Math 267 : HW 2

All questions are due Monday January 21st

1. Consider the wave equation with boundary conditions (here, we do not specify the initial conditions):

$$
\begin{cases}u_{t t}=u_{x x}, & 0<x<1, t>0 \\ u(0, t)=0=u_{x}(1, t), & t>0\end{cases}
$$

(Notice the derivative in one of the boundary conditions!) Find all nontrivial (i.e. not identically zero) solutions of type

$$
u(x, t)=X(x) T(t)
$$

Here, you have to solve a relevant eigenvalue problem.
2. (a) Find all nontrivial (i.e. not identically zero) solutions of type

$$
u(x, t)=X(x) T(t)
$$

to the following wave equation and given boundary conditions

$$
\begin{cases}u_{t t}=9 u_{x x}, & 0<x<2, t>0 \\ u(0, t)=0=u(2, t), & t>0\end{cases}
$$

Here, you have to solve a relevant eigenvalue problem.
(b) Use (a) to find a general solution solving the same equation and the boundary conditions:
(c) Use (a) and (b) to find the solution to the same equation and the boundary condition, and moreover the following initial condition:

$$
u(x, 0)=\sin (\pi x)+2 \sin (5 \pi x), \quad u_{t}(x, 0)=1
$$

3. Assume that,

$$
\sum_{k=1}^{\infty} c_{k} \sin \left(\frac{k \pi}{2} x\right)= \begin{cases}-1 & \text { for } 0<x<1 \\ +1 & \text { for } 1<x<2\end{cases}
$$

Find the coefficients c_{k}. Evaluate c_{k} when k is even, and also when k is odd.
4. Assume that,

$$
e^{-x}=\sum_{k=1}^{\infty} c_{k} \sin (k x)
$$

for $0<x<\pi$. Find the coefficients c_{k}.
(Hint: You may need to compute some integrals, using integration by parts twice.)
5. Find a solution $y(t)$ of the form $y(t)=\sum_{k=1}^{\infty} c_{k} \sin \left(\frac{k \pi}{2} t\right)$ on the interval $0<t<2$, solving the following boundary value problem:

$$
\left\{\begin{array}{l}
y^{\prime \prime}(t)+y(t)=f(t) \quad \text { for } 0<t<2 \\
y(0)=0, \quad y(2)=0
\end{array}\right.
$$

where

$$
f(t)= \begin{cases}0 & \text { for } 0<t<1 \\ 1 & \text { for } 1<t<2\end{cases}
$$

In other words, determine the constants c_{k} for each $k=1,2,3, \cdots$, so that $y(t)$ solves the boundary value problem. In particular, evaluate c_{1} and c_{2}.

