
Math 267, Section 202 : HW 9

Due Wednesday, March 27th.

1. [Convolution of non-periodic signals]

Recall for integers n ∈ Z,

u[n] =

{
1 if n ≥ 0 ,

0 otherwise.
δ[n] =

{
1 if n = 0,

0 otherwise.
δn0

[n] =

{
1 if n = n0,

0 otherwise.

Recall the class example (u ∗ u)[n] = (n+ 1)u[n].

(a) Find

100 times︷ ︸︸ ︷
(δ2 ∗ δ2 ∗ · · · ∗ δ2)[n].

(b) Let f [n] = u[n− 2]. g[n] = u[n+ 3].

i. Find (f ∗ u)[n].

ii. Find (f ∗ g)[n].

(c) Let

h[n] =

{
1 |n| ≤ 3 ,

0 otherwise.

Find (h ∗ u)[n]

i. first, by computing the convolution sum directly;

ii. second, by using the algebraic properties of the convolution and
using (u ∗ u)[n] = (n+ 1)u[n].

Solution

(a): Recall δa[n] = δ[n − a] for a ∈ Z. δa ∗ δb = δa+b. By associativity,

δa ∗ δb ∗ δc = δa+b+c, and so on. Thus,

100 times︷ ︸︸ ︷
(δ2 ∗ δ2 ∗ · · · ∗ δ2)[n] = δ2×100[n] =

δ200[n].

(b); Note that we can write f [n] = (δ2 ∗ u)[n] and g[n] = (δ−3 ∗ u)[n].
Thus,

(f ∗ u)[n] = (δ2 ∗ u ∗ u)[n] = (u ∗ u)[n− 2] = (n− 2 + 1)u[n− 2] = (n− 1)u[n− 2]

(f ∗ g)[n] = (δ2 ∗ u ∗ δ−3 ∗ u)[n] = (δ2 ∗ δ−3 ∗ u ∗ u)[n] = (δ−1 ∗ u ∗ u)[n] = (n+ 1 + 1)u[n+ 1] = (n+ 2)u[n+ 1].

(c):
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(i):

(h ∗ u)[n] =

∞∑
m=−∞

h[m]u[n−m] =

n∑
m=−∞

h[m]u[n−m] (require n−m ≥ 0)

=

n∑
m=−∞

h[m]

=


0 for n < −3,

n+ 4 for −3 ≤ n ≤ 3,

7 for n > 3.

(ii) Note that h[n] = u[n + 3] − u[n − 4] = (δ−3 ∗ u)[n] − (δ4 ∗ u)[n].
Therefore,

(h ∗ u)[n] = (δ−3 ∗ u ∗ u)[n]− (δ4 ∗ u ∗ u)[n] = (n+ 3 + 1)u[n+ 3]− (n− 4 + 1)u[n− 4]

= (n+ 4)u[n+ 3]− (n− 3)u[n− 4]

Notice that

(n+ 4)u[n+ 3]− (n− 3)u[n− 4] =


0 for n < −3,

n+ 4 for −3 ≤ n ≤ 3,

(n+ 4)− (n− 3) = 7 for n > 3.

Thus, the answers in (i) and (ii) coincide.

2. [Discrete-time Fourier transform for non-periodic signals]

(a) x[n] = δ2[n] + δ−2[n]

(b) y[n] =
(
1
5

)n
u[n− 1]

(c) z[n] =
(
1
5

)|n+1|

Solution

(a)

x̂(ω) = δ̂2(ω) + δ̂−2(ω) = e−2iω + e+2iω = 2 cos(2ω)

Here in the first equality, we used the linearity and in the second equality
we used the time-shift property. (Of course, in this simple case, we can
just apply the definition of Fourier transform and the Delta function.)

(b): y[n] =
(
1
5

)n
u[n − 1] =

(
1
5

)(
1
5

)n−1
u[n − 1]. Thus, using time-shift

(using F to denote the discrete-time Fourier transform),

ŷ(ω) =
1

5
F [
(1

5

)n−1
u[n− 1]](ω) =

1

5
e−iωF [

(1

5

)n
u[n]](ω)

=
1

5
e−iω

1

1− 1
5e
−iω
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(c) Notice that since 1 = u[n] + u[−n − 1], one can write any x[n] as
x[n] = x[n]u[n] + x[n]u[−n− 1]

z[n] =
(
1
5

)|n+1|
=
(
1
5

)|n+1|
u[n] +

(
1
5

)|n+1|
u[−n − 1] which then can be

written as

z[n] =
(1

5

)n+1
u[n] +

(1

5

)−(n+1)
u[−(n+ 1)]

Thus,

ẑ(ω) =
1

5
F
[(1

5

)n
u[n]

]
(ω) + F

[(1

5

)−(n+1)
u[−(n+ 1)]

]
(ω)

Note

F
[(1

5

)n
u[n]

]
(ω) =

1

1− 1
5e
−iω

F
[(1

5

)−(n+1)
u[−(n+ 1)]

]
(ω) = e+iωF

[(1

5

)−n
u[−n]

]
(ω) (time-shift)

= e+iωF
[(1

5

)n
u[n]

]
(−ω) (time-reversal)

= eiω
1

1− 1
5e

iω

Therefore,

ẑ(ω) =
1

5
× 1

1− 1
5e
−iω + eiω

1

1− 1
5e

iω

Remark: The time-reversal property is in the online notes page 12 in the
table, and it can also be proved very easily:

F [x[−n]](ω) =

∞∑
n=−∞

x[−n]e−inω =

∞∑
m=−∞

x[m]e−im(−ω) change of index m = −n

= F [x[n]](−ω)

3. [NOT TO HAND IN] [Inverse discrete-time Fourier transform for
non-periodic signals]

Recall the discrete-time Fourier transforms of δn0
[n] and anu[n] (for |a| <

1) are e−iωn0 and 1
1−ae−iω , respectively.

Use these to find discrete-time signals x[n], y[n], z[n], whose Fourier trans-
forms are given below. (Here, each answer should be a signal defined on
the set of integers: n ∈ Z.)

(a) x̂(ω) = cos2 ω + cosω sinω. (Hint: Can we express this as combina-
tion of complex exponentials?)
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(b)

ŷ(ω) = 1 +
ei2ω

1 + 1
3e
−iω

(Hint; you may want to use time-shift property: see the table in
page 12 in the online note ” Discrete-time Fourier series and Fourier
Transforms”.)

(c)

ẑ(ω) =
1

(1 + 1
2e
−iω)(1 + 1

3e
−iω)

.

(Hint: use partial fractions.)

Solution

(a): Note that

cos2 ω + cosω sinω =
(eiω + e−iω

2

)2
+
eiω + e−iω

2

eiω − e−iω

2i

=
1

4
(e2iω + 2 + e−2iω) +

1

4i
(e2iω − e−2iω)

Thus, denoting the inverse discrete-time Fourier transform by F−1, we see

x[n] = F−1[x̂(ω)][n] =
1

4
(F−1[e2iω][n] + F−1[2][n] + F−1[e−2iω][n]) +

1

4i
(F−1[e2iω][n]−F−1[e−2iω][n])

=
1

4
(δ[n+ 2] + 2δ[n] + δ[n− 2]) +

1

4i
(δ[n+ 2]− δ[n− 2])

=


1
4 −

1
4i for n = 2 ,

1
4 + 1

4i for n = −2 ,
1
2 for n = 0 ,

0 otherwise.

(b)

y[n] = F−1
[
1
]
[n] + F−1

[ ei2ω

1 + 1
3e
−iω

]
[n]

Note that by the time-shift property, 4 ei2ω

1+ 1
3 e

−iω = F [
(
− 1

3

)n+2
u[n+2]](ω),

therefore, F−1
[

ei2ω

1+ 1
3 e

−iω

]
[n] =

(
− 1

3

)n+2
u[n+ 2]. Thurs,

y[n] = δ[n] +
(
− 1

3

)n+2
u[n+ 2]
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(c): Use partial fractions to see,

ẑ(ω) =
1

(1 + 1
2e
−iω)(1 + 1

3e
−iω)

=
A

(1 + 1
2e
−iω)

+
B

(1 + 1
3e
−iω)

where

1 = A+
A

3
e−iω +B +

B

2
e−iω

Thus, A+B = 1 and A/3 +B/2 = 0, and A = 3, B = −2.

Thus,

z[n] = 3F−1
[ 1

1 + 1
2e
−iω

]
[n]− 2F−1

[ 1

1 + 1
3e
−iω

]
[n]

= 3
(
− 1

2

)n
u[n] + 2

(
− 1

3

)n
u[n]

=
(

3
(
− 1

2

)n − 2
(
− 1

3

)n)
u[n]

=

{
3
(
− 1

2

)n − 2
(
− 1

3

)n
for n ≥ 0 ,

0 otherwise.

Second method: Use the convolution property: for x̂(ω) = 1
1+ 1

2 e
−iω , ŷ(ω) =

1
1+ 1

3 e
−iω , we see

z[n] = (x ∗ y)[n].

Notice that x[n] =
(
− 1

2

)n
u[n], y[n] =

(
− 1

3

)n
u[n].
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Therefore,

z[n] =

∞∑
m=−∞

x[m]y[n−m]

=

∞∑
m=−∞

(
− 1

2

)m
u[m]

(
− 1

3

)n−m
u[n−m]

=
(
− 1

3

)n ∞∑
m=−∞

(3

2

)m
u[m]u[n−m] (require m ≥ 0 and n−m ≥ 0 )

=

{(
− 1

3

)n∑n
m=0

(
3
2

)m
for n ≥ 0 ,

0 otherwise.

=


(
− 1

3

)n( 1−
(

3
2

)n+1

1− 3
2

)
for n ≥ 0 ,

0 otherwise.

=

{
−2
(
− 1

3

)n
+ 3
(
− 1

2

)n
for n ≥ 0 ,

0 otherwise.

Check that the two methods gave the same answer.

4. Let x[n] =
(
1
3

)n
u[n] and y[n] =

(
1
5

)n
u[n]

(a) Find (x ∗ y)[n] by directly computing the convolution summation.

Solution

(x ∗ y)[n] =

∞∑
m=−∞

x[m]y[n−m]

=

∞∑
m=−∞

(1

3

)m(1

5

)n−m
u[m]u[n−m]

=
(1

5

)n ∞∑
m=−∞

(1

3

)m(1

5

)−m
u[m]u[n−m]

=
(1

5

)n ∞∑
m=−∞

(5

3

)m
u[m]u[n−m]

=
(1

5

)n
u[n]

n∑
m=0

(5

3

)m
=
(1

5

)n
u[n]

1−
(
5
3

)n+1

1− 5
3

=
(1

5

)n ( 53)n+1 − 1
2
3

u[n]
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(b) Find (x ∗ y)[n] by applying DTFT.

Solution (Note 1
3 ,

1
5 < 1, so we can apply the basic example for the

DTFT.)

x[n] =
(1

3

)n
u[n]→ DTFT → 1

1− 1
3e
−iω

y[n] =
(1

5

)n
u[n]→ DTFT → 1

1− 1
5e
−iω

Now

(x ∗ y)[n] =→ DTFT → 1

1− 1
3e
−iω

1

1− 1
5e
−iω

Here, partial fraction gives

1

1− 1
3e
−iω

1

1− 1
5e
−iω =

1

2

( 5

1− 1
3e
−iω −

3

1− 1
5e
−iω

)
Now, using basic examples, we see

1

2

( 5

1− 1
3e
−iω −

3

1− 1
5e
−iω

)
→ inverse DTFT → 1

2

(
5
(1

3

)n
u[n]− 3

(1

5

)n
u[n]

)
Therefore,

(x ∗ y)[n] =
1

2

(
5
(1

3

)n
u[n]− 3

(1

5

)n
u[n]

)
=

1

2

(
5
(1

3

)n − 3
(1

5

)n)
u[n]

(c) Check whether you get the same answer from (a) and (b).

Solution Let us start with the answer from (a)

(1

5

)n ( 53)n+1 − 1
2
3

u[n]

=

(
1
5

)n( 5
3

)n+1 −
(
1
5

)n
2
3

u[n]

=
5
3

(
1
3

)n − ( 15)n
2
3

u[n]

=
1

2

(
5
(1

3

)n − 3
(1

5

)n)
u[n]

and in the last line get the same answer as in (b).
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5. Use DTFT to find a discrete time signal y[n] that satisfies

y[n]− 1

4
y[n− 2] = δ[n− 2] for all integer n.

(Hint: you may need to do partial fractions.)

Solution

Using the time-shift property and a basic example:

ŷDT (ω)− 1

4
e−iω 2ŷDT (ω) = e−iω 2

ŷDT (ω) = e−iω 2 · 1

1− 1
4e
−iω 2

ŷDT (ω) = e−iω 2

(
1(

1 + 1
2e
−iω
) (

1− 1
2e
−iω
))

ŷDT (ω) =
1

2
e−iω 2

(
1

1 + 1
2e
−iω +

1

1− 1
2e
−iω

)
Which can be seen as either a time-shift of the other basic example, or as
the product of the two basic examples. Under the second interpretation:

y[n] =
1

2
δ2[n] ∗

((
−1

2

)n

u[n]

)
+

1

2
δ2[n] ∗

((
1

2

)n

u[n]

)
=

1

2

(
−1

2

)n−2

u[n− 2] +
1

2

(
1

2

)n−2

u[n− 2]

6. Consider an LTI system given by the following difference equation:

y[n]− 3y[n− 1] = x[n] for all integers n.

(a) Find the impulse response function h[n] satisfying h[n] = 0 for all
n < 0. For this case, find y[n] when x[n] = u[n].

Solution

To compute h[n]: We have these equations:
y[n̄]− 3y[n̄− 1] = 0 for n̄ < 0

y[0]− 3y[−1] = 1

y[n̄]− 3y[n̄− 1] = 0 for n̄ > 0

From the equations when n̄ < 0:

y[−1] = 3y[−2] → y[−2] =
1

3
y[−1]

y[−2] = 3y[−3] → y[−3] =
1

3
y[−2] =

1

32
y[−1]

y[−3] = 3y[−4] → y[−4] =
1

3
y[−3] =

1

33
y[−2]

. . .
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We conclude that y[n] = 3n+1y[−1] for n < 0. To make these all
zero, we must have y[−1] = 0.

From the middle equation:

y[0]− 3y[−1] = 1 → y[0] = 1

From the equations when n̄ > 0:

y[1] = 3y[0] → y[1] =
1

3
y[0] =

1

3

y[2] = 3y[1] → y[2] =
1

3
y[1] =

1

32

y[3] = 3y[2] → y[3] =
1

3
y[2] =

1

33

. . .

We conclude that y[n] = 3n for n ≥ 0. All together:

h[n] = 3nu[n]

To compute y[n]: To calculate the output y[n] from the input x[n] =
u[n], use y = h ∗ x.

y[n] = (h ∗ x)[n] =

∞∑
k=−∞

3ku[k]u[n− k]

= u[n]

n∑
k=0

3k · 1

= u[n]

(
1− 3n+1

1− 3

)
(b) Find the impulse response function h[n] satisfying h[0] = 0. For this

case, find y[n] when x[n] = u[n].

Solution

To compute h[n]: We have these equations:
y[n̄]− 3y[n̄− 1] = 0 for n̄ < 0

y[0]− 3y[−1] = 1

y[n̄]− 3y[n̄− 1] = 0 for n̄ > 0

From the equations when n̄ < 0:

y[−1] = 3y[−2] → y[−2] =
1

3
y[−1]

y[−2] = 3y[−3] → y[−3] =
1

3
y[−2] =

1

32
y[−1]

y[−3] = 3y[−4] → y[−4] =
1

3
y[−3] =

1

33
y[−2]

. . .
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We conclude that y[n] = 3n+1y[−1] for n < 0.

From the middle equation and the condition y[0] = 0:

y[0]− 3y[−1] = 1 → y[−1] = −1

3

Thus, we determine,

y[n] = −3n+1 1
3 = −3n for n < 0.

From the equations when n̄ > 0:

y[1] = 3y[0] → y[1] =
1

3
y[0] = 0

y[2] = 3y[1] → y[2] =
1

3
y[1] = 0

y[3] = 3y[2] → y[3] =
1

3
y[2] = 0

. . .

We conclude that y[n] = 0 for n ≥ 0. All together:

h[n] = −3nu[−n− 1]

To compute y[n]: To calculate the output y[n] from the input x[n] =
u[n], use y = h ∗ x.

y[n] = (h ∗ x)[n] =

∞∑
k=−∞

−3ku[−k − 1]u[n− k]

In the last sum, we see that we have nontrivial terms to add only
when −k − 1 ≥ 0 and k ≤ n, that is, k ≤ −1 and k ≤ n.

Two cases:

Case: n ≥ 0

y[n] = (h ∗ x)[n] =

∞∑
k=−∞

−3ku[−k − 1]u[n− k] =

−1∑
k=−∞

−3k = −
m∑

m=1

3−m

= −1

3

∞∑
m=0

3−m

= −1

3

1

1− 1
3

= −1

2
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Case: n ≤ −1

y[n] = (h ∗ x)[n] =

∞∑
k=−∞

−3ku[−k − 1]u[n− k]

=

n∑
k=−∞

−3k

= −3n
n∑

k=−∞

3k−n

= −3n
0∑

m=−∞
3m (change of index m = k − n)

= −3n
∞∑
l=0

3−l (change of index l = −m)

= −3n
1

1− 1
3

= −3n+1

2

Combining the two cases, we see

y[n] = −1

2
u[n]− 3n+1

2
u[−n− 1]
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