Math 267, Section 202: HW 6

Due Monday, February 25th.

1. (Scaling, time-shift, duality, differentiation)
(a) Find Fourier transform of

$$
f(t)= \begin{cases}t+1, & -1 \leq t \leq-1 / 2 \\ -t, & -1 / 2 \leq t \leq 0 \\ 0, & \text { otherwise }\end{cases}
$$

(Hint: This is similar to one of class examples about differentiation rule for Fourier transform.)
Solution : Note that

$$
\frac{d}{d t} f(t)=\operatorname{rect}(2(t+3 / 4))-\operatorname{rect}(2(t+1 / 4))
$$

[For this, do first the scaling of the class example (scale by $1 / 2$) and do the appropriate time-shift (by $-1 / 4$).]
Therefore, the Fourier transform

$$
\begin{aligned}
& \mathcal{F}\left[\frac{d}{d t} f(t)\right](\omega) \\
& =\mathcal{F}[\operatorname{rect}(2(t+3 / 4))-\operatorname{rect}(2(t+1 / 4))](\omega) \\
& =\mathcal{F}[\operatorname{rect}(2(t+3 / 4))](\omega)-\mathcal{F}[\operatorname{rect}(2(t+1 / 4))](\omega) \quad \text { (by linearity of F.T.) } \\
& =e^{i \omega 3 / 4} \mathcal{F}[\operatorname{rect}(2 t)](\omega)-e^{i \omega / 4} \mathcal{F}[\operatorname{rect}(2 t)](\omega)
\end{aligned}
$$

(by time-shift property: practically it can be better to do this step first before handling scaling.)

$$
\begin{aligned}
& =\left[e^{i \omega 3 / 4}-e^{i \omega / 4}\right] \mathcal{F}[\operatorname{rect}(2 t)](\omega) \\
& =\left[e^{i \omega 3 / 4}-e^{i \omega / 4}\right] \frac{1}{2} \mathcal{F}[\operatorname{rect}(t)](\omega / 2) \quad \text { (by scaling property) } \\
& =\frac{1}{2}\left[e^{i \omega 3 / 4}-e^{i \omega / 4}\right] \operatorname{sinc}(\omega / 4)(\operatorname{see} \omega / 4 \text { in sinc instead of } \omega / 2!) \\
& =\frac{e^{i \omega / 2}}{2}\left[e^{i \omega / 4}-e^{-i \omega / 4}\right] \operatorname{sinc}(\omega / 4) \\
& =i e^{i \omega / 2} \sin (\omega / 4) \operatorname{sinc}(\omega / 4)
\end{aligned}
$$

But, on the other hand $\mathcal{F}\left[\frac{d}{d t} f(t)\right](\omega)=i \omega \mathcal{F}[f(t)](\omega)$ by the differentiation rule.

Therefore, for $\omega \neq 0$, we see

$$
\begin{aligned}
\mathcal{F}[f(t)](\omega) & =\frac{1}{i \omega} i e^{i \omega / 2} \sin (\omega / 4) \operatorname{sinc}(\omega / 4) \\
& =\frac{e^{i \omega / 2}}{4} \operatorname{sinc}(\omega / 4) \operatorname{sinc}(\omega / 4) \\
& =\frac{e^{i \omega / 2}}{4}[\operatorname{sinc}(\omega / 4)]^{2}
\end{aligned}
$$

For $\omega=0$, we can directly compute the integral

$$
\mathcal{F}[f(t)](0)=\int_{-\infty}^{\infty} f(t) e^{-i 0 t} d t=\int_{-\infty}^{\infty} f(t) d t=1 / 4
$$

(Note that when $\omega=0, \frac{e^{i 0 / 2}}{4}[\operatorname{sinc}(0 / 4)]^{2}=1 / 4$.) Therefore, we have

$$
\mathcal{F}[f(t)](\omega)=\frac{e^{i \omega / 2}}{4}[\operatorname{sinc}(\omega / 4)]^{2} .
$$

(b) Find Fourier transform of

$$
f(t)= \begin{cases}t+2, & -2 \leq t \leq-1 \\ -t, & -1 \leq t \leq 0 \\ 0, & \text { otherwise }\end{cases}
$$

(Hint: Use (a) and scaling property of Fourier transform.)

Solution

Let $f_{1}(t)$ denote the function $f(t)$ in part (a). Now for $f(t)$ in this part (b), we see that

$$
f(t)=2 f_{1}(t / 2)
$$

Therefore,

$$
\mathcal{F}[f(t)](\omega)=2 \times 2 \mathcal{F}\left[f\left({ }_{1}(t)\right](2 \omega)\right.
$$

So, we have

$$
\begin{aligned}
\widehat{f}(\omega) & =4 \frac{e^{i \omega}}{4}[\operatorname{sinc}(\omega / 2)]^{2} \\
& =\underline{e^{i \omega}[\operatorname{sinc}(\omega / 2)]^{2}}
\end{aligned}
$$

Remark: In fact, it can be easier to do this part (b) first and to use this to do part (a). The function in part (b) is nothing but a time-shift of the class example and the function in part (a) is the scaled function of the function in part (b) by scale factor $1 / 2$.
(c) Let $f(t)=e^{-|t|}$.
i. Find $\widehat{f}(\omega)$. (Hint: this is a class example. You can use the result for $e^{-t} u(t)$ and apply properties of Fourier transform: here timereversal property is relevant.)

Solution Let

$$
f_{0}(t)=e^{-t} u(t)
$$

Note that $\mathcal{F}\left[f_{0}(t)\right](\omega)=\frac{1}{i \omega+1}$ (this is one of the standard example given in the class). Now, we can write

$$
f(t)=f_{0}(t)+f_{0}(-t) .
$$

Therefore,

$$
\begin{aligned}
\mathcal{F}[f(t)](\omega) & =\mathcal{F}\left[f_{0}(t)\right](\omega)+\mathcal{F}\left(f_{0}(-t)\right](\omega) \\
& =\mathcal{F}\left[f_{0}(t)\right](\omega)+\mathcal{F}\left(f_{0}(t)\right](-\omega)
\end{aligned}
$$

$$
\text { (used time-reversal property } \mathcal{F}[g(-t)](\omega)=\mathcal{F}[g(t)](-\omega) . \text {) }
$$

Therefore,

$$
\begin{aligned}
\mathcal{F}[f(t)](\omega) & =\frac{1}{i \omega+1}+\frac{1}{-i \omega+1} \\
& =\frac{2}{\omega^{2}+1}
\end{aligned}
$$

ii. Use part (i) and the duality property to find the Fourier transform $\widehat{g}(\omega)$ of the function

$$
g(t)=\frac{1}{\pi} \frac{1}{1+t^{2}}
$$

Solution From (i), we sees that $\mathcal{F}\left[\frac{1}{2 \pi} e^{-|t|}\right](\omega)=\frac{1}{\pi} \frac{1}{1+t^{2}}$. Thus by duality, $\mathcal{F}\left[\frac{1}{\pi} \frac{1}{1+t^{2}}\right](\omega)=2 \pi \frac{1}{2 \pi} e^{-|-\omega|}=\underline{e^{-|\omega|}}$.
2. Find the inverse Fourier transform of the following functions. Namely, for the given Fourier transform function, find the original function.
(a) $\widehat{g}(\omega)=\frac{1}{2+i \omega}-\frac{1}{3+i \omega}$

Solution :

$$
\begin{aligned}
g(t) & =\mathcal{F}^{-1}\left[\frac{1}{2+i \omega}-\frac{1}{3+i \omega}\right](t) \\
& =\mathcal{F}^{-1}\left[\frac{1}{2+i \omega}\right](t)-\mathcal{F}^{-1}\left[\frac{1}{3+i \omega}\right](t) \\
& =e^{-2 t} u(t)-e^{-3 t} u(t) .
\end{aligned}
$$

(b) $\widehat{f}(\omega)=e^{-i 2 \omega} \operatorname{sinc}(3 \omega)$

Solution :

$$
\begin{aligned}
f(t) & =\mathcal{F}^{-1}\left[e^{-i 2 \omega} \operatorname{sinc}(3 \omega)\right](t) \\
& =\mathcal{F}^{-1}[\operatorname{sinc}(3 \omega)](t-2) \quad \text { (time-shifting) } \\
& =\mathcal{F}^{-1}[\operatorname{sinc}(6 \omega / 2)](t-2) \\
& =\frac{1}{6} \mathcal{F}^{-1}[\operatorname{sinc}(\omega / 2)]\left(\frac{t-2}{6}\right) \quad \text { (scaling) } \\
& =\frac{1}{6} \operatorname{rect}\left(\frac{t-2}{6}\right) .
\end{aligned}
$$

3. Find the inverse Fourier transforms.

Use only basic examples, shortcuts and properties discussed in lecture.
(a) $\widehat{f}(\omega)=\frac{2}{(i \omega+4)(i \omega-3)(i \omega+5)}$

Solution : Let

$$
\frac{2}{(i \omega+4)(i \omega-3)(i \omega+5)}=\frac{A}{(i \omega+4)}+\frac{B}{(i \omega-3)}+\frac{C}{(i \omega+5)}
$$

Then taking the common denominator of the right hand side, we get from the numerator

$$
\begin{aligned}
2 & =A(i \omega-3)(i \omega+5)+B(i \omega+4)(i \omega+5)+C(i \omega+4)(i \omega-3) \\
& =(A+B+C)(i \omega)^{2}+(-2 A+9 B+C) i \omega+-15 A+20 B-12 C
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& A+B+C=0 \\
& -2 A+9 B+C=0 \\
& -15 A+20 B-12 C=2
\end{aligned}
$$

From this we see

$$
A=-\frac{10}{3 \cdot 21}, \quad B=\frac{1}{21}, \quad C=-A-B=\frac{10}{3 \cdot 21}-\frac{1}{21}=\frac{7}{3 \cdot 21}
$$

Thus, the inverse Fourier transform is

$$
\begin{aligned}
& A \mathcal{F}^{-1}\left[\frac{1}{(i \omega+4)}\right](t)+B \mathcal{F}^{-1}\left[\frac{1}{(i \omega-3)}\right](t)+C \mathcal{F}^{-1}\left[\frac{1}{(i \omega+5)}\right](t) \\
& =A e^{-4 t} u(t)-B e^{3 t} u(-t)+C e^{-5 t} u(t) \\
& =\frac{10}{3 \cdot 21} e^{-4 t} u(t)-\frac{1}{21} e^{3 t} u(-t)+\frac{7}{3 \cdot 21} e^{-5 t} u(t)
\end{aligned}
$$

(b) $\widehat{g}(\omega)=\frac{1}{-2 \omega^{2}+2 i \omega+1}$

Solution :

$$
\begin{aligned}
& \frac{1}{-2 \omega^{2}+2 i \omega+1}=\frac{1}{2} \frac{1}{\left(-\omega^{2}+\omega+\frac{1}{2}\right)} \\
& =\frac{1}{2} \frac{1}{(i \omega+1 / 2-i / 2)(i \omega+1 / 2+i / 2)} \\
& =\frac{1}{2} \frac{1}{(i(\omega+1 / 2-i / 2)(i \omega+1 / 2+i / 2)} \\
& =\frac{-i}{2} \frac{1}{(i \omega+1 / 2-i / 2)}+\frac{i}{2} \frac{1}{(i \omega+1 / 2+i / 2)} \\
& =\frac{-i}{2} \frac{1}{(i(\omega-1 / 2)+1 / 2)}+\frac{i}{2} \frac{1}{(i(\omega+1 / 2)+1 / 2)}
\end{aligned}
$$

Thus, the Fourier inversion is

$$
\frac{-i}{2} e^{-t / 2+i t / 2} u(t)+\frac{i}{2} e^{-t / 2-i t / 2} u(t)
$$

(In the last line, we have used the frequency shifting property in problem 5.)
(c) $\widehat{h}(\omega)=\cos (\omega) \operatorname{sinc}(\omega)$.
(Hint: Express $\cos (\omega)$ in terms of complex exponentials.)

Solution :

$\cos (\omega) \operatorname{sinc}(\omega)=\frac{1}{2}\left(e^{i \omega}+e^{-i \omega}\right) \operatorname{sinc}(\omega)=\frac{1}{2} e^{i \omega} \operatorname{sinc}(\omega)+\frac{1}{2} e^{-i \omega} \operatorname{sinc}(\omega)$
Thus,

$$
\begin{aligned}
& \mathcal{F}^{-1}[\cos (\omega) \operatorname{sinc}(\omega)](t) \\
& =\mathcal{F}^{-1}\left[\frac{1}{2} e^{i \omega} \operatorname{sinc}(\omega)\right](t)+\mathcal{F}^{-1}\left[\frac{1}{2} e^{-i \omega} \operatorname{sinc}(\omega)\right](t) \\
& =\mathcal{F}^{-1}\left[\frac{1}{2} \operatorname{sinc}(\omega)\right](t+1)+\mathcal{F}^{-1}\left[\frac{1}{2} \operatorname{sinc}(\omega)\right](t-1) \quad \text { (time-shifting) } \\
& =\mathcal{F}^{-1}\left[\frac{1}{4} \operatorname{sinc}(\omega / 2)\right]\left(\frac{t+1}{2}\right)+\mathcal{F}^{-1}\left[\frac{1}{4} \operatorname{sinc}(\omega / 2)\right]\left(\frac{t-1}{2}\right) \quad \text { (scaling) } \\
& =\frac{1}{4} \operatorname{rect}\left(\frac{t+1}{2}\right)+\frac{1}{4} \operatorname{rect}\left(\frac{t-1}{2}\right)
\end{aligned}
$$

4. Evaluate each integral. (Hint: You may want to recall the definition of Fourier transfrom or Fourier inverse transform, their properties, and basic examples.)
(a) $\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{2}{\omega^{2}+1} d \omega$

Solution : Note that $\frac{1}{\omega^{2}+1}=\left|\frac{1}{i \omega+1}\right|^{2}$ and also that $\mathcal{F}\left[e^{-} t u(t)\right](\omega)=$ $\frac{1}{i \omega+1}$. Therefore, using Parseval's relation, we get

$$
\begin{aligned}
& \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{2}{\omega^{2}+1} d \omega \\
& =4 \frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{1}{\omega^{2}+1} d \omega \\
& =4 \int_{-\infty}^{\infty}\left|e^{-t} u(t)\right|^{2} d t \\
& =4 \int_{0}^{\infty} e^{-2 t} d t \\
& =\underline{2} .
\end{aligned}
$$

(b) $\int_{-\infty}^{\infty} \operatorname{sinc}(4 \omega) e^{-i 4 \omega} d \omega$

Solution : Ignor this problem.

5. (Frequency Shifting)

(a) Show that if $g(t)=e^{i \omega_{0} t} f(t)$, then $\widehat{g}(\omega)=\widehat{f}\left(\omega-\omega_{0}\right)$. Also, show that if $\widehat{g}(\omega)=\widehat{f}\left(\omega-\omega_{0}\right)$, then $g(t)=e^{i \omega_{0} t} f(t)$. (Hint: Use the definition (the integral expression) of Fourier transform and Fourier inversion.)
Solution For the first part,

$$
\begin{aligned}
\mathcal{F}\left[e^{i \omega_{0} t} f(t)\right](\omega) & =\int_{-\infty}^{\infty} e^{i \omega_{0} t} f(t) e^{-i t \omega} d t \\
& =\int_{-\infty}^{\infty} f(t) e^{-i t\left(\omega-\omega_{0}\right)} d t \\
& =\mathcal{F}[f(t)]\left(\omega-\omega_{0}\right) .
\end{aligned}
$$

Taking Fourier inversion of both the left and right sides, we get the second part.
(b) For a function $h_{1}(t)$, suppose $\widehat{h}_{1}(\omega)=\operatorname{sinc}\left(\frac{\omega}{2}-2\right)$. Find $h_{1}(t)$. (Hint: use (a).)
Solution Using the identities in (a),

$$
\begin{aligned}
\mathcal{F}^{-1}[\operatorname{sinc}(\omega / 2-2)](t) & =\mathcal{F}^{-1}\left[\operatorname{sinc}\left(\frac{\omega-4}{2}\right)\right](t)=e^{i 4 t} \mathcal{F}^{-1}[\operatorname{sinc}(\omega / 2)](t) \\
& =\underline{e^{i 4 t} \operatorname{rect}(t)} .
\end{aligned}
$$

(c) For a function $h_{2}(t)$, suppose $\widehat{h}_{2}(\omega)=\operatorname{sinc}\left(\frac{\omega}{2}-2\right)+2 \operatorname{sinc}\left(\frac{\omega}{2}+2\right)$. Find $h_{2}(t)$. (Hint: use (a) and the linearity of Fourier transform/ inversion.)

Solution

$$
\begin{aligned}
& \mathcal{F}^{-1}\left[\operatorname{sinc}\left(\frac{\omega}{2}-2\right)+2 \operatorname{sinc}\left(\frac{\omega}{2}+2\right)\right](t) \\
& =\mathcal{F}^{-1}\left[\operatorname{sinc}\left(\frac{\omega}{2}-2\right)\right](t)+2 \mathcal{F}^{-1}\left[\operatorname{sinc}\left(\frac{\omega}{2}+2\right)\right](t) \\
& =\mathcal{F}^{-1}\left[\operatorname{sinc}\left(\frac{\omega-4}{2}\right)\right](t)+2 \mathcal{F}^{-1}\left[\operatorname{sinc}\left(\frac{\omega+4}{2}\right)\right](t) \\
& =e^{i 4 t} \mathcal{F}^{-1}\left[\operatorname{sinc}\left(\frac{\omega}{2}\right)\right](t)+2 e^{-i 4 t} \mathcal{F}^{-1}\left[\operatorname{sinc}\left(\frac{\omega}{2}\right)\right](t) \\
& =e^{i 4 t} \operatorname{rect}(t)+2 e^{-i 4 t} \operatorname{rect}(t) .
\end{aligned}
$$

6. (Differentiation in frequency)

(a) Prove the following:

$$
\text { if } g(t)=t f(t) \text { then } \widehat{g}(\omega)=i \frac{d}{d \omega} \widehat{f}(\omega)
$$

(Hint: differentiate the definition (I mean, the integral) of $\widehat{f}(\omega)$ with respect to ω : i.e.

$$
\frac{d}{d \omega} \widehat{f}(\omega)=\int_{-\infty}^{\infty} f(t) \frac{d}{d \omega} e^{-i t \omega} d t
$$

Solution :

$$
\begin{aligned}
i \frac{d}{d \omega} \widehat{f}(\omega) & =i \int_{-\infty}^{\infty} f(t) \frac{d}{d \omega} e^{-i t \omega} d t \\
& =i \int_{-\infty}^{\infty} f(t)(-i t) e^{-i t \omega} d t \\
& =\int_{-\infty}^{\infty} t f(t) e^{-i t \omega} d t \\
& =\mathcal{F}[t f(t)](\omega)
\end{aligned}
$$

(b) Use (a) to show

$$
\text { if } \widehat{g}(\omega)=\frac{d}{d \omega} \widehat{f}(\omega) \text {, then } g(t)=-i t f(t)
$$

Solution: From (a), we know $\mathcal{F}[t f(t)](\omega)=i \frac{d}{d \omega} \widehat{f}(\omega)$. So, multiplying both sides by $-i$, we get $-i \mathcal{F}[t f(t)](\omega)=\frac{d}{d \omega} \widehat{f}(\omega)$. Take inverse Fourier transform to see $-i t f(t)=\mathcal{F}^{-1}\left[\frac{d}{d \omega} \widehat{f}(\omega)\right](t)$. completing the proof.
(c) Using the frequency differentiation property in part (a), compute the Fourier transform of:
(i) $f(t)=t \operatorname{rect}(t)$

Solution :

$$
\begin{aligned}
\mathcal{F}[\operatorname{trect}(t)](\omega) & =i \frac{d}{d \omega} \mathcal{F}[\operatorname{rect}(t)](\omega) \\
& =i \frac{d}{d \omega} \operatorname{sinc}(\omega / 2)
\end{aligned}
$$

To compute $\frac{d}{d \omega} \operatorname{sinc}(\omega / 2)$, note that $\operatorname{sinc}(\omega / 2)=\frac{2}{\omega} \sin (\omega / 2)$ for $\omega \neq 0$. So, for $\omega \neq 0$,

$$
\begin{aligned}
\frac{d}{d \omega} \operatorname{sinc}(\omega / 2) & =\frac{d}{d \omega} \frac{2}{\omega} \sin (\omega / 2) \\
& =-\frac{2}{\omega^{2}} \sin (\omega / 2)+\frac{2}{\omega} \cos (\omega / 2) \frac{1}{2} \\
& =-\frac{2}{\omega^{2}} \sin (\omega / 2)+\frac{1}{\omega} \cos (\omega / 2) \\
& =\frac{1}{\omega}\left[-\frac{2}{\omega} \sin (\omega / 2)+\cos (\omega / 2)\right]
\end{aligned}
$$

Notice that at $\omega=0, \operatorname{sinc}(\omega / 2)$ has its maximum and has the horizontal tangent line, so its derivative at $\omega=0$ is 0 . Therefore, we have
$\mathcal{F}[\operatorname{trect}(t)](\omega)=i \frac{d}{d \omega} \operatorname{sinc}(\omega / 2)=\left\{\begin{array}{lr}\frac{i}{\omega}\left[-\frac{2}{\omega} \sin (\omega / 2)+\cos (\omega / 2)\right] & \text { for } \omega \neq 0, \\ 0 & \text { for } \omega=0 .\end{array}\right.$
(ii) $g(t)=t^{2} e^{-3 t} u(t)$ (Hint: you can apply the frequency differentiation property twice.)

Solution

$$
\begin{aligned}
\mathcal{F}\left[t^{2} e^{-3 t} u(t)\right](\omega) & =i \frac{d}{d \omega} \mathcal{F}\left[t e^{-3 t} u(t)\right](\omega) \\
& =i \frac{d}{d \omega} i \frac{d}{d \omega} \mathcal{F}\left[e^{-3 t} u(t)\right](\omega) \\
& =i \frac{d}{d \omega} i \frac{d}{d \omega}\left[\frac{1}{i \omega+3}\right] \\
& =i \frac{d}{d \omega}\left[\frac{1}{(i \omega+3)^{2}}\right] \\
& =\frac{2}{\underline{(i \omega+3)^{3}}}
\end{aligned}
$$

(d) [Fourier inversion] For a real nonzero constant a, find the function $g(t)$ if

$$
\widehat{g}(\omega)=\frac{1}{(i \omega+a)^{2}}
$$

(Hint: You can use (b). Can you express $\widehat{g}(\omega)$ as a ω-derivative of certain function?)

Solution

Observe that

$$
i \frac{d}{d \omega}\left[\frac{1}{i \omega+a}\right]=\frac{1}{(i \omega+a)^{2}}
$$

Also, note that
For the case $a>0$.

$$
\mathcal{F}^{-1}\left[\frac{1}{i \omega+a}\right](t)=e^{-a t} u(t)
$$

For the case $a<0$ (i.e. $-a>0$),

$$
\begin{aligned}
\mathcal{F}^{-1}\left[\frac{1}{i \omega+a}\right](t) & =\mathcal{F}^{-1}\left[-\frac{1}{i(-\omega)+-a}\right](t)=-e^{-(-a)(-t)} u(-t) \quad \text { (used time reversal) } \\
& =-e^{a t} u(-t) .
\end{aligned}
$$

Therefore, by part (a) (or (b)) for the case $a>0$,

$$
\underline{g(t)}=t e^{-a t} u(t),
$$

and for the case $a<0$,

$$
g(t)=-t e^{a t} u(-t) .
$$

7. (Optional. Not to be graded.) It is known that

$$
\mathcal{F}\left[e^{-\frac{x^{2}}{2}}\right](\omega)=\sqrt{2 \pi} e^{-\frac{\omega^{2}}{2}}
$$

Use this fact to calculate the Fourier transform of $m(x)=x e^{-\frac{x^{2}}{2}}$.
Solution : Notice that

$$
m(x)=x e^{-\frac{x^{2}}{2}}=-\frac{d}{d x} e^{-\frac{x^{2}}{2}}
$$

Therefore, from the differentiation property,

$$
\begin{aligned}
\mathcal{F}[m(x)](\omega) & =-i \omega \mathcal{F}\left[e^{-\frac{x^{2}}{2}}\right](\omega) \\
& =\underline{-i \omega \sqrt{2 \pi} e^{-\frac{\omega^{2}}{2}}}
\end{aligned}
$$

8. (Optional. Not to be graded.) (RLC circuit) Consider the ODE for RLC circuit:

$$
L C y^{\prime \prime}(t)+R C y^{\prime}(t)+y(t)=x(t)
$$

(a) Let $R=4, L=3, C=1$ and $\widehat{x}(\omega)=1$. Find $y(t)$ using Fourier transform method.
Solution The left-hand side is $3 y^{\prime \prime}(t)+4 y^{\prime}(t)+y(t)$. Thus, the Fourier transform gives

$$
-3 \omega^{2} \widehat{y}(\omega)+4 i \omega \widehat{y}(\omega)+\widehat{y}(\omega)=\widehat{x}(\omega)
$$

Therefore,

$$
\begin{aligned}
\widehat{y}(\omega) & =\frac{1}{-3 \omega^{2}+4 i \omega+1} \widehat{x}(\omega) \\
& \left.=\frac{1}{-3 \omega^{2}+4 i \omega+1} \quad \text { (since we assumed } \widehat{w}(\omega)=1 .\right)
\end{aligned}
$$

Note that $-3 \omega^{2}+4 i \omega+1=(3 i \omega+1)(i \omega+1)$ Now, by partial fraction,

$$
\begin{aligned}
\frac{1}{-3 \omega^{2}+4 i \omega+1} & =\frac{1}{(3 i \omega+1)(i \omega+1)} \\
& =\frac{A}{3 i \omega+1}+\frac{B}{i \omega+1}
\end{aligned}
$$

Here, A and B are determined by

$$
\begin{array}{r}
A(i \omega+1)+B(3 i \omega+1)=1 \\
(A+3 B) i \omega+A+B=1
\end{array}
$$

Comparing the real and imaginary parts, we get,

$$
A+3 B=0 \quad A+B=1
$$

Therefore, $B=-\frac{1}{2}, A=\frac{3}{2}$. Thus,

$$
\widehat{y}(\omega)=\frac{1}{-3 \omega^{2}+4 i \omega+1}=\frac{3}{2(3 i \omega+1)}-\frac{1}{2(i \omega+1)}
$$

Now, for the Fourier inversion $y(t)=\mathcal{F}^{-1}[\widehat{y}(\omega)](t)$,

$$
\begin{aligned}
y(t) & =\mathcal{F}^{-1}\left[\frac{3}{2(3 i \omega+1)}-\frac{1}{2(i \omega+1)}\right](t) \\
& =\frac{3}{2} \mathcal{F}^{-1}\left[\frac{1}{3 i \omega+1}\right](t)-\frac{1}{2} \mathcal{F}^{-1}\left[\frac{1}{i \omega+1}\right](t) \\
& =\frac{1}{2} \mathcal{F}^{-1}\left[\frac{1}{i \omega+1 / 3}\right](t)-\frac{1}{2} \mathcal{F}^{-1}\left[\frac{1}{i \omega+1}\right](t) \\
& =\frac{1}{2} e^{-t / 3} u(t)-\frac{1}{2} e^{-t} u(t)
\end{aligned}
$$

(b) Let $R=2, L=1, C=1$ and $\widehat{x}(\omega)=1$. Find $y(t)$ using Fourier transform method.
Solution The left-hand side is $y^{\prime \prime}(t)+2 y^{\prime}(t)+y(t)$. Thus, the Fourier transform gives

$$
-\omega^{2} \widehat{y}(\omega)+2 i \omega \widehat{y}(\omega)+\widehat{y}(\omega)=\widehat{x}(\omega)
$$

Therefore,

$$
\begin{aligned}
\widehat{y}(\omega) & =\frac{1}{-\omega^{2}+2 i \omega+1} \widehat{x}(\omega) \\
& =\frac{1}{-\omega^{2}+2 i \omega+1} \quad(\text { since we assumed } \widehat{w}(\omega)=1 .) \\
& =\frac{1}{(i \omega+1)^{2}}
\end{aligned}
$$

Now use the result of Problem 2 (d), to get

$$
y(t)=\underline{t e^{-t} u(t)}
$$

(c) Let $R=4, L=3, C=1$ and $x(t)=u(t) e^{-2 t}$. Find $y(t)$ using Fourier transform method.
Solution The left-hand side is $3 y^{\prime \prime}(t)+4 y^{\prime}(t)+y(t)$. Thus, the Fourier transform gives

$$
-3 \omega^{2} \widehat{y}(\omega)+4 i \omega \widehat{y}(\omega)+\widehat{y}(\omega)=\widehat{x}(\omega)
$$

Therefore,

$$
\widehat{y}(\omega)=\frac{1}{-3 \omega^{2}+4 i \omega+1} \widehat{x}(\omega)
$$

Now, from our class example,

$$
\widehat{x}(\omega)=\mathcal{F}\left[e^{-2 t} u(t)\right](\omega)=\frac{1}{i \omega+2}
$$

Therefore,

$$
\begin{aligned}
\widehat{y}(\omega) & =\frac{1}{-3 \omega^{2}+4 i \omega+1} \frac{1}{i \omega+2} \\
& =\frac{1}{(3 i \omega+1)(i \omega+1)(i \omega+2)}
\end{aligned}
$$

$\left(\right.$ Note that $\left.-3 \omega^{2}+4 i \omega+1=(3 i \omega+1)(i \omega+2)\right)$
Now, by partial fraction,

$$
\widehat{y}(\omega)=\frac{A}{3 i \omega+1}+\frac{B}{i \omega+1}+\frac{C}{i \omega+2} .
$$

Here, A, B and C are determined by

$$
A(i \omega+1)(i \omega+2)+B(3 i \omega+1)(i \omega+2)+C(3 i \omega+1)(i \omega+1)=1
$$

The left hand side is simplified by

$$
\begin{aligned}
& A(i \omega+1)(i \omega+2)+B(3 i \omega+1)(i \omega+2)+C(3 i \omega+1)(i \omega+1) \\
& =A\left(-\omega^{2}+3 i \omega+2\right)+B\left(-3 \omega^{2}+7 i \omega+2\right)+C\left(-3 \omega^{2}+4 i \omega+1\right) \\
& =-(A+3 B+3 C) \omega^{2}+(3 A+7 B+4 C) i \omega+2 A+2 B+C
\end{aligned}
$$

Comparing the last line with 1 (since they should be the same as functions of ω), we have,

$$
A+3 B+3 C=0 \quad 3 A+7 B+4 C=0 \quad 2 A+2 B+C=1
$$

Therefore,

$$
A=9 / 10, \quad B=-1 / 2, \quad C=1 / 5
$$

Therefore,

$$
\widehat{y}(\omega)=\frac{9}{10} \frac{1}{3 i \omega+1}-\frac{1}{2} \frac{1}{i \omega+1}+\frac{1}{5} \frac{1}{i \omega+2} .
$$

Therefore,

$$
\begin{aligned}
y(t) & =\mathcal{F}^{-1}[\widehat{y}(\omega)](t)=\frac{9}{10} \mathcal{F}^{-1}\left[\frac{1}{3 i \omega+1}\right](t)-\frac{1}{2} \mathcal{F}^{-1}\left[\frac{1}{i \omega+1}\right](t)+\frac{1}{5} \mathcal{F}^{-1}\left[\frac{1}{i \omega+2}\right](t) \\
& =\frac{9}{30} \mathcal{F}^{-1}\left[\frac{1}{i \omega+1 / 3}\right](t)-\frac{1}{2} \mathcal{F}^{-1}\left[\frac{1}{i \omega+1}\right](t)+\frac{1}{5} \mathcal{F}^{-1}\left[\frac{1}{i \omega+2}\right](t) \\
& \left.=\frac{3}{10} e^{-t / 3} u(t)-\frac{1}{2} e^{-t} u(t)+\frac{1}{5} e^{-2 t} u(t) \quad \text { (by using the standard example } e^{-a t} u(t)\right) \\
& =u(t)\left[\frac{3}{10} e^{-t / 3}-\frac{1}{2} e^{-t}+\frac{1}{5} e^{-2 t}\right]
\end{aligned}
$$

9. (Optional. Not to be graded.) What is the inverse Fourier transform of $\widehat{q}(\omega)=e^{+i \omega} \frac{d}{d \omega} \operatorname{sinc}(\omega+1)$?
Answer using properties of Fourier transform / Fourier inversion. (Hint: You may want to use the differentiation in frequency property in one of the previous problems. Alternatively, duality can be useful here.)
Solution : From rearranging, we have

$$
e^{-i \omega} \widehat{q}(\omega)=\frac{d}{d \omega} \operatorname{sinc}(\omega+1)
$$

Now,

$$
\mathcal{F}^{-1}\left[e^{-i \omega} \widehat{q}(\omega)\right](t)=\mathcal{F}^{-1}\left[\frac{d}{d \omega} \operatorname{sinc}(\omega+1)\right](t)=-i t \mathcal{F}^{-1}[\operatorname{sinc}(\omega+1)](t)
$$

In the last line, we used the ω-differentiation property (Problem 6 (b)). Now, note that using frequency shifting and scaling,

$$
\begin{aligned}
\mathcal{F}^{-1}[\operatorname{sinc}(\omega+1)](t) & =e^{-i t} \mathcal{F}^{-1}[\operatorname{sinc}(\omega)](t)=e^{-i t} \frac{1}{2} \mathcal{F}^{-1}[\operatorname{sinc}(\omega / 2)](t / 2) \\
& =\frac{1}{2} e^{-i t} \operatorname{rect}(t / 2)
\end{aligned}
$$

Therefore,

$$
\mathcal{F}^{-1}\left[e^{-i \omega} \widehat{q}(\omega)\right](t)=-\frac{i t}{2} e^{-i t} \operatorname{rect}(t / 2)
$$

Finally from the time-shifting property, we see

$$
\mathcal{F}^{-1}[\widehat{q}(\omega)](t)=-\frac{i(t-1)}{2} e^{-i(t-1)} \operatorname{rect}((t-1) / 2)
$$

