
Math 267, Section 202 : HW 6

Due Monday, February 25th.

1. (Scaling, time-shift, duality, differentiation)

(a) Find Fourier transform of

f(t) =


t+ 1, −1 ≤ t ≤ −1/2;

−t, −1/2 ≤ t ≤ 0;

0, otherwise.

(Hint: This is similar to one of class examples about differentiation
rule for Fourier transform.)

Solution : Note that

d

dt
f(t) = rect(2(t+ 3/4))− rect(2(t+ 1/4)).

[For this, do first the scaling of the class example (scale by 1/2) and
do the appropriate time-shift (by -1/4). ]

Therefore, the Fourier transform

F [
d

dt
f(t)](ω)

= F [rect(2(t+ 3/4))− rect(2(t+ 1/4))](ω)

= F [rect(2(t+ 3/4))](ω)−F [rect(2(t+ 1/4))](ω) (by linearity of F.T.)

= eiω3/4F [rect(2t)](ω)− eiω/4F [rect(2t)](ω)

(by time-shift property: practically it can be better to do this step first before handling scaling.)

= [eiω3/4 − eiω/4]F [rect(2t)](ω)

= [eiω3/4 − eiω/4]
1

2
F [rect(t)](ω/2) (by scaling property)

=
1

2
[eiω3/4 − eiω/4]sinc(ω/4) (see ω/4 in sinc instead of ω/2!)

=
eiω/2

2
[eiω/4 − e−iω/4]sinc(ω/4)

= ieiω/2 sin(ω/4)sinc(ω/4)

But, on the other hand F [ ddtf(t)](ω) = iωF [f(t)](ω) by the differen-
tiation rule.
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Therefore, for ω 6= 0, we see

F [f(t)](ω) =
1

iω
ieiω/2 sin(ω/4)sinc(ω/4)

=
eiω/2

4
sinc(ω/4)sinc(ω/4)

=
eiω/2

4
[sinc(ω/4)]2

For ω = 0, we can directly compute the integral

F [f(t)](0) =

∫ ∞
−∞

f(t)e−i0tdt =

∫ ∞
−∞

f(t)dt = 1/4

(Note that when ω = 0, e
i0/2

4 [sinc(0/4)]2 = 1/4.) Therefore, we have

F [f(t)](ω) =
eiω/2

4
[sinc(ω/4)]2.

(b) Find Fourier transform of

f(t) =


t+ 2, −2 ≤ t ≤ −1;

−t, −1 ≤ t ≤ 0;

0, otherwise.

(Hint: Use (a) and scaling property of Fourier transform.)

Solution

Let f1(t) denote the function f(t) in part (a). Now for f(t) in this
part (b), we see that

f(t) = 2f1(t/2).

Therefore,

F [f(t)](ω) = 2×2F [f(1(t)](2ω)

So, we have

f̂(ω) = 4
eiω

4
[sinc(ω/2)]2

= eiω[sinc(ω/2)]2

Remark: In fact, it can be easier to do this part (b) first and to
use this to do part (a). The function in part (b) is nothing but a
time-shift of the class example and the function in part (a) is the
scaled function of the function in part (b) by scale factor 1/2.
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(c) Let f(t) = e−|t|.

i. Find f̂(ω). (Hint: this is a class example. You can use the result
for e−tu(t) and apply properties of Fourier transform: here time-
reversal property is relevant.)
Solution Let

f0(t) = e−tu(t)

Note that F [f0(t)](ω) = 1
iω+1 ( this is one of the standard ex-

ample given in the class). Now, we can write

f(t) = f0(t) + f0(−t).

Therefore,

F [f(t)](ω) = F [f0(t)](ω) + F(f0(−t)](ω)

= F [f0(t)](ω) + F(f0(t)](−ω)

(used time-reversal property F [g(−t)](ω) = F [g(t)](−ω).)

Therefore,

F [f(t)](ω) =
1

iω + 1
+

1

−iω + 1

=
2

ω2 + 1

ii. Use part (i) and the duality property to find the Fourier trans-
form ĝ(ω) of the function

g(t) =
1

π

1

1 + t2

Solution From (i), we sees that F [ 1
2π e
−|t|](ω) = 1

π
1

1+t2 . Thus

by duality, F [ 1π
1

1+t2 ](ω) = 2π 1
2π e
−|−ω| = e−|ω|.

2. Find the inverse Fourier transform of the following functions. Namely, for
the given Fourier transform function, find the original function.

(a) ĝ(ω) = 1
2+iω −

1
3+iω

Solution :

g(t) = F−1[
1

2 + iω
− 1

3 + iω
](t)

= F−1[
1

2 + iω
](t)−F−1[

1

3 + iω
](t)

= e−2tu(t)− e−3tu(t).
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(b) f̂(ω) = e−i2ωsinc(3ω)

Solution :

f(t) = F−1[e−i2ωsinc(3ω)](t)

= F−1[sinc(3ω)](t− 2) (time-shifting)

= F−1[sinc(6ω/2)](t− 2)

=
1

6
F−1[sinc(ω/2)](

t− 2

6
) (scaling)

=
1

6
rect(

t− 2

6
).

3. Find the inverse Fourier transforms.

Use only basic examples, shortcuts and properties discussed in lecture.

(a) f̂(ω) = 2
(iω+4)(iω−3)(iω+5)

Solution : Let

2

(iω + 4)(iω − 3)(iω + 5)
=

A

(iω + 4)
+

B

(iω − 3)
+

C

(iω + 5)

Then taking the common denominator of the right hand side, we get
from the numerator

2 = A(iω − 3)(iω + 5) +B(iω + 4)(iω + 5) + C(iω + 4)(iω − 3)

= (A+B + C)(iω)2 + (−2A+ 9B + C)iω +−15A+ 20B − 12C

Thus,

A+B + C = 0

− 2A+ 9B + C = 0

− 15A+ 20B − 12C = 2.

From this we see

A = − 10

3 · 21
, B =

1

21
, C = −A−B =

10

3 · 21
− 1

21
=

7

3 · 21

Thus, the inverse Fourier transform is

AF−1
[ 1

(iω + 4)

]
(t) +BF−1

[ 1

(iω − 3)
](t) + CF−1

[ 1

(iω + 5)

]
(t)

= Ae−4tu(t)−Be3tu(−t) + Ce−5tu(t)

=
10

3 · 21
e−4tu(t)− 1

21
e3tu(−t) +

7

3 · 21
e−5tu(t)
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(b) ĝ(ω) = 1
−2ω2+2iω+1

Solution :

1

−2ω2 + 2iω + 1
=

1

2

1

(−ω2 + ω + 1
2 )

=
1

2

1

(iω + 1/2− i/2)(iω + 1/2 + i/2)

=
1

2

1

(i(ω + 1/2− i/2)(iω + 1/2 + i/2)

=
−i
2

1

(iω + 1/2− i/2)
+
i

2

1

(iω + 1/2 + i/2)

=
−i
2

1

(i(ω − 1/2) + 1/2)
+
i

2

1

(i(ω + 1/2) + 1/2)

Thus, the Fourier inversion is

−i
2
e−t/2+it/2u(t) +

i

2
e−t/2−it/2u(t)

(In the last line, we have used the frequency shifting property in
problem 5.)

(c) ĥ(ω) = cos(ω)sinc(ω).
(Hint: Express cos(ω) in terms of complex exponentials.)

Solution :

cos(ω)sinc(ω) =
1

2
(eiω + e−iω)sinc(ω) =

1

2
eiωsinc(ω) +

1

2
e−iωsinc(ω)

Thus,

F−1[cos(ω)sinc(ω)](t)

= F−1[
1

2
eiωsinc(ω)](t) + F−1[

1

2
e−iωsinc(ω)](t)

= F−1[
1

2
sinc(ω)](t+ 1) + F−1[

1

2
sinc(ω)](t− 1) (time-shifting)

= F−1
[1

4
sinc(ω/2)

]( t+ 1

2

)
+ F−1

[1

4
sinc(ω/2)

]( t− 1

2

)
(scaling)

=
1

4
rect(

t+ 1

2
) +

1

4
rect(

t− 1

2
)

4. Evaluate each integral. (Hint: You may want to recall the definition of
Fourier transfrom or Fourier inverse transform, their properties, and basic
examples. )
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(a) 1
π

∫∞
−∞

2
ω2+1 dω

Solution : Note that 1
ω2+1 =

∣∣∣ 1
iω+1

∣∣∣2 and also that F [e−tu(t)](ω) =
1

iω+1 . Therefore, using Parseval’s relation, we get

1

π

∫ ∞
−∞

2

ω2 + 1
dω

= 4
1

2π

∫ ∞
−∞

1

ω2 + 1
dω

= 4

∫ ∞
−∞
|e−tu(t)|2dt

= 4

∫ ∞
0

e−2tdt

= 2.

(b)
∫∞
−∞ sinc(4ω) e−i4ω dω

Solution : Ignor this problem.

5. (Frequency Shifting)

(a) Show that if g(t) = eiω0tf(t), then ĝ(ω) = f̂(ω−ω0). Also, show that

if ĝ(ω) = f̂(ω − ω0), then g(t) = eiω0tf(t). (Hint: Use the definition
(the integral expression) of Fourier transform and Fourier inversion.)

Solution For the first part,

F [eiω0tf(t)](ω) =

∫ ∞
−∞

eiω0tf(t)e−itωdt

=

∫ ∞
−∞

f(t)e−it(ω−ω0)dt

= F [f(t)](ω − ω0).

Taking Fourier inversion of both the left and right sides, we get the
second part.

(b) For a function h1(t), suppose ĥ1(ω) = sinc(ω2 −2). Find h1(t). (Hint:
use (a).)

Solution Using the identities in (a),

F−1[sinc(ω/2− 2)](t) = F−1[sinc
(ω − 4

2

)
](t) = ei4tF−1[sinc(ω/2)](t)

= ei4trect(t).
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(c) For a function h2(t), suppose ĥ2(ω) = sinc(ω2 − 2) + 2 sinc(ω2 + 2).
Find h2(t). (Hint: use (a) and the linearity of Fourier transform/
inversion.)

Solution

F−1[sinc(
ω

2
− 2) + 2 sinc(

ω

2
+ 2)](t)

= F−1[sinc(
ω

2
− 2)](t) + 2F−1[sinc(

ω

2
+ 2)](t)

= F−1[sinc(
ω − 4

2
)](t) + 2F−1[sinc(

ω + 4

2
)](t)

= ei4tF−1[sinc(
ω

2
)](t) + 2e−i4tF−1[sinc(

ω

2
)](t)

= ei4trect(t) + 2e−i4trect(t).

6. (Differentiation in frequency)

(a) Prove the following:

if g(t) = tf(t) then ĝ(ω) = i ddω f̂(ω)

(Hint: differentiate the definition (I mean, the integral) of f̂(ω) with
respect to ω: i.e.

d

dω
f̂(ω) =

∫ ∞
−∞

f(t)
d

dω
e−itωdt. )

Solution :

i
d

dω
f̂(ω) = i

∫ ∞
−∞

f(t)
d

dω
e−itωdt

= i

∫ ∞
−∞

f(t)(−it)e−itωdt

=

∫ ∞
−∞

tf(t)e−itωdt

= F [tf(t)](ω).

(b) Use (a) to show

if ĝ(ω) = d
dω f̂(ω), then g(t) = −itf(t)

Solution : From (a), we know F [tf(t)](ω) = i ddω f̂(ω). So, multiply-

ing both sides by −i, we get −iF [tf(t)](ω) = d
dω f̂(ω). Take inverse

Fourier transform to see −itf(t) = F−1[ ddω f̂(ω)](t). completing the
proof.
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(c) Using the frequency differentiation property in part (a), compute the
Fourier transform of:

(i) f(t) = t rect(t)
Solution :

F [trect(t)](ω) = i
d

dω
F [rect(t)](ω)

= i
d

dω
sinc(ω/2)

To compute d
dω sinc(ω/2), note that sinc(ω/2) = 2

ω sin(ω/2) for
ω 6= 0. So, for ω 6= 0,

d

dω
sinc(ω/2) =

d

dω

2

ω
sin(ω/2)

= − 2

ω2
sin(ω/2) +

2

ω
cos(ω/2)

1

2

= − 2

ω2
sin(ω/2) +

1

ω
cos(ω/2)

=
1

ω

[
− 2

ω
sin(ω/2) + cos(ω/2)

]
Notice that at ω = 0, sinc(ω/2) has its maximum and has the
horizontal tangent line, so its derivative at ω = 0 is 0. Therefore,
we have

F [trect(t)](ω) = i
d

dω
sinc(ω/2) =

{
i
ω

[
− 2

ω sin(ω/2) + cos(ω/2)
]

for ω 6= 0,

0 for ω = 0.

(ii) g(t) = t2e−3tu(t) (Hint: you can apply the frequency differen-
tiation property twice.)
Solution

F [t2e−3tu(t)](ω) = i
d

dω
F [te−3tu(t)](ω)

= i
d

dω
i
d

dω
F [e−3tu(t)](ω)

= i
d

dω
i
d

dω

[ 1

iω + 3

]
= i

d

dω

[ 1

(iω + 3)2

]
=

2

(iω + 3)3
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(d) [Fourier inversion] For a real nonzero constant a, find the function
g(t) if

ĝ(ω) =
1

(iω + a)2

(Hint: You can use (b). Can you express ĝ(ω) as a ω-derivative of
certain function? )

Solution

Observe that

i
d

dω

[ 1

iω + a

]
=

1

(iω + a)2

Also, note that

For the case a > 0.

F−1[
1

iω + a
](t) = e−atu(t)

For the case a < 0 (i.e. −a > 0),

F−1
[ 1

iω + a

]
(t) = F−1

[
− 1

i(−ω) +−a
]
(t) = −e−(−a)(−t)u(−t) (used time reversal)

= −eatu(−t).

Therefore, by part (a) (or (b)) for the case a > 0,

g(t) = te−atu(t),

and for the case a < 0,

g(t) = −teatu(−t).

7. (Optional. Not to be graded.) It is known that

F
[
e−

x2

2

]
(ω) =

√
2π e−

ω2

2

Use this fact to calculate the Fourier transform of m(x) = x e−
x2

2 .

Solution : Notice that

m(x) = x e−
x2

2 = − d

dx
e−

x2

2
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Therefore, from the differentiation property,

F [m(x)](ω) = −iωF [e−
x2

2 ](ω)

= −iω
√

2π e−
ω2

2

8. (Optional. Not to be graded.) (RLC circuit) Consider the ODE
for RLC circuit:

LCy′′(t) +RCy′(t) + y(t) = x(t)

(a) Let R = 4, L = 3, C = 1 and x̂(ω) = 1. Find y(t) using Fourier
transform method.

Solution The left-hand side is 3y′′(t) + 4y′(t) + y(t). Thus, the
Fourier transform gives

−3ω2ŷ(ω) + 4iωŷ(ω) + ŷ(ω) = x̂(ω).

Therefore,

ŷ(ω) =
1

−3ω2 + 4iω + 1
x̂(ω)

=
1

−3ω2 + 4iω + 1
(since we assumed ŵ(ω) = 1. )

Note that −3ω2+4iω+1 = (3iω+1)(iω+1) Now, by partial fraction,

1

−3ω2 + 4iω + 1
=

1

(3iω + 1)(iω + 1)

=
A

3iω + 1
+

B

iω + 1
.

Here, A and B are determined by

A(iω + 1) +B(3iω + 1) = 1

(A+ 3B)iω +A+B = 1

Comparing the real and imaginary parts, we get,

A+ 3B = 0 A+B = 1

Therefore, B = − 1
2 , A = 3

2 . Thus,

ŷ(ω) =
1

−3ω2 + 4iω + 1
=

3

2(3iω + 1)
− 1

2(iω + 1)
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Now, for the Fourier inversion y(t) = F−1[ŷ(ω)](t),

y(t) = F−1
[ 3

2(3iω + 1)
− 1

2(iω + 1)

]
(t)

=
3

2
F−1

[ 1

3iω + 1

]
(t)−1

2
F−1

[ 1

iω + 1

]
(t)

=
1

2
F−1

[ 1

iω + 1/3

]
(t)−1

2
F−1

[ 1

iω + 1

]
(t)

=
1

2
e−t/3u(t)− 1

2
e−tu(t).

(b) Let R = 2, L = 1, C = 1 and x̂(ω) = 1. Find y(t) using Fourier
transform method.

Solution The left-hand side is y′′(t)+2y′(t)+y(t). Thus, the Fourier
transform gives

−ω2ŷ(ω) + 2iωŷ(ω) + ŷ(ω) = x̂(ω).

Therefore,

ŷ(ω) =
1

−ω2 + 2iω + 1
x̂(ω)

=
1

−ω2 + 2iω + 1
(since we assumed ŵ(ω) = 1. )

=
1

(iω + 1)2

Now use the result of Problem 2 (d), to get

y(t) = te−tu(t).

(c) Let R = 4, L = 3, C = 1 and x(t) = u(t)e−2t. Find y(t) using
Fourier transform method.

Solution The left-hand side is 3y′′(t) + 4y′(t) + y(t). Thus, the
Fourier transform gives

−3ω2ŷ(ω) + 4iωŷ(ω) + ŷ(ω) = x̂(ω).

Therefore,

ŷ(ω) =
1

−3ω2 + 4iω + 1
x̂(ω)

Now, from our class example,

x̂(ω) = F [e−2tu(t)](ω) =
1

iω + 2
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Therefore,

ŷ(ω) =
1

−3ω2 + 4iω + 1

1

iω + 2

=
1

(3iω + 1)(iω + 1)(iω + 2)

(Note that −3ω2 + 4iω + 1 = (3iω + 1)(iω + 2) )

Now, by partial fraction,

ŷ(ω) =
A

3iω + 1
+

B

iω + 1
+

C

iω + 2
.

Here, A, B and C are determined by

A(iω + 1)(iω + 2) +B(3iω + 1)(iω + 2) + C(3iω + 1)(iω + 1) = 1

The left hand side is simplified by

A(iω + 1)(iω + 2) +B(3iω + 1)(iω + 2) + C(3iω + 1)(iω + 1)

= A(−ω2 + 3iω + 2) +B(−3ω2 + 7iω + 2) + C(−3ω2 + 4iω + 1)

= −(A+ 3B + 3C)ω2 + (3A+ 7B + 4C)iω + 2A+ 2B + C

Comparing the last line with 1 (since they should be the same as
functions of ω), we have,

A+ 3B + 3C = 0 3A+ 7B + 4C = 0 2A+ 2B + C = 1

Therefore,

A = 9/10, B = −1/2, C = 1/5

Therefore,

ŷ(ω) =
9

10

1

3iω + 1
− 1

2

1

iω + 1
+

1

5

1

iω + 2
.

Therefore,

y(t) = F−1
[
ŷ(ω)

]
(t) =

9

10
F−1

[ 1

3iω + 1

]
(t)− 1

2
F−1

[ 1

iω + 1

]
(t) +

1

5
F−1

[ 1

iω + 2

]
(t)

=
9

30
F−1

[ 1

iω + 1/3

]
(t)− 1

2
F−1

[ 1

iω + 1

]
(t) +

1

5
F−1

[ 1

iω + 2

]
(t)

=
3

10
e−t/3u(t)− 1

2
e−tu(t) +

1

5
e−2tu(t) (by using the standard example e−atu(t))

= u(t)
[ 3

10
e−t/3 − 1

2
e−t +

1

5
e−2t

]
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9. (Optional. Not to be graded.) What is the inverse Fourier transform
of q̂(ω) = e+iω d

dω sinc(ω + 1)?

Answer using properties of Fourier transform / Fourier inversion. (Hint:
You may want to use the differentiation in frequency property in one of
the previous problems. Alternatively, duality can be useful here.)

Solution : From rearranging, we have

e−iω q̂(ω) =
d

dω
sinc(ω + 1)

Now,

F−1[e−iω q̂(ω)](t) = F−1
[
d

dω
sinc(ω + 1)

]
(t) = −itF−1 [sinc(ω + 1)] (t)

In the last line, we used the ω-differentiation property (Problem 6 (b)).
Now, note that using frequency shifting and scaling,

F−1 [sinc(ω + 1)] (t) = e−itF−1 [sinc(ω)] (t) = e−it
1

2
F−1 [sinc(ω/2)] (t/2)

=
1

2
e−itrect(t/2)

Therefore,

F−1[e−iω q̂(ω)](t) = − it
2
e−itrect(t/2)

Finally from the time-shifting property, we see

F−1[q̂(ω)](t) = − i(t− 1)

2
e−i(t−1)rect((t− 1)/2)
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