Math 267, Section 202 : HW 3

There are FIVE problems in two pages.
All questions are due Monday January 28st. Staple your HW paper!

1. Let

$$
\begin{array}{r}
f(x)=3 \sin (3 \pi x)+5 \sin (7 \pi x), \quad g(x)=\sum_{k=1}^{100} \sin (k \pi x / 3) \\
h(x)=\sum_{k=1}^{50} \sin (k \pi x / 3), \quad p(x)=\sum_{k=100}^{200} k^{2} \sin (k \pi x / 3)
\end{array}
$$

Calculate the following:
(a) $\int_{0}^{3} f(x)^{2} d x$
(b) $\int_{0}^{3} f(x) p(x) d x$
(c) $\int_{0}^{3} g(x) h(x) d x$
(d) $\int_{0}^{3} h(x) p(x) d x$
(e) $\int_{0}^{3} g(x) p(x) d x$
2. (a) Find all nontrivial (i.e. not identically zero) solutions of type

$$
u(x, t)=X(x) T(t)
$$

to the following heat equation and given boundary conditions

$$
\begin{cases}u_{t}=9 u_{x x}, & 0<x<3, t>0 \\ u(0, t)=0=u(3, t), & t>0\end{cases}
$$

Here, you have to solve a relevant eigenvalue problem.
(b) Use (a) to find a general solution solving the same equation and the boundary conditions:
(c) Use (a) and (b) to find the solution to the same equation and the boundary conditions, and moreover the following initial condition:

$$
u(x, 0)=1
$$

3. Solve the following initial-boundary value problem of the heat equation:

$$
\begin{cases}u_{t}=4 u_{x x}, & 0<x<2, t>0 \\ u(0, t)=0=u(2, t), & t>0 \\ u(x, 0)=f(x), & 0<x<2\end{cases}
$$

where the function $f(x)$ is given by

$$
f(x)= \begin{cases}0 & \text { for } 0<x<1 \\ x-1 & \text { for } 1 \leq x<2\end{cases}
$$

4. Consider the following initial-boundary value problem of the heat equation:

$$
\begin{cases}u_{t}=4 u_{x x}, & 0<x<2, t>0 \\ u(0, t)=1 \quad \& \quad u(2, t)=9, & t>0 \\ u(x, 0)=g(x), & 0<x<2\end{cases}
$$

(a) Find a steady state.
(b) Solve the above initial-boundary value problem for

$$
g(x)= \begin{cases}-1 & \text { for } 0<x \leq 1 \\ 1 & \text { for } 1<x<2\end{cases}
$$

5. Consider the following wave equation with boundary conditions:

$$
\left\{\begin{array}{ll}
u_{t t}=4 u_{x x}, & 0<x<2, t>0 \\
u_{x}(0, t)=1
\end{array} \quad \& \quad u(2, t)=-3, \quad t>0,\right.
$$

(Notice the derivative in one of the boundary conditions.)
(a) Find a steady state.
(b) Find a general solution that satisfies the wave equation and the boundary conditions above. (Notice that we do not have initial conditions).

