Math 267, Section 202 : HW 6

Due Monday, February 25th.

1. (Scaling, time-shift, duality, differentiation)
(a) Find Fourier transform of

$$
f(t)= \begin{cases}t+1, & -1 \leq t \leq-1 / 2 \\ -t, & -1 / 2 \leq t \leq 0 \\ 0, & \text { otherwise }\end{cases}
$$

(Hint: This is similar to one of class examples about differentiation rule for Fourier transform.)
(b) Find Fourier transform of

$$
f(t)= \begin{cases}t+2, & -2 \leq t \leq-1 \\ -t, & -1 \leq t \leq 0 \\ 0, & \text { otherwise }\end{cases}
$$

(Hint: Use (a) and scaling property of Fourier transform.)
(c) Let $f(t)=e^{-|t|}$.
i. Find $\widehat{f}(\omega)$. (Hint: this is a class example. You can use the result for $e^{-t} u(t)$ and apply properties of Fourier transform: here timereversal property is relevant.)
ii. Use part (i) and the duality property to find the Fourier transform $\widehat{g}(\omega)$ of the function

$$
g(t)=\frac{1}{\pi} \frac{1}{1+t^{2}}
$$

2. Find the inverse Fourier transform of the following functions. Namely, for the given Fourier transform function, find the original function.
(a) $\widehat{g}(\omega)=\frac{1}{2+i \omega}-\frac{1}{3+i \omega}$
(b) $\widehat{f}(\omega)=e^{-i 2 \omega} \operatorname{sinc}(3 \omega)$
3. Find the inverse Fourier transforms.

Use only basic examples, shortcuts and properties discussed in lecture.
(a) $\widehat{f}(\omega)=\frac{2}{(i \omega+4)(i \omega-3)(i \omega+5)}$
(b) $\widehat{g}(\omega)=\frac{1}{-2 \omega^{2}+2 i \omega+1}$
(c) $\widehat{h}(\omega)=\cos (\omega) \operatorname{sinc}(\omega)$.
(Hint: Express $\cos (\omega)$ in terms of complex exponentials.)
4. Evaluate each integral. (Hint: You may want to recall the definition of Fourier transfrom or Fourier inverse transform, their properties, and basic examples.)
(a) $\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{2}{\omega^{2}+1} d \omega$
(b) $\int_{-\infty}^{\infty} \operatorname{sinc}(4 \omega) e^{-i 4 \omega} d \omega$

5. (Frequency Shifting)

(a) Show that if $g(t)=e^{i \omega_{0} t} f(t)$, then $\widehat{g}(\omega)=\widehat{f}\left(\omega-\omega_{0}\right)$. Also, show that if $\widehat{g}(\omega)=\widehat{f}\left(\omega-\omega_{0}\right)$, then $g(t)=e^{i \omega_{0} t} f(t)$. (Hint: Use the definition (the integral expression) of Fourier transform and Fourier inversion.)
(b) For a function $h_{1}(t)$, suppose $\widehat{h}_{1}(\omega)=\operatorname{sinc}\left(\frac{\omega}{2}-2\right)$. Find $h_{1}(t)$. (Hint: use (a).)
(c) For a function $h_{2}(t)$, suppose $\widehat{h}_{2}(\omega)=\operatorname{sinc}\left(\frac{\omega}{2}-2\right)+2 \operatorname{sinc}\left(\frac{\omega}{2}+2\right)$. Find $h_{2}(t)$. (Hint: use (a) and the linearity of Fourier transform/ inversion.)

6. (Differentiation in frequency)

(a) Prove the following:

$$
\text { if } g(t)=t f(t) \text { then } \widehat{g}(\omega)=i \frac{d}{d \omega} \widehat{f}(\omega)
$$

(Hint: differentiate the definition (I mean, the integral) of $\widehat{f}(\omega)$ with respect to ω : i.e.

$$
\left.\frac{d}{d \omega} \widehat{f}(\omega)=\int_{-\infty}^{\infty} f(t) \frac{d}{d \omega} e^{-i t \omega} d t .\right)
$$

(b) Use (a) to show

$$
\text { if } \widehat{g}(\omega)=\frac{d}{d \omega} \widehat{f}(\omega) \text {, then } g(t)=-i t f(t)
$$

(c) Using the frequency differentiation property in part (a), compute the Fourier transform of:
(i) $f(t)=t \operatorname{rect}(t)$
(ii) $g(t)=t^{2} e^{-3 t} u(t)$ (Hint: you can apply the frequency differentiation property twice.)
(d) [Fourier inversion] For a real nonzero constant a, find the function $g(t)$ if

$$
\widehat{g}(\omega)=\frac{1}{(i \omega+a)^{2}}
$$

(Hint: You can use (b). Can you express $\widehat{g}(\omega)$ as a ω-derivative of certain function?)
7. (Optional. Not to be graded.) It is known that

$$
\mathcal{F}\left[e^{-\frac{x^{2}}{2}}\right](\omega)=\sqrt{2 \pi} e^{-\frac{\omega^{2}}{2}}
$$

Use this fact to calculate the Fourier transform of $m(x)=x e^{-\frac{x^{2}}{2}}$.
8. (Optional. Not to be graded.) (RLC circuit) Consider the ODE for RLC circuit:

$$
L C y^{\prime \prime}(t)+R C y^{\prime}(t)+y(t)=x(t)
$$

(a) Let $R=4, L=3, C=1$ and $\widehat{x}(\omega)=1$. Find $y(t)$ using Fourier transform method.
(b) Let $R=2, L=1, C=1$ and $\widehat{x}(\omega)=1$. Find $y(t)$ using Fourier transform method.
(c) Let $R=4, L=3, C=1$ and $x(t)=u(t) e^{-2 t}$. Find $y(t)$ using Fourier transform method.
9. (Optional. Not to be graded.) What is the inverse Fourier transform of $\widehat{q}(\omega)=e^{+i \omega} \frac{d}{d \omega} \operatorname{sinc}(\omega+1)$?
Answer using properties of Fourier transform / Fourier inversion. (Hint: You may want to use the differentiation in frequency property in one of the previous problems. Alternatively, duality can be useful here.)

