Math 267, Section 202 : HW 9

Due Wednesday, March 27th.

1. [Convolution of non-periodic signals]

Recall for integers $n \in \mathbb{Z}$,
$u[n]=\left\{\begin{array}{ll}1 & \text { if } n \geq 0, \\ 0 & \text { otherwise } .\end{array} \quad \delta[n]=\left\{\begin{array}{ll}1 & \text { if } n=0, \\ 0 & \text { otherwise } .\end{array} \quad \delta_{n_{0}}[n]= \begin{cases}1 & \text { if } n=n_{0}, \\ 0 & \text { otherwise } .\end{cases}\right.\right.$
Recall the class example $(u * u)[n]=(n+1) u[n]$.
(a) Find $\overbrace{\left(\delta_{2} * \delta_{2} * \cdots * \delta_{2}\right)}^{100 \text { times }}[n]$.
(b) Let $f[n]=u[n-2] . g[n]=u[n+3]$.
i. Find $(f * u)[n]$.
ii. Find $(f * g)[n]$.
(c) Let

$$
h[n]=\left\{\begin{array}{lc}
1 & |n| \leq 3 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find $(h * u)[n]$
i. first, by computing the convolution sum directly;
ii. second, by using the algebraic properties of the convolution and using $(u * u)[n]=(n+1) u[n]$.
2. [Discrete-time Fourier transform for non-periodic signals]
(a) $x[n]=\delta_{2}[n]+\delta_{-2}[n]$
(b) $y[n]=\left(\frac{1}{5}\right)^{n} u[n-1]$
(c) $z[n]=\left(\frac{1}{5}\right)^{|n+1|}$
3. [NOT TO HAND IN] [Inverse discrete-time Fourier transform for non-periodic signals]
Recall the discrete-time Fourier transforms of $\delta_{n_{0}}[n]$ and $a^{n} u[n]$ (for $|a|<$ 1) are $e^{-i \omega n_{0}}$ and $\frac{1}{1-a e^{-i \omega}}$, respectively.

Use these to find discrete-time signals $x[n], y[n], z[n]$, whose Fourier transforms are given below. (Here, each answer should be a signal defined on the set of integers: $n \in \mathbb{Z}$.)
(a) $\widehat{x}(\omega)=\cos ^{2} \omega+\cos \omega \sin \omega$. (Hint: Can we express this as combination of complex exponentials?)
(b)

$$
\widehat{y}(\omega)=1+\frac{e^{i 2 \omega}}{1+\frac{1}{3} e^{-i \omega}}
$$

(Hint; you may want to use time-shift property: see the table in page 12 in the online note " Discrete-time Fourier series and Fourier Transforms".)
(c)

$$
\widehat{z}(\omega)=\frac{1}{\left(1+\frac{1}{2} e^{-i \omega}\right)\left(1+\frac{1}{3} e^{-i \omega}\right)}
$$

(Hint: use partial fractions.)
4. Let $x[n]=\left(\frac{1}{3}\right)^{n} u[n]$ and $y[n]=\left(\frac{1}{5}\right)^{n} u[n]$
(a) Find $(x * y)[n]$ by directly computing the convolution summation.
(b) Find $(x * y)[n]$ by applying DTFT.
(c) Check whether you get the same answer from (a) and (b).
5. Use DTFT to find a discrete time signal $y[n]$ that satisfies

$$
y[n]-\frac{1}{4} y[n-2]=\delta[n-2] \quad \text { for all integer } n
$$

(Hint: you may need to do partial fractions.)
6. Consider an LTI system given by the following difference equation:

$$
y[n]-3 y[n-1]=x[n] \quad \text { for all integers } n
$$

(a) Find the impulse response function $h[n]$ satisfying $h[n]=0$ for all $n<0$. For this case, find $y[n]$ when $x[n]=u[n]$.
(b) Find the impulse response function $h[n]$ satisfying $h[0]=0$. For this case, find $y[n]$ when $x[n]=u[n]$.

