Math 267, Section 202 : HW 8

Due Wednesday, March 20th.

In the following, we do not distinguish between "length $=N$ discrete-time signals" and " N-periodic discrete-time signals".

1. [NOT TO HAND-IN] For the given discrete-time signal x, find \widehat{x}, i.e. its discrete Fourier transform (or in other words, the Fourier coefficient of discrete Fourier series).
(a) $x=[0,1,0,0]$.
(b) $x=[1,1,1,1]$.
(c) $x=[1,-1,1,-1]$.
(d) $x=[1,2,3,4]$.
(e) $x=\left[1, \frac{1}{3}, \frac{1}{3^{2}}, \cdots, \frac{1}{3^{10}}, \frac{1}{3^{11}}\right]$.
2. Calculate the DFT (in other words, the Fourier coefficient $\widehat{x}[k]$ of Discrete Fourier Series) for

$$
x[n]=3^{-|n-10|}, \quad \text { for } n=0, \ldots, 41
$$

Here $N=42$.
3. [Discrete complex exponentials]
(a) Compute

$$
\sum_{n=0}^{9}\left[\left(e^{-i \frac{2 \pi}{10} 2 n}+e^{i \frac{2 \pi}{10} 3 n}\right)\left(e^{i \frac{2 \pi}{10} 2 n}+e^{-i \frac{2 \pi}{10} 3 n}+e^{i \frac{2 \pi}{10} 8 n}\right)\right]
$$

(b) Compute

$$
\sum_{n=0}^{9}\left[\left(e^{-i \frac{2 \pi}{9} 2 n}+e^{i \frac{2 \pi}{9} 3 n}\right)\left(e^{i \frac{2 \pi}{9} 2 n}+e^{-i \frac{2 \pi}{9} 3 n}+e^{i \frac{2 \pi}{9} 7 n}\right)\right]
$$

(Hint: This (b) is tricker than (a).)
4. [Discrte Fourier transform for periodic signals]
(a) Find the discrete Fourier transform (i.e. Discrete Fourier Series) of the following periodic signals with period N.
i. $x[n]=\cos (2 \pi n) . N=4$
ii. $y[n]=\cos (\pi n / 3)+\sin (\pi n / 2) . N=12$
(Hint: Express sin and cos using complex exponentials and try to use 'orthogonality' to compute the summation.)
(b) Suppose $x[n]$ is a periodic discrete-time signal with period $=N$. Let $\widehat{x}[k]$ be its discrete Fourier transform. Assume $x[0]=N$ and $\sum_{k=0}^{N-1}|\widehat{x}[k]|^{2}=N$. Find $x[n]$ and $\widehat{x}[k]$ for all $0 \leq n, k \leq N-1$. (Hint: Use Parseval's relation. This is similar to one of the class examples.)
(c) Let $a[n]$ be a periodic signal with period $N=16$ with

$$
a[n]=\left\{\begin{array}{cc}
1 & 0 \leq n \leq 8 \\
0 & 9 \leq n \leq 12 \\
1 & 13 \leq n \leq 15
\end{array}\right.
$$

Compute the discrete Fourier transform $\widehat{a}[k]$. (This is similar to one of the class examples.)
5. Calculate the DFT (in other words, the Fourier coefficient $\widehat{x}[k]$ of Discrete Fourier Series), and fully simplify, if possible:
(a) $x[n]=\left[\begin{array}{llllllll}1 & 0 & 1 & 0 & 0 & 0 & 1 & 0\end{array}\right]$
(b) $x[n]=\left\{\begin{array}{ll}5^{-n} & \text { for } 4 \leq n \leq 8, \\ 0 & \text { for } 1 \leq n \leq 3\end{array}\right.$ Here, $N=8$.
6. [NOT TO HAND-IN] [Inverse discrete Fourier transform] Given \widehat{x} in the following, find the original signal x by using the inverse discrete Fourier transform.
(a) $\widehat{x}=[0,0,3,0]$.
(b) $\widehat{x}=[1,1,1,1]$.
(c) $\widehat{x}=\left[1, \frac{1}{4}, \frac{1}{4^{2}}, \cdots, \frac{1}{4^{10}}, \frac{1}{4^{11}}\right]$
7. Find $x[n]$ given that:
(a) $\widehat{x}[k]=\sin \left(\frac{3 \pi}{4} k\right)-\cos \left(\frac{5 \pi}{4} k\right)$. Here, you first have to find the fundamental period N (i.e. the smallest period).
(b) $\widehat{x}[k]=\left[\begin{array}{llllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & -1\end{array}\right]$
8. Let $x=\left[\begin{array}{llllllll}0 & 1 & 1 & 0 & 0 & 0 & -1 & 0\end{array}\right]$ and $y=\left[\begin{array}{llllllll}\frac{1}{2} & \frac{1}{4} & \frac{1}{8} & 0 & 0 & 0 & \frac{1}{8} & \frac{1}{4}\end{array}\right]$. Calculate the periodic convolution $x * y$.
9. [NOT TO HAND-IN] [Periodic convolution]

Consider the folloing signals with period $N=4$:

$$
a=[1,0,1,-1], \quad b=[2, i, 1+i, 3]
$$

(e.g. $a[0]=1, a[3]=-1, b[2]=1+i$, etc. $)$
(a) Calculate the periodic convolution $a * b$ by directly calculating the convolution sum.
(b) Calculate the Fourier coefficients $\widehat{a}[k]$ and $\widehat{b}[k]$. Use this to compute the Fourier coefficients $\widehat{a * b}[k]$ for $a * b$ by using the convolution property of the Fourier transform.
(c) Find a signal $x[n]$ of period $N=4$, such that $(a * x)[n]=b[n]$. (Hint: you may want to use the convolution property of the Fourier transform/inversion. Remember how we handle the circuit problem. This is similar.)
10. [NOT TO HAND-IN] Consider two discrete signals, both length $N=3$: $x[n]=[x[0], x[1], x[2]]$, and, $y[n]=[y[0], y[1], y[2]]$.
(a) Write out the definition of $(x * y)[0]$.

Think of $x[n]$ as a column vector \vec{x}.
Recognize that the formula for $(x * y)$ [0] is a dot-product of some row vector \vec{a} with \vec{x}.
What are the components of vector \vec{a} ?
(b) Repeat part(a) for $(x * y)$ [1] and $(x * y)$ [2].

Put all three row vectors into a matrix Y, so that,

$$
(x * y)=Y \vec{x}
$$

(c) Use your answer to part(b) to compute $(x * y)$, where $x[n]$ and $y[n]$ are the following signals with length $N=3$,

$$
x=[2,-1,1], \quad y=[-3, i, 1]
$$

