Math 267, Section 202 : HW 9

Due Wednesday, March 27th.

1. [Convolution of non-periodic signals]

Recall for integers $n \in \mathbb{Z}$,
$u[n]=\left\{\begin{array}{ll}1 & \text { if } n \geq 0, \\ 0 & \text { otherwise } .\end{array} \quad \delta[n]=\left\{\begin{array}{ll}1 & \text { if } n=0, \\ 0 & \text { otherwise } .\end{array} \quad \delta_{n_{0}}[n]= \begin{cases}1 & \text { if } n=n_{0}, \\ 0 & \text { otherwise } .\end{cases}\right.\right.$
Recall the class example $(u * u)[n]=(n+1) u[n]$.
(a) Find $\overbrace{\left(\delta_{2} * \delta_{2} * \cdots * \delta_{2}\right)}^{100 \text { times }}[n]$.
(b) Let $f[n]=u[n-2] . g[n]=u[n+3]$.
i. Find $(f * u)[n]$.
ii. Find $(f * g)[n]$.
(c) Let

$$
h[n]=\left\{\begin{array}{cc}
1 & |n| \leq 3 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find $(h * u)[n]$
i. first, by computing the convolution sum directly;
ii. second, by using the algebraic properties of the convolution and using $(u * u)[n]=(n+1) u[n]$.

Solution

(a): Recall $\delta_{a}[n]=\delta[n-a]$ for $a \in \mathbb{Z} . \delta_{a} * \delta_{b}=\delta_{a+b}$. By associativity,
$\delta_{a} * \delta_{b} * \delta_{c}=\delta_{a+b+c}$, and so on. Thus, $\overbrace{\left(\delta_{2} * \delta_{2} * \cdots * \delta_{2}\right)}^{100 \text { times }}[n]=\delta_{2 \times 100}[n]=$ $\delta_{200}[n]$.
(b); Note that we can write $f[n]=\left(\delta_{2} * u\right)[n]$ and $g[n]=\left(\delta_{-3} * u\right)[n]$. Thus,
$(f * u)[n]=\left(\delta_{2} * u * u\right)[n]=(u * u)[n-2]=(n-2+1) u[n-2]=\underline{(n-1) u[n-2]}$
$(f * g)[n]=\left(\delta_{2} * u * \delta_{-3} * u\right)[n]=\left(\delta_{2} * \delta_{-3} * u * u\right)[n]=\left(\delta_{-1} * u * u\right)[n]=(n+1+1) u[n+1]=(n+2) \imath$
(c):
(i):

$$
\begin{aligned}
(h * u)[n] & \left.=\sum_{m=-\infty}^{\infty} h[m] u[n-m]=\sum_{m=-\infty}^{n} h[m] u[n-m] \quad \text { (require } n-m \geq 0\right) \\
& =\sum_{m=-\infty}^{n} h[m] \\
& = \begin{cases}0 & \text { for } n<-3 \\
n+4 & \text { for }-3 \leq n \leq 3 \\
7 & \text { for } n>3\end{cases}
\end{aligned}
$$

(ii) Note that $h[n]=u[n+3]-u[n-4]=\left(\delta_{-3} * u\right)[n]-\left(\delta_{4} * u\right)[n]$.

Therefore,

$$
\begin{aligned}
(h * u)[n] & =\left(\delta_{-3} * u * u\right)[n]-\left(\delta_{4} * u * u\right)[n]=(n+3+1) u[n+3]-(n-4+1) u[n-4] \\
& =\underline{(n+4) u[n+3]-(n-3) u[n-4]}
\end{aligned}
$$

Notice that

$$
(n+4) u[n+3]-(n-3) u[n-4]= \begin{cases}0 & \text { for } n<-3 \\ n+4 & \text { for }-3 \leq n \leq 3 \\ (n+4)-(n-3)=7 & \text { for } n>3\end{cases}
$$

Thus, the answers in (i) and (ii) coincide.
2. [Discrete-time Fourier transform for non-periodic signals]
(a) $x[n]=\delta_{2}[n]+\delta_{-2}[n]$
(b) $y[n]=\left(\frac{1}{5}\right)^{n} u[n-1]$
(c) $z[n]=\left(\frac{1}{5}\right)^{|n+1|}$

Solution

(a)

$$
\widehat{x}(\omega)=\widehat{\delta}_{2}(\omega)+\widehat{\delta}_{-2}(\omega)=e^{-2 i \omega}+e^{+2 i \omega}=2 \cos (2 \omega)
$$

Here in the first equality, we used the linearity and in the second equality we used the time-shift property. (Of course, in this simple case, we can just apply the definition of Fourier transform and the Delta function.)
(b): $y[n]=\left(\frac{1}{5}\right)^{n} u[n-1]=\left(\frac{1}{5}\right)\left(\frac{1}{5}\right)^{n-1} u[n-1]$. Thus, using time-shift (using \mathcal{F} to denote the discrete-time Fourier transform),

$$
\begin{aligned}
\widehat{y}(\omega) & =\frac{1}{5} \mathcal{F}\left[\left(\frac{1}{5}\right)^{n-1} u[n-1]\right](\omega)=\frac{1}{5} e^{-i \omega} \mathcal{F}\left[\left(\frac{1}{5}\right)^{n} u[n]\right](\omega) \\
& =\frac{1}{5} e^{-i \omega} \frac{1}{1-\frac{1}{5} e^{-i \omega}}
\end{aligned}
$$

(c) Notice that since $1=u[n]+u[-n-1]$, one can write any $x[n]$ as $x[n]=x[n] u[n]+x[n] u[-n-1]$
$z[n]=\left(\frac{1}{5}\right)^{|n+1|}=\left(\frac{1}{5}\right)^{|n+1|} u[n]+\left(\frac{1}{5}\right)^{|n+1|} u[-n-1]$ which then can be written as

$$
z[n]=\left(\frac{1}{5}\right)^{n+1} u[n]+\left(\frac{1}{5}\right)^{-(n+1)} u[-(n+1)]
$$

Thus,

$$
\widehat{z}(\omega)=\frac{1}{5} \mathcal{F}\left[\left(\frac{1}{5}\right)^{n} u[n]\right](\omega)+\mathcal{F}\left[\left(\frac{1}{5}\right)^{-(n+1)} u[-(n+1)]\right](\omega)
$$

Note

$$
\begin{aligned}
\mathcal{F}\left[\left(\frac{1}{5}\right)^{n} u[n]\right](\omega) & =\frac{1}{1-\frac{1}{5} e^{-i \omega}} \\
\mathcal{F}\left[\left(\frac{1}{5}\right)^{-(n+1)} u[-(n+1)]\right](\omega) & =e^{+i \omega} \mathcal{F}\left[\left(\frac{1}{5}\right)^{-n} u[-n]\right](\omega) \quad \quad \text { (time-shift) } \\
& =e^{+i \omega} \mathcal{F}\left[\left(\frac{1}{5}\right)^{n} u[n]\right](-\omega) \quad \text { (time-reversal) } \\
& =e^{i \omega} \frac{1}{1-\frac{1}{5} e^{i \omega}}
\end{aligned}
$$

Therefore,

$$
\widehat{z}(\omega)=\frac{1}{5} \times \frac{1}{1-\frac{1}{5} e^{-i \omega}}+e^{i \omega} \frac{1}{1-\frac{1}{5} e^{i \omega}}
$$

Remark: The time-reversal property is in the online notes page 12 in the table, and it can also be proved very easily:

$$
\begin{aligned}
\mathcal{F}[x[-n]](\omega) & =\sum_{n=-\infty}^{\infty} x[-n] e^{-i n \omega}=\sum_{m=-\infty}^{\infty} x[m] e^{-i m(-\omega)} \quad \text { change of index } m=-n \\
& =\mathcal{F}[x[n]](-\omega)
\end{aligned}
$$

3. [NOT TO HAND IN] [Inverse discrete-time Fourier transform for non-periodic signals]
Recall the discrete-time Fourier transforms of $\delta_{n_{0}}[n]$ and $a^{n} u[n]$ (for $|a|<$ 1) are $e^{-i \omega n_{0}}$ and $\frac{1}{1-a e^{-i \omega}}$, respectively.

Use these to find discrete-time signals $x[n], y[n], z[n]$, whose Fourier transforms are given below. (Here, each answer should be a signal defined on the set of integers: $n \in \mathbb{Z}$.)
(a) $\widehat{x}(\omega)=\cos ^{2} \omega+\cos \omega \sin \omega$. (Hint: Can we express this as combination of complex exponentials?)
(b)

$$
\widehat{y}(\omega)=1+\frac{e^{i 2 \omega}}{1+\frac{1}{3} e^{-i \omega}}
$$

(Hint; you may want to use time-shift property: see the table in page 12 in the online note " Discrete-time Fourier series and Fourier Transforms".)
(c)

$$
\widehat{z}(\omega)=\frac{1}{\left(1+\frac{1}{2} e^{-i \omega}\right)\left(1+\frac{1}{3} e^{-i \omega}\right)} .
$$

(Hint: use partial fractions.)

Solution

(a): Note that

$$
\begin{aligned}
\cos ^{2} \omega+\cos \omega \sin \omega & =\left(\frac{e^{i \omega}+e^{-i \omega}}{2}\right)^{2}+\frac{e^{i \omega}+e^{-i \omega}}{2} \frac{e^{i \omega}-e^{-i \omega}}{2 i} \\
& =\frac{1}{4}\left(e^{2 i \omega}+2+e^{-2 i \omega}\right)+\frac{1}{4 i}\left(e^{2 i \omega}-e^{-2 i \omega}\right)
\end{aligned}
$$

Thus, denoting the inverse discrete-time Fourier transform by \mathcal{F}^{-1}, we see

$$
\begin{aligned}
x[n]= & \mathcal{F}^{-1}[\widehat{x}(\omega)][n]=\frac{1}{4}\left(\mathcal{F}^{-1}\left[e^{2 i \omega}\right][n]+\mathcal{F}^{-1}[2][n]+\mathcal{F}^{-1}\left[e^{-2 i \omega}\right][n]\right)+\frac{1}{4 i}\left(\mathcal{F}^{-1}\left[e^{2 i \omega}\right][n]-\mathcal{F}^{-1}\left[e^{-2 i \omega}\right][n]\right) \\
= & \frac{1}{4}(\delta[n+2]+2 \delta[n]+\delta[n-2])+\frac{1}{4 i}(\delta[n+2]-\delta[n-2]) \\
& = \begin{cases}\frac{1}{4}-\frac{1}{4 i} & \text { for } n=2, \\
\frac{1}{4}+\frac{1}{4 i} & \text { for } n=-2, \\
\frac{1}{2} & \text { for } n=0, \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

(b)

$$
y[n]=\mathcal{F}^{-1}[1][n]+\mathcal{F}^{-1}\left[\frac{e^{i 2 \omega}}{1+\frac{1}{3} e^{-i \omega}}\right][n]
$$

Note that by the time-shift property, $4 \frac{e^{i 2 \omega}}{1+\frac{1}{3} e^{-i \omega}}=\mathcal{F}\left[\left(-\frac{1}{3}\right)^{n+2} u[n+2]\right](\omega)$, therefore, $\mathcal{F}^{-1}\left[\frac{e^{i 2 \omega}}{1+\frac{1}{3} e^{-i \omega}}\right][n]=\left(-\frac{1}{3}\right)^{n+2} u[n+2]$. Thurs,

$$
y[n]=\delta[n]+\left(-\frac{1}{3}\right)^{n+2} u[n+2]
$$

(c): Use partial fractions to see,

$$
\begin{aligned}
\widehat{z}(\omega) & =\frac{1}{\left(1+\frac{1}{2} e^{-i \omega}\right)\left(1+\frac{1}{3} e^{-i \omega}\right)} \\
& =\frac{A}{\left(1+\frac{1}{2} e^{-i \omega}\right)}+\frac{B}{\left(1+\frac{1}{3} e^{-i \omega}\right)}
\end{aligned}
$$

where

$$
1=A+\frac{A}{3} e^{-i \omega}+B+\frac{B}{2} e^{-i \omega}
$$

Thus, $A+B=1$ and $A / 3+B / 2=0$, and $A=3, B=-2$.
Thus,

$$
\begin{aligned}
z[n] & =3 \mathcal{F}^{-1}\left[\frac{1}{1+\frac{1}{2} e^{-i \omega}}\right][n]-2 \mathcal{F}^{-1}\left[\frac{1}{1+\frac{1}{3} e^{-i \omega}}\right][n] \\
& =3\left(-\frac{1}{2}\right)^{n} u[n]+2\left(-\frac{1}{3}\right)^{n} u[n] \\
& =\underline{\left(3\left(-\frac{1}{2}\right)^{n}-2\left(-\frac{1}{3}\right)^{n}\right) u[n]} \\
& =\underline{\begin{array}{ll}
3\left(-\frac{1}{2}\right)^{n}-2\left(-\frac{1}{3}\right)^{n} & \text { for } n \geq 0, \\
0 & \text { otherwise. }
\end{array}}
\end{aligned}
$$

Second method: Use the convolution property: for $\widehat{x}(\omega)=\frac{1}{1+\frac{1}{2} e^{-i \omega}}, \quad \widehat{y}(\omega)=$ $\frac{1}{1+\frac{1}{3} e^{-i \omega}}$, we see
$z[n]=(x * y)[n]$.
Notice that $x[n]=\left(-\frac{1}{2}\right)^{n} u[n], \quad y[n]=\left(-\frac{1}{3}\right)^{n} u[n]$.

Therefore,

$$
\begin{aligned}
z[n] & =\sum_{m=-\infty}^{\infty} x[m] y[n-m] \\
& =\sum_{m=-\infty}^{\infty}\left(-\frac{1}{2}\right)^{m} u[m]\left(-\frac{1}{3}\right)^{n-m} u[n-m] \\
& \left.=\left(-\frac{1}{3}\right)^{n} \sum_{m=-\infty}^{\infty}\left(\frac{3}{2}\right)^{m} u[m] u[n-m] \quad \text { (require } m \geq 0 \text { and } n-m \geq 0\right) \\
& = \begin{cases}\left(-\frac{1}{3}\right)^{n} \sum_{m=0}^{n}\left(\frac{3}{2}\right)^{m} & \text { for } n \geq 0, \\
0 & \text { otherwise. }\end{cases} \\
& = \begin{cases}\left(-\frac{1}{3}\right)^{n}\left(\frac{1-\left(\frac{3}{2}\right)^{n+1}}{1-\frac{3}{2}}\right) & \text { for } n \geq 0, \\
0 & \text { otherwise. }\end{cases} \\
& = \begin{cases}-2\left(-\frac{1}{3}\right)^{n}+3\left(-\frac{1}{2}\right)^{n} & \text { for } n \geq 0, \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Check that the two methods gave the same answer.
4. Let $x[n]=\left(\frac{1}{3}\right)^{n} u[n]$ and $y[n]=\left(\frac{1}{5}\right)^{n} u[n]$
(a) Find $(x * y)[n]$ by directly computing the convolution summation. Solution

$$
\begin{aligned}
(x * y)[n] & =\sum_{m=-\infty}^{\infty} x[m] y[n-m] \\
& =\sum_{m=-\infty}^{\infty}\left(\frac{1}{3}\right)^{m}\left(\frac{1}{5}\right)^{n-m} u[m] u[n-m] \\
& =\left(\frac{1}{5}\right)^{n} \sum_{m=-\infty}^{\infty}\left(\frac{1}{3}\right)^{m}\left(\frac{1}{5}\right)^{-m} u[m] u[n-m] \\
& =\left(\frac{1}{5}\right)^{n} \sum_{m=-\infty}^{\infty}\left(\frac{5}{3}\right)^{m} u[m] u[n-m] \\
& =\left(\frac{1}{5}\right)^{n} u[n] \sum_{m=0}^{n}\left(\frac{5}{3}\right)^{m} \\
& =\left(\frac{1}{5}\right)^{n} u[n] \frac{1-\left(\frac{5}{3}\right)^{n+1}}{1-\frac{5}{3}} \\
= & \left(\frac{1}{5}\right)^{n} \frac{\left(\frac{5}{3}\right)^{n+1}-1}{\frac{2}{3}} u[n]
\end{aligned}
$$

(b) Find $(x * y)[n]$ by applying DTFT.

Solution (Note $\frac{1}{3}, \frac{1}{5}<1$, so we can apply the basic example for the DTFT.)

$$
\begin{aligned}
& x[n]=\left(\frac{1}{3}\right)^{n} u[n] \rightarrow \text { DTFT } \rightarrow \frac{1}{1-\frac{1}{3} e^{-i \omega}} \\
& y[n]=\left(\frac{1}{5}\right)^{n} u[n] \rightarrow \text { DTFT } \rightarrow \frac{1}{1-\frac{1}{5} e^{-i \omega}}
\end{aligned}
$$

Now

$$
(x * y)[n]=\rightarrow \text { DTFT } \rightarrow \frac{1}{1-\frac{1}{3} e^{-i \omega}} \frac{1}{1-\frac{1}{5} e^{-i \omega}}
$$

Here, partial fraction gives

$$
\frac{1}{1-\frac{1}{3} e^{-i \omega}} \frac{1}{1-\frac{1}{5} e^{-i \omega}}=\frac{1}{2}\left(\frac{5}{1-\frac{1}{3} e^{-i \omega}}-\frac{3}{1-\frac{1}{5} e^{-i \omega}}\right)
$$

Now, using basic examples, we see
$\frac{1}{2}\left(\frac{5}{1-\frac{1}{3} e^{-i \omega}}-\frac{3}{1-\frac{1}{5} e^{-i \omega}}\right) \rightarrow$ inverse DTFT $\rightarrow \frac{1}{2}\left(5\left(\frac{1}{3}\right)^{n} u[n]-3\left(\frac{1}{5}\right)^{n} u[n]\right)$
Therefore,

$$
\begin{aligned}
(x * y)[n] & =\frac{1}{2}\left(5\left(\frac{1}{3}\right)^{n} u[n]-3\left(\frac{1}{5}\right)^{n} u[n]\right) \\
& =\underline{\frac{1}{2}\left(5\left(\frac{1}{3}\right)^{n}-3\left(\frac{1}{5}\right)^{n}\right) u[n]}
\end{aligned}
$$

(c) Check whether you get the same answer from (a) and (b).

Solution Let us start with the answer from (a)

$$
\begin{aligned}
& \left(\frac{1}{5}\right)^{n} \frac{\left(\frac{5}{3}\right)^{n+1}-1}{\frac{2}{3}} u[n] \\
& =\frac{\left(\frac{1}{5}\right)^{n}\left(\frac{5}{3}\right)^{n+1}-\left(\frac{1}{5}\right)^{n}}{\frac{2}{3}} u[n] \\
& =\frac{\frac{5}{3}\left(\frac{1}{3}\right)^{n}-\left(\frac{1}{5}\right)^{n}}{\frac{2}{3}} u[n] \\
& =\frac{1}{2}\left(5\left(\frac{1}{3}\right)^{n}-3\left(\frac{1}{5}\right)^{n}\right) u[n]
\end{aligned}
$$

and in the last line get the same answer as in (b).
5. Use DTFT to find a discrete time signal $y[n]$ that satisfies

$$
y[n]-\frac{1}{4} y[n-2]=\delta[n-2] \quad \text { for all integer } n
$$

(Hint: you may need to do partial fractions.)

Solution

Using the time-shift property and a basic example:

$$
\begin{aligned}
\widehat{y}_{D T}(\omega)-\frac{1}{4} e^{-i \omega 2} \widehat{y}_{D T}(\omega) & =e^{-i \omega 2} \\
\widehat{y}_{D T}(\omega) & =e^{-i \omega 2} \cdot \frac{1}{1-\frac{1}{4} e^{-i \omega 2}} \\
\widehat{y}_{D T}(\omega) & =e^{-i \omega 2}\left(\frac{1}{\left(1+\frac{1}{2} e^{-i \omega}\right)\left(1-\frac{1}{2} e^{-i \omega}\right)}\right) \\
\widehat{y}_{D T}(\omega) & =\frac{1}{2} e^{-i \omega 2}\left(\frac{1}{1+\frac{1}{2} e^{-i \omega}}+\frac{1}{1-\frac{1}{2} e^{-i \omega}}\right)
\end{aligned}
$$

Which can be seen as either a time-shift of the other basic example, or as the product of the two basic examples. Under the second interpretation:

$$
\begin{aligned}
y[n] & =\frac{1}{2} \delta_{2}[n] *\left(\left(-\frac{1}{2}\right)^{n} u[n]\right)+\frac{1}{2} \delta_{2}[n] *\left(\left(\frac{1}{2}\right)^{n} u[n]\right) \\
& =\frac{1}{2}\left(-\frac{1}{2}\right)^{n-2} u[n-2]+\frac{1}{2}\left(\frac{1}{2}\right)^{n-2} u[n-2]
\end{aligned}
$$

6. Consider an LTI system given by the following difference equation:

$$
y[n]-3 y[n-1]=x[n] \quad \text { for all integers } n
$$

(a) Find the impulse response function $h[n]$ satisfying $h[n]=0$ for all $n<0$. For this case, find $y[n]$ when $x[n]=u[n]$.

Solution

To compute $h[n]$: We have these equations:

$$
\begin{cases}y[\bar{n}]-3 y[\bar{n}-1]=0 & \text { for } \bar{n}<0 \\ y[0]-3 y[-1]=1 & \\ y[\bar{n}]-3 y[\bar{n}-1]=0 & \text { for } \bar{n}>0\end{cases}
$$

From the equations when $\bar{n}<0$:

$$
\begin{array}{ll}
y[-1]=3 y[-2] & \rightarrow \quad y[-2]=\frac{1}{3} y[-1] \\
y[-2]=3 y[-3] & \rightarrow \quad y[-3]=\frac{1}{3} y[-2]=\frac{1}{3^{2}} y[-1] \\
y[-3]=3 y[-4] & \rightarrow \quad y[-4]=\frac{1}{3} y[-3]=\frac{1}{3^{3}} y[-2]
\end{array}
$$

We conclude that $y[n]=3^{n+1} y[-1]$ for $n<0$. To make these all zero, we must have $y[-1]=0$.
From the middle equation:

$$
y[0]-3 y[-1]=1 \quad \rightarrow \quad y[0]=1
$$

From the equations when $\bar{n}>0$:

$$
\begin{array}{ll}
y[1]=3 y[0] & \rightarrow \quad y[1]=\frac{1}{3} y[0]=\frac{1}{3} \\
y[2]=3 y[1] & \rightarrow \quad y[2]=\frac{1}{3} y[1]=\frac{1}{3^{2}} \\
y[3]=3 y[2] & \rightarrow \quad y[3]=\frac{1}{3} y[2]=\frac{1}{3^{3}}
\end{array}
$$

...

We conclude that $y[n]=3^{n}$ for $n \geq 0$. All together:

$$
h[n]=3^{n} u[n]
$$

To compute $y[n]$: To calculate the output $y[n]$ from the input $x[n]=$ $\overline{u[n] \text {, use } y=h * x}$.

$$
\begin{aligned}
y[n]=(h * x)[n] & =\sum_{k=-\infty}^{\infty} 3^{k} u[k] u[n-k] \\
& =u[n] \sum_{k=0}^{n} 3^{k} \cdot 1 \\
& =u[n]\left(\frac{1-3^{n+1}}{1-3}\right)
\end{aligned}
$$

(b) Find the impulse response function $h[n]$ satisfying $h[0]=0$. For this case, find $y[n]$ when $x[n]=u[n]$.

Solution

To compute $h[n]$: We have these equations:

$$
\begin{cases}y[\bar{n}]-3 y[\bar{n}-1]=0 & \text { for } \bar{n}<0 \\ y[0]-3 y[-1]=1 & \\ y[\bar{n}]-3 y[\bar{n}-1]=0 & \text { for } \bar{n}>0\end{cases}
$$

From the equations when $\bar{n}<0$:

$$
\begin{array}{ll}
y[-1]=3 y[-2] & \rightarrow \quad y[-2]=\frac{1}{3} y[-1] \\
y[-2]=3 y[-3] & \rightarrow \quad y[-3]=\frac{1}{3} y[-2]=\frac{1}{3^{2}} y[-1] \\
y[-3]=3 y[-4] & \rightarrow \quad y[-4]=\frac{1}{3} y[-3]=\frac{1}{3^{3}} y[-2]
\end{array}
$$

We conclude that $y[n]=3^{n+1} y[-1]$ for $n<0$.
From the middle equation and the condition $y[0]=0$:

$$
y[0]-3 y[-1]=1 \quad \rightarrow \quad y[-1]=-\frac{1}{3}
$$

Thus, we determine,

$$
y[n]=-3^{n+1} \frac{1}{3}=-3^{n} \text { for } n<0
$$

From the equations when $\bar{n}>0$:

$$
\begin{array}{ll}
y[1]=3 y[0] & \rightarrow y[1]=\frac{1}{3} y[0]=0 \\
y[2]=3 y[1] & \rightarrow y[2]=\frac{1}{3} y[1]=0 \\
y[3]=3 y[2] & \rightarrow y[3]=\frac{1}{3} y[2]=0
\end{array}
$$

We conclude that $y[n]=0$ for $n \geq 0$. All together:

$$
h[n]=-3^{n} u[-n-1]
$$

To compute $y[n]$: To calculate the output $y[n]$ from the input $x[n]=$ $\bar{u}[n]$, use $y=h * x$.

$$
y[n]=(h * x)[n]=\sum_{k=-\infty}^{\infty}-3^{k} u[-k-1] u[n-k]
$$

In the last sum, we see that we have nontrivial terms to add only when $-k-1 \geq 0$ and $k \leq n$, that is, $k \leq-1$ and $k \leq n$.
Two cases:
Case: $n \geq 0$

$$
\begin{aligned}
y[n]=(h * x)[n] & =\sum_{k=-\infty}^{\infty}-3^{k} u[-k-1] u[n-k]=\sum_{k=-\infty}^{-1}-3^{k}=-\sum_{m=1}^{m} 3^{-m} \\
& =-\frac{1}{3} \sum_{m=0}^{\infty} 3^{-m} \\
& =-\frac{1}{3} \frac{1}{1-\frac{1}{3}}=-\frac{1}{2}
\end{aligned}
$$

Case: $n \leq-1$

$$
\begin{aligned}
y[n]=(h * x)[n] & =\sum_{k=-\infty}^{\infty}-3^{k} u[-k-1] u[n-k] \\
& =\sum_{k=-\infty}^{n}-3^{k} \\
& =-3^{n} \sum_{k=-\infty}^{n} 3^{k-n} \\
& =-3^{n} \sum_{m=-\infty}^{0} 3^{m} \quad(\text { change of index } m=k-n) \\
& =-3^{n} \sum_{l=0}^{\infty} 3^{-l} \quad(\text { change of index } l=-m) \\
& =-3^{n} \frac{1}{1-\frac{1}{3}}=-\frac{3^{n+1}}{2}
\end{aligned}
$$

Combining the two cases, we see

$$
y[n]=-\frac{1}{2} u[n]-\frac{3^{n+1}}{2} u[-n-1]
$$

