehat{H}(\omega)=\frac{1}{\omega} \quad \text { and } \quad x(t)=e^{i t} u(t) .
$$

Find $y(t)$. (Hint: start by finding $\widehat{x}(\omega)$.)
Solution: Note that $\widehat{u}(\omega)=\frac{1}{i \omega}+\pi \delta(\omega)$. Thus, time shifting gives,

$$
\begin{aligned}
\widehat{H}(\omega) \widehat{x}(\omega) & =\frac{1}{\omega}\left(\frac{1}{i(\omega-1)}+\pi \delta(\omega-1)\right) \\
& =\frac{1}{\omega} \frac{1}{i(\omega-1)}+\pi \frac{1}{\omega} \delta(\omega-1) \\
& =\frac{1}{\omega} \frac{1}{i(\omega-1)}+\pi \delta(\omega-1) \\
& =\frac{1}{i}\left(\frac{1}{\omega-1}-\frac{1}{\omega}\right)+\pi \delta(\omega-1) \\
& =-\frac{1}{i \omega}+\frac{1}{i(\omega-1)}+\pi \delta(\omega-1) \\
& =-\left[\frac{1}{i \omega}+\pi \delta(\omega)\right]+\pi \delta(\omega)+\left[\frac{1}{i(\omega-1)}+\pi \delta(\omega-1)\right]
\end{aligned}
$$

Thus, Fourier inversion gives,

$$
y(t)=-u(t)+\frac{1}{2}+e^{i t} u(t) .
$$

Answer:
$-u(t)+\frac{1}{2}+e^{i t} u(t)$.

End of Exam

