
Math 267, Section 202 : HW 8

Due Wednesday, March 20th.

In the following, we do not distinguish between “length= N discrete-time sig-
nals” and “N -periodic discrete-time signals”.

1. [NOT TO HAND-IN] For the given discrete-time signal x, find x̂, i.e.
its discrete Fourier transform (or in other words, the Fourier coefficient of
discrete Fourier series).

(a) x = [0, 1, 0, 0].

Solution Note e−i2π/4k = e−ikπ/2 = 1,−i,−1, i for k = 0, 1, 2, 3,
respectively. Therefore,

x̂[0] =
1

4
(0 + 1 + 0 + 0) =

1

4
x̂[1] =

1

4
(0 + (−i) + 0 + 0) = − i

4

x̂[1] =
1

4
(0 + (−i)2 + 0 + 0) = −1

4
x̂[3] =

1

4
(0 + (−i)3 + 0 + 0) =

i

4
.

Thus,

x̂ = [
1

4
,− i

4
,−1

4
,
i

4
]

Note that this is nothing but x̂[k] = eikπ/2/4 for k = 0, 1, 2, 3.

(b) x = [1, 1, 1, 1].

Solution Note e−iπ/4k = e−ikπ/2 = 1,−i,−1, i for k = 0, 1, 2, 3,
respectively. Therefore,

x̂[0] =
1

4
(1 + 1 + 1 + 1) = 1 x̂[1] =

1

4
(1 + (−i)− 1 + i) = 0

x̂[1] =
1

4
(1 + (−i)2 + (−1)2 + (i)2) = 0 x̂[3] =

1

4
(1 + (−i)3 + (−1)3 + i3) = 0.

(You can also use ‘orthogonality’ to see the above immediately.)

Thus,

x̂ = [1, 0, 0, 0]

Remark Let us consider more general case: x =

N entries︷ ︸︸ ︷
[1, 1, · · · , 1]. By

definition,

x̂[k] =
1

N

[
1 + e−2πi

k
N + e−2πi

2k
N + · · ·+ e−2πi

(N−1)k
N

]
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Clearly x̂[0] = 1
N [N ] = 1. For 1 ≤ k ≤ N − 1, let w = wN = e

2πi
N to

get

x̂[k] =
1

N

[
1+w−k+w−2k+· · ·+w−(N−1)k

]
=

1

N

1− w−Nk

1− w−k
= 0 since w−kN = e−2πki = 1

Hence x̂ = [1, 0, · · · , 0] (N entries).

(c) x = [1,−1, 1,−1].

Solution Note e−i2π/4k = e−ikπ/2 = 1,−i,−1, i for k = 0, 1, 2, 3,
respectively. Therefore,

x̂[0] =
1

4
(1− 1 + 1− 1) = 0 x̂[1] =

1

4
(1− (−i)− 1− i) = 0

x̂[1] =
1

4
(1− (−i)2 + (−1)2 − i2) = 1 x̂[3] =

1

4
(1− (−i)3 + (−1)3 − i3) = 0.

(You can also use ‘orthogonality’ to see the above immediately, since
x[n] = (−1)n for n = 0, 1, 2, 3.)

Thus,

x̂ = [0, 0, 1, 0]

(d) x = [1, 2, 3, 4].

Solution

Note ei2π/4k = eikπ/2 = 1, i,−1,−i for k = 0, 1, 2, 3, respectively.
Therefore,

x̂[0] =
1

4
(1− 2 + 3− 4) = −1/2 x̂[1] =

1

4
(1 + 2(−i)− 3 + 4i) =

−1 + i

2

x̂[1] =
1

4
(1 + 2(−i)2 + 3(−1)2 + 4i2) = −1

2
x̂[3] =

1

4
(1 + 2(−i)3 + 3(−1)3 + 4i3) =

−1− i
2

.

Thus,

x̂ = [−1

2
,
−1 + i

2
,−1

2
,
−1− i

2
]

(e) x = [1, 13 ,
1
32 , · · · ,

1
310 ,

1
311 ].

Solution

Let us consider more general case: x = [1, r, r2, · · · , rN−1]. (In the
problem, N = 12, r = 1/3. )

Let w = wN = e
2πi
N Then,

x̂[0] =
1

N

[
1 + r + r2 + · · ·+ r(N−1)

]
=

1

N

1− rN

1− r
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(note that we could use the geometric sum for the case r 6= 1) and

x̂[k] =
1

N

[
1 + rw−k +

(
rw−k

)2
+ · · ·+

(
rw−k

)(N−1)]
=

1− (rw−k)N

N(1− rw−k)
=

1− rN

N(1− rw−k)

for 1 ≤ k ≤ N − 1. (Here, we used that wN = 1. )

Back to our specific case, we see that

x̂[k] =
1− ( 1

3 )12

12(1− 1
3e
−iπk/6)

for k = 0, 1, 2, · · · , 11.

2. Calculate the DFT (in other words, the Fourier coefficient x̂[k] of Discrete
Fourier Series) for

x[n] = 3−|n−10|, for n = 0, . . . , 41

Here N = 42.

Solution

Immediately, split the sum into n = 0, . . . , 9 and n = 10, . . . , 41, in order
to remove the absolute value:

x̂[k] =

41∑
n=0

x[n]e−i
2π
42 k n

=

9∑
n=0

3(n−10)e−i
2π
42 k n +

41∑
n=10

3−(n−10)e−i
2π
42 k n

= 3−10
9∑

n=0

(
3 e−i

2π
42 k
)n

+

31∑
`=0

3−`e−i
2π
42 k (`+10)

= 3−10
9∑

n=0

(
3 e−i

2π
42 k
)n

+
(
e−i

2π
42 k
)10 31∑

`=0

(
3−1e−i

2π
42 k
)`

= 3−10

1−
(

3 e−i
2π
42 k
)10

1−
(

3 e−i
2π
42 k
)
+

(
e−i

2π
42 k
)101−

(
3−1e−i

2π
42 k
)32

1−
(

3−1e−i
2π
42 k
)


You are not required to simplify.

3. [Discrete complex exponentials]

(a) Compute

9∑
n=0

[(
e−i

2π
10 2n + ei

2π
10 3n

)(
ei

2π
10 2n + e−i

2π
10 3n + ei

2π
10 8n

)]
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Solution Note that in the following sum
∑9
n=0 there are N = 10

terms. This matches well with ei
2π
10 kn to apply orthogonality of dis-

crete complex exponentials.

9∑
n=0

[(
e−i

2π
10 2n + ei

2π
10 3n

)(
ei

2π
10 2n + e−i

2π
10 3n + ei

2π
10 8n

)]
=

9∑
n=0

e−i
2π
10 2nei

2π
10 2n +

9∑
n=0

e−i
2π
10 2ne−i

2π
10 3n +

9∑
n=0

e−i
2π
10 2nei

2π
10 8n

+

9∑
n=0

ei
2π
10 3nei

2π
10 2n +

9∑
n=0

ei
2π
10 3ne−i

2π
10 3n +

9∑
n=0

ei
2π
10 3nei

2π
10 8n

= 10 + 0 + 0 + 0 + 10 + 0

In the last line we have used the orthogonality of discrete complex
exponentials. (For the last term, notice that 3 + 8 = 11 is not an
integer multiple of 10.) So, the answer is

20

(b) Compute

9∑
n=0

[(
e−i

2π
9 2n + ei

2π
9 3n

)(
ei

2π
9 2n + e−i

2π
9 3n + ei

2π
9 7n

)]
(Hint: This (b) is tricker than (a).)

Solution Notice that the sum
∑9
n=0 has 10 terms, but, we have com-

plex exponentials e−i
2π
9 kn with N = 9. Because of this we decompose

the sum as

9∑
n=0

[(
e−i

2π
9 2n + ei

2π
9 3n

)(
ei

2π
9 2n + e−i

2π
9 3n + ei

2π
9 7n

)]
=

8∑
n=0

[(
e−i

2π
9 2n + ei

2π
9 3n

)(
ei

2π
9 2n + e−i

2π
9 3n + ei

2π
9 7n

)]
+
(
e−i

2π
9 2×9 + ei

2π
9 3×9

)(
ei

2π
9 2×9 + e−i

2π
9 3×9 + ei

2π
9 7×9

)
For the summation

∑8
n=0 part, we use the orthogonality of discrete
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complex exponentials, and see

8∑
n=0

[(
e−i

2π
9 2n + ei

2π
9 3n

)(
ei

2π
9 2n + e−i

2π
9 3n + ei

2π
9 7n

)]
=

8∑
n=0

e−i
2π
9 2nei

2π
9 2n +

8∑
n=0

e−i
2π
9 2ne−i

2π
9 3n +

8∑
n=0

e−i
2π
9 2nei

2π
9 7n

+

8∑
n=0

ei
2π
9 3nei

2π
9 2n +

8∑
n=0

ei
2π
9 3ne−i

2π
9 3n +

8∑
n=0

ei
2π
9 3nei

2π
9 7n

= 9 + 0 + 0 + 0 + 9 + 0 = 18

For the remaining part,(
e−i

2π
9 2×9 + ei

2π
9 3×9

)(
ei

2π
9 2×9 + e−i

2π
9 3×9 + ei

2π
9 7×9

)
= (1 + 1)(1 + 1 + 1) (since ei2πk = 1 for integer k).

= 6.

Therefore the final answer is 18 + 6 = 24.

4. [Discrte Fourier transform for periodic signals]

(a) Find the discrete Fourier transform (i.e. Discrete Fourier Series) of
the following periodic signals with period N .

i. x[n] = cos(2πn). N = 4

ii. y[n] = cos(πn/3) + sin(πn/2). N = 12

(Hint: Express sin and cos using complex exponentials and try to use
‘orthogonality’ to compute the summation. )

Solution (a): (i) Note cos(2πn) = 1. Thus, x = [1, 1, 1, 1]. And

x̂[k] =
1

4

3∑
n=0

x[n]e−i2πkn/4

=
1

4

3∑
n=0

e−i2πkn/4

=

{
1 for k = 0 ,

0 for k = 1, 2, 3.

Thus, x̂ = [1, 0, 0, 0].

(ii) cos(πn/3)+sin(πn/2) = 1
2 (eiπn/3+e−iπn/3)+ 1

2i (e
iπn/2 − e−iπn/2).
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Thus,

ŷ[k] =
1

12

11∑
n=0

[1

2
(eiπn/3 + e−iπn/3) +

1

2i
(eiπn/2 − e−iπn/2)

]
e−i2πkn/12

=
1

24

11∑
n=0

(eiπn/3 + e−iπn/3)e−i2πkn/12 +
1

24i

11∑
n=0

(eiπn/2 − e−iπn/2)e−i2πkn/12

=
1

24

11∑
n=0

eiπn/3e−i2πkn/12 +
1

24

11∑
n=0

e−iπn/3e−i2πkn/12

+
1

24i

11∑
n=0

eiπn/2e−i2πkn/12 − 1

24i

11∑
n=0

e−iπn/2e−i2πkn/12

=
1

24

11∑
n=0

ei2π2n/12e−i2πkn/12 +
1

24

11∑
n=0

e−i2π2n/12e−i2πkn/12

+
1

24i

11∑
n=0

ei2π3n/12e−i2πkn/12 − 1

24i

11∑
n=0

e−i2π3n/12e−i2πkn/12

=
1

24

11∑
n=0

ei2π(2−k)n/12 +
1

24

11∑
n=0

ei2π(−2−k)n/12

+
1

24i

11∑
n=0

ei2π(3−k)n/12 − 1

24i

11∑
n=0

ei2π(−3−k)n/12

=



12
24 + 0 + 0− 0 k = 2 ,

0 + 12
24 + 0− 0 k = 10 ,

0 + 0 + 12
24i − 0 k = 3,

0 + 0 + 0− 12
24i k = 9,

0 k = 0, · · · , 11 but k 6= 2, 3, 9, 10.

(using orthogonality)

Therefore,

ŷ[k] =



1
2 k = 2 ,
1
2 k = 10,
1
2i k = 3,

− 1
2i k = 9,

0 k = 0, · · · , 11 but k 6= 2, 3, 9, 10.

In other words,

ŷ = [0, 0,
1

2
,

1

2i
, 0, 0, 0, 0, 0,− 1

2i
,

1

2
, 0]
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(b) Suppose x[n] is a periodic discrete-time signal with period = N .
Let x̂[k] be its discrete Fourier transform. Assume x[0] = N and∑N−1
k=0 |x̂[k]|2 = N . Find x[n] and x̂[k] for all 0 ≤ n, k ≤ N − 1.

(Hint: Use Parseval’s relation. This is similar to one of the class
examples.)

Solution

(b): Recall the Parseval’s relation:

1

N

N−1∑
n=0

|x[n]|2 =

N−1∑
k=0

|x̂[k]|2

Notice that all the entries in the summation are all nonnegative.
By the given condition, the right hand side is N . Thus, we see∑N−1
n=0 |x[n]|2 = N2. Now, since x[0] = N , the other entries in the

last sum should all vanish, i.e. x[1] = x[2] = · · · = x[N − 1] = 0.

Thus, x = [1, 0, 0, · · · , 0]. Now, x̂[k] = 1
N

∑N−1
n=0 x[n]e−2πikn/N =

1 + 0 + 0 + · · ·+ 0 = 1. Thus, x̂ = [1, 1, 1, · · · , 1].

(c) Let a[n] be a periodic signal with period N = 16 with

a[n] =


1 0 ≤ n ≤ 8,

0 9 ≤ n ≤ 12,

1 13 ≤ n ≤ 15.

Compute the discrete Fourier transform â[k]. (This is similar to one
of the class examples.)

Solution

(c) By time-shift we see that a[n] = b[n + 3] where b[n] is the 16-
periodic signal with

b[n] =

{
1 0 ≤ n ≤ 11,

0 12 ≤ n ≤ 15,

Therefore, â[k] = ei
2π
16×3k b̂[k] and

b̂[k] =
1

16

15∑
n=0

b[n]e−i2πkn/16

=
1

16

11∑
n=0

e−i2πkn/16

=
1

16

11∑
n=0

[e−i2πk/16]n

=
1

16
× 1− e−i 2πk16 ×12

1− e−i2πk/16
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Therefore,

â[k] = ei
2π
16×3k

1

16
× 1− e−i 2πk16 ×12

1− e−i2πk/16

= ei
3π
8 ×3k

1

16
× 1− e−i 3πk2

1− e−iπk/8

5. Calculate the DFT (in other words, the Fourier coefficient x̂[k] of Discrete
Fourier Series), and fully simplify, if possible:

(a) x[n] =
[
1 0 1 0 0 0 1 0

]
(b) x[n] =

{
5−n for 4 ≤ n ≤ 8,

0 for 1 ≤ n ≤ 3.
Here, N = 8.

Solution

(a) Here, N = 8. Write the formula, then expand the sum:

x̂[k] =
1

8

7∑
n=0

x[n]e−i
2π
8 k n

=
1

8

(
e−i

2π
8 k 0 + e−i

2π
8 k 2 + e−i

2π
8 k 6

)
=

1

8

(
e−i

2π
8 k 0 + e−i

2π
8 k 2 + e−i

2π
8 k (−2)

)
=

1

8

(
1 + ei

π
2 k + e−i

π
2 k
)

=
1

8
+

1

4
cos(

π

2
k)

(b) Write the formula, plug in x[n], then reorganize:

x̂[k] =
1

8

7∑
n=0

x[n]e−i
2π
8 k n

=
1

8

8∑
n=1

x[n]e−i
2π
8 k n

=
1

8

8∑
n=4

5−ne−i
2π
8 k n

=
1

8

8∑
n=4

(
e−i

π
4 k

5

)n

8



To get a proper geometric sum, substitute ` = n− 4.

x̂[k] =
1

8

4∑
`=0

(
e−i

π
4 k

5

)`+4

=
1

8

(
e−i

π
4 k

5

)4 4∑
`=0

(
e−i

π
4 k

5

)`

=
1

8

(
e−i

π
4 k

5

)4 1−
(
e−i

π
4
k

5

)5
1−

(
e−i

π
4
k

5

)
There’s really no way to simplify further.

6. [NOT TO HAND-IN] [Inverse discrete Fourier transform] Given x̂ in
the following, find the original signal x by using the inverse discrete Fourier
transform.

(a) x̂ = [0, 0, 3, 0].

Solution Note eiπ/4k = eikπ/2 = 1, i,−1,−i for k = 0, 1, 2, 3, respec-
tively. Therefore,

x[0] = 0 + 0 + 3 + 0 = 3 x[1] = 0 + 0− 3− 0 = −3

x[1] = 0 + 0 + 3(−1)2 + 0 = 3 x[3] = 0 + 0 + 3(−1)3 + 0 = −3.

Thus,

x = [3,−3, 3,−3]

(b) x̂ = [1, 1, 1, 1].

Solution

Note eiπ/4k = eikπ/2 = 1, i,−1,−i for k = 0, 1, 2, 3, respectively.
Therefore,

x[0] = 1 + 1 + 1 + 1 = 4 x[1] = 1 + i− 1− i = 0

x[1] = 1 + i2 + (−1)2 + (−i)2 = 0 x[3] = 1 + i3 + (−1)3 + (−i)3) = 0.

(You can also use ‘orthogonality’ to see the above immediately.)

Thus,

x = [4, 0, 0, 0]

Remark Let us consider more general case: x̂ =

N entries︷ ︸︸ ︷
[1, 1, · · · , 1]. By

definition,

x[n] = 1 + e2πi
n
N + e2πi

2n
N + · · ·+ e2πi

(N−1)n
N

9



Clearly x[0] = N . For 1 ≤ n ≤ N − 1, let w = wN = e
2πi
N to get

x[n] = 1+wn+w2n+· · ·+w(N−1)n =
1− wNn

1− wn
= 0 since wnN = e2πni = 1

Hence x = [N, 0, · · · , 0], (N entries).

(c) x̂ = [1, 14 ,
1
42 , · · · ,

1
410 ,

1
411 ]

Solution

Let us consider more general case: x̂ = [1, r, r2, · · · , rN−1]. (In the
problem, N = 12, r = 1/4. )

Let w = wN = e
2πi
N . Then,

x[0] = 1 + r + r2 + · · ·+ r(N−1) =
1− rN

1− r
(note that we could use the geometric sum for the case r 6= 1) and

x[n] = 1 + rwn +
(
rwn

)2
+ · · ·+

(
rwn

)(N−1)]
=

1− (rwn)N

(1− rwn)
=

1− rN

1− rwn

for 1 ≤ n ≤ N − 1. (Here, we used that wN = 1. )

Back to our specific case, we see that

x[n] =
1− ( 1

4 )12

1− 1
4e
iπn/6

for k = 0, 1, 2, · · · , 11.

7. Find x[n] given that:

(a) x̂[k] = sin
(
3π
4 k
)
− cos

(
5π
4 k
)
. Here, you first have to find the funda-

mental period N (i.e. the smallest period).

(b) x̂[k] =
[
0 1 0 0 0 0 0 −1

]
Solution

(a) First: note sin( 3π
4 k) has period 8, as does cos( 5π

4 k), so N = 8.

We know the basic example:

δc[n]
−→
DFT

1

N
e−i

2π
N k c,

which means that if we write x̂[k] in terms of complex exponentials
we can read off the answer. (... or you can also answer this question
using geometric sums.)

8 x̂[k] =
1

2i
ei

3π
4 k − 1

2i
e−i

3π
4 k − 1

2
ei

5π
4 k − 1

2
e−i

5π
4 k

=
1

2i
e−i

2π
8 k(−3) − 1

2i
e−i

2π
8 k(+3) − 1

2
e−i

2π
8 k(−5) − 1

2
e−i

2π
8 k(+5)

We conclude: x[n] = 1
8

(
1
2iδ−3[n]− 1

2iδ3[n]− 1
2δ−5[n]− 1

2δ5[n]
)
.
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(b) The inversion formula is easiest:

x[n] =

N−1∑
k=0

x̂[k]e+i
2π
N k n

= x[1] e+i
2π
N (1)n + x[−1] e+i

2π
N (−1)n

= e+i
2π
8 n − e−i 2π8 n = 2i sin(

π

4
n)

8. Let x =
[
0 1 1 0 0 0 −1 0

]
and y =

[
1
2

1
4

1
8 0 0 0 1

8
1
4

]
.

Calculate the periodic convolution x ∗ y.

Solution

Convolutions with Kronecker delta are easy: δc[n] ∗ f [n] = f [n− c]. Note:[
0 1 1 0 0 0 −1 0

]
= δ1[n] + δ2[n]− δ−2[n]

Now if we let
[
1
2

1
4

1
8 0 0 0 1

8
1
4

]
= f [n], then the answer is:

δ1 ∗ f + δ2 ∗ f − δ−2 ∗ f = f [n− 1] + f [n− 2]− f [n+ 2].

To finish the question, we need to write out answer as a vector.

f [n] =
[
1
2

1
4

1
8 0 0 0 1

8
1
4

]
f [n− 1] =

[
1
4

1
2

1
4

1
8 0 0 0 1

8

]
f [n− 2] =

[
1
8

1
4

1
2

1
4

1
8 0 0 0

]
f [n+ 2] =

[
1
8 0 0 0 1

8
1
4

1
2

1
4

]
Final answer:

[
1
4

3
4

3
4

3
8 0 − 1

4 − 1
2 − 1

8

]
9. [NOT TO HAND-IN] [Periodic convolution]

Consider the folloing signals with period N = 4:

a = [1, 0, 1,−1], b = [2, i, 1 + i, 3]

(e.g. a[0] = 1, a[3] = −1, b[2] = 1 + i, etc. )

(a) Calculate the periodic convolution a ∗ b by directly calculating
the convolution sum.

(b) Calculate the Fourier coefficients â[k] and b̂[k]. Use this to compute

the Fourier coefficients â ∗ b[k] for a ∗ b by using the convolution
property of the Fourier transform.

(c) Find a signal x[n] of period N = 4, such that (a ∗ x)[n] = b[n].

(Hint: you may want to use the convolution property of the Fourier
transform/inversion. Remember how we handle the circuit problem.
This is similar.)
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Solution

(a) :

(a ∗ b)[n] =

3∑
m=0

a[m]b[n−m]

Thus, (noting b[−1] = b[4 − 1] = b[3]; b[−2] = b[4 − 2] = b[2]; b[−3] =
b[4− 3] = b[1]),

(a ∗ b)[0] =

3∑
m=0

a[m]b[0−m] = 1× 2 + 0× 3 + 1× (1 + i) + (−1)× i = 3

(a ∗ b)[1] =

3∑
m=0

a[m]b[1−m] = 1× i+ 0× 2 + 1× 3 + (−1)× (1 + i) = 2

(a ∗ b)[2] =

3∑
m=0

a[m]b[2−m] = 1× (1 + i) + 0× i+ 1× 2 + (−1)× 3 = i

(a ∗ b)[3] =

3∑
m=0

a[m]b[3−m] = 1× 3 + 0× (1 + i) + 1× i+ (−1)× 2 = 1 + i

So, a ∗ b = [3, 2, i, 1 + i].

(b): Note that e−i2π/4 = eiπ/2 = −i. Thus, e−i2π/4kn = (−i)kn . So,

â[k] =
1

4

3∑
n=0

a[n]e−i2π/4kn =
1

4
(1× 1 + 0× (−i)k + 1× (−i)2k + (−1)× (−i)3k)

=
1

4
(1 + (−1)k − ik)

Thus, â = [1/4,−i/4, 3/4, i/4].

On the other hand,

b̂[k] =
1

4

3∑
n=0

b[n]e−i2π/4kn =
1

4
(2× 1 + i× (−i)k + (1 + i)× (−i)2k + 3× (−i)3k)

=
1

4
(2 + (−1)kik+1 + (1 + i)(−1)k + 3ik)

Thus, b̂ = [(6 + 2i)/4, (2 + 2i)/4, 0,−i].
Use convolution property for N = 4, to see

â ∗ b[k] = 4â[k]̂b[k]
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for k = 0, · · · , 3. So,

â ∗ b = [(6 + 2i)/4, (−2i+ 2)/4, 0, 1]

(c): Take Fourier transform:

â ∗ x[k] = b̂[k]

By convolution property (for N = 4),

â ∗ x[k] = 4â[k]x̂[k]

Thus, we see

4â[k]x̂[k] = b̂[k]

So,

x̂[0] = (6 + 2i)/4, x̂[1] = (2i− 2)/4, x̂[2] = 0, x̂[3] = −1

i.e.

x̂ = [(3 + i)/2, (−1 + i)/2, 0,−1].

To find x[n], apply the inverse discrete Fourier transform:

x[n] =

3∑
k=0

x̂[k]ei2πkn/4

=
3 + i

2
+ (
−1 + i

2
)ik + 0 + (−1)i3k

=
3 + i

2
+
−ik + ik+1

2
+ 0 + (−1)k+1ik

Thus,

x = [i, 1 + i, 3, 2]

10. [NOT TO HAND-IN] Consider two discrete signals, both lengthN = 3:

x[n] = [x[0], x[1], x[2]], and, y[n] = [y[0], y[1], y[2]].

(a) Write out the definition of (x ∗ y) [0].

Think of x[n] as a column vector ~x.

Recognize that the formula for (x ∗ y) [0] is a dot-product of some
row vector ~a with ~x.

What are the components of vector ~a?
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(b) Repeat part(a) for (x ∗ y) [1] and (x ∗ y) [2].

Put all three row vectors into a matrix Y , so that,

(x ∗ y) = Y ~x.

(c) Use your answer to part(b) to compute (x ∗ y), where x[n] and y[n]
are the following signals with length N = 3,

x = [2,−1, 1], y = [−3, i, 1]

Solution

(a) Writing out the definition:

(x ∗ y)[0] =

3−1∑
k=0

x[k]y[0− k] = y[0]x[0] + y[−1]x[1] + y[−2]x[2]

That is: (x ∗ y)[0] = ~a · ~x for ~a =
[
y[0], y[−1], y[−2]

]
(b) Exactly the same argument:

(x ∗ y)[1] = ~b · ~x for ~b =
[
y[1], y[0], y[−1]

]
(x ∗ y)[2] = ~c · ~x for ~c =

[
y[2], y[1], y[0]

]
Put ~a, ~b, ~c as the rows of 3-by-3 matrix Y (in order).

(c) In this example,

Y =

y[0] y[−1] y[−2]
y[1] y[0] y[−1]
y[2] y[1] y[0]

 =

−3 1 i
i −3 1
1 i −3


Normal matrix product gives:

Y ~x =

−5 + i
4 + 2i
−1− i
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