Math 267, Section 202 : HW 10 Solutions

Questions will not be collected. Solutions will be posted shortly.

1. Use the definition to calculate the z-transform and region of convergence of each signal. Sketch the region of convergence, and mark the poles.
(a) $x[n]=\left(\frac{1}{5}\right)^{n} u[n]+2^{n} u[-n-1]$
(b) $y[n]=(3-4 i)^{n} u[n]$
(c) $a[n]=\left(\frac{1}{3}\right)^{|n|}$
(d) $b[n]=3^{n+2} u[n-8]$

Answer
(a)

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{\infty}\left(\left(\frac{1}{5}\right)^{n} u[n]+2^{n} u[-n-1]\right) z^{-n} \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{5}\right)^{n} \cdot 1 \cdot z^{-n}+\sum_{n=-\infty}^{-1} 2^{n} \cdot 1 \cdot z^{-n} \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{5}\right)^{n} \cdot 1 \cdot z^{-n}+\sum_{\ell=0}^{\infty} 2^{-\ell-1} \cdot 1 \cdot z^{-(-\ell-1)} \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{5 z}\right)^{n}+\frac{z}{2} \sum_{\ell=0}^{\infty}\left(\frac{z}{2}\right)^{\ell} \\
& =\frac{1}{1-\frac{1}{5 z}}+\frac{z}{2} \frac{1}{1-\frac{z}{2}}
\end{aligned}
$$

where the geometric sums require $\left|\frac{1}{5 z}\right|<1$ and $\left|\frac{z}{2}\right|<1$. That is: $\frac{1}{5}<|z|$ and $|z|<2$.
The region of convergence is the annulus $\frac{1}{5}<z<2$, and there are poles are $+\frac{1}{5}$ and +2 .
(b)

$$
\begin{aligned}
Y(z) & =\sum_{n=-\infty}^{\infty}(3-4 i)^{n} u[n] z^{-n} \\
& =\sum_{n=0}^{\infty}\left(\frac{3-4 i}{z}\right)^{n} \\
& =\frac{1}{1-\frac{3-4 i}{z}}
\end{aligned}
$$

where the geometric sum requires $\left|\frac{3-4 i}{z}\right|<1$. That is $5=|3-4 i|<z$.

The region of convergence is outside a circle, $5<|z|$, and there is a pole at $+3-4 i$ (in the fourth quadrant).
(c)

$$
\begin{aligned}
A(z) & =\sum_{n=-\infty}^{\infty}\left(\frac{1}{3}\right)^{|n|} z^{-n} \\
& =\sum_{n=-\infty}^{-1}\left(\frac{1}{3}\right)^{-n} z^{-n}+\sum_{n=0}^{\infty}\left(\frac{1}{3}\right)^{n} z^{-n} \\
& =\frac{z}{3} \sum_{\ell=0}^{\infty}\left(\frac{z}{3}\right)^{\ell}+\sum_{n=0}^{\infty}\left(\frac{1}{3 z}\right)^{n} \\
& =\frac{z}{3} \frac{1}{1-\frac{z}{3}}+\frac{1}{1-\frac{1}{3 z}}
\end{aligned}
$$

where geometric sums require $\left|\frac{z}{3}\right|<1$ and $\left|\frac{1}{3 z}\right|<1$.
The region of convergence is thus $1 / 3<|z|<3$, and there are poles at $z=+3$ and $z=+\frac{1}{3}$.
(d)

$$
\begin{aligned}
B(z) & =\sum_{n=-\infty}^{\infty} 3^{n+2} u[n-8] z^{-n} \\
& =\sum_{n=8}^{\infty} 3^{n+2} z^{-n} \\
& =\sum_{\ell=0}^{\infty} 3^{\ell+10} z^{-\ell-8}, \quad \text { where we used } \ell=n-8 \\
& =\frac{3^{10}}{z^{8}} \sum_{\ell=0}^{\infty}\left(\frac{3}{z}\right)^{\ell} \\
& =\frac{3^{10}}{z^{8}} \frac{1}{1-\frac{3}{z}}
\end{aligned}
$$

where the geometric sum requires $\left|\frac{3}{z}\right|<1$.
The region of convergence is outside a circle, $3<|z|$, and there is a pole at $z=+3$.
2. In each case, invert the z-transform to find $x[n]$
(a) $X(z)=\frac{z^{2}}{z^{2}+z+1-i}$ and $\operatorname{ROC}|z|<1$
(b) $X(z)=\frac{z}{(z-3)\left(z^{2}-i z+\frac{3}{4}\right)}$ and ROC $\frac{3}{2}<|z|<3$

Answer
(a) Factoring and partial fractions:

$$
X(z)=\frac{z}{z-i} \frac{z}{z+1+i}=\frac{2+i}{5} \frac{z}{z-i}+\frac{3-i}{5} \frac{z}{z+1+i}
$$

To get the correct ROC:

$$
x[n]=-\frac{2+i}{5} \cdot(i)^{n} u[-n-1]-\frac{3-i}{5} \cdot(-1-i)^{n} u[-n-1]
$$

(b) Factoring and partial fractions:

$$
X(z)=\frac{z}{z-3} \frac{1}{z+\frac{i}{2}} \frac{1}{z-\frac{3 i}{2}}=a \frac{z}{z-3}+b \frac{z}{z+\frac{i}{2}}+c \frac{z}{z-\frac{3 i}{2}}
$$

where $a=\frac{52+16 i}{555}, b=\frac{-1-6 i}{37}$ and $c=\frac{-1+2 i}{15}$. To get the correct ROC:

$$
x[n]=-a \cdot 3^{n} u[-n-1]+b\left(-\frac{i}{2}\right)^{n} u[n]+c\left(\frac{3 i}{2}\right)^{n} u[n]
$$

eg: $\frac{3}{2}<|z|<3$ is the overlap of $|z|<3, \frac{1}{2}<|z|$ and $\frac{3}{2}<|z|$.
3. Calculate the following convolutions, using the z-transform.
(a) $(x * y)[n]$ when $x[n]=2^{n} u[n]$ and $y[n]=\frac{1}{4}^{n} u[n+3]$
(b) $(x * y)[n]$ when $x[n]=u[1-n]$ and $y[n]=(-1)^{n} u[-n]$

Can you do the same thing using DTFT?
Answer
(a) Let $a[n]=2^{n} u[n]$ and $b[n]=\frac{1}{4}^{n} u[n+3]=\frac{1}{4}^{-3} \frac{1}{4}^{n+3} u[n+3]=$ $4^{3} \frac{1}{4}{ }^{n+3} u[n+3]$. Then $A(z)=\frac{z}{z-2}$ with $|z|>2$, and, using the timeshift property, $B(z)=4^{3} z^{3} \frac{z}{z-\frac{1}{4}}$ with $|z|>\frac{1}{4}$. Using the convolution property, the z-trans of $a[n] * b[n]$ is:

$$
4^{3} \frac{z}{z-2} z^{3} \frac{z}{z-\frac{1}{4}}, \quad \text { with }|z|>2(\text { the intersection })
$$

By partial fractions:

$$
4^{3} \frac{z}{z-2} z^{3} \frac{z}{z-\frac{1}{4}}=4^{3}\left[\frac{8}{7} z^{3} \frac{z}{z-2}-\frac{1}{7} z^{3} \frac{z}{z-\frac{1}{4}}\right]
$$

Using the time-shift property, and to get the ROC of $|z|>2$, this is the z-transform of:

$$
4^{3}\left[\frac{8}{7} 2^{(n+3)} u[(n+3)]-\frac{1}{7}\left(\frac{1}{4}\right)^{(n+3)} u[(n+3)]\right]
$$

Since this signal and the convolution have the same z-transform, they must be the same signal.
(b) Let $a[n]=u[1-n]=u[-(n-2)-1]$ and $b[n]=(-1)^{n} u[-n]=$ $-(-1)^{(n-1)} u[-(n-1)-1]$. Then $A(z)=-z^{-2} \frac{z}{z-1}$ with $|z|<1$, and $B(z)=+z^{-1} \frac{z}{z+1}$ also with $|z|<1$. The convolution has z-transform:

$$
-z^{-2} \frac{z}{z-1} z^{-1} \frac{z}{z+1}=-\frac{1}{2} z^{-3} \frac{z}{z-1}-\frac{1}{2} z^{-3} \frac{z}{z+1}
$$

Another signal with the same z -transform formula, and same ROC of $|z|<1$ is:

$$
+\frac{1}{2} 1^{n-3} u[-(n-3)-1]+\frac{1}{2}(-1)^{n-3} u[-(n-3)-1]
$$

There is a problem using DTFT here, since for signals $2^{n} u[n], u[1-$ $n],(-1)^{n} u[-n]$, corresponding DTFTs do not exist since the corresponding infinite summations do not converge.
4. Suppose an LTI system

$$
y[n]-3 y[n-1]=x[n]
$$

is causal.
(a) Find $y[n]$ for $x[n]=5^{n} u[n]$.
(b) Find $y[n]$ for $x[n]=-5^{n} u[-n]$.

Answer:
(a) Take the z -transform of both sides,

$$
Y(z)-3 z^{-1} Y(z)=X(z),
$$

and rearrange:

$$
Y(z)=\frac{z}{z-3} X(z)=H(z) X(z)
$$

Note that since the system is causal, for $H(z)=\frac{z}{z-3}$, ROC is $|z|>3$. Here, $X(z)=\frac{z}{z-5}$ with ROC $|z|>5$. For $H(z) X(z)=\frac{z}{z-3} \frac{z}{z-5}$, the ROC is given by the intersection, so it is $|z|>5$. By partial fractions,

$$
\begin{aligned}
Y(z) & =\frac{z}{z-3} \frac{z}{z-5}=z^{2} \frac{1}{2}\left(\frac{1}{z-5}-\frac{1}{z-3}\right) \\
& =z \frac{1}{2}\left(\frac{z}{z-5}-\frac{z}{z-3}\right)
\end{aligned}
$$

To get the desired ROC (and using the time-shift property), we must have:

$$
y[n]=\underline{\frac{1}{2}}\left(5^{n+1} u[n+1]-3^{n+1} u[n+1]\right) .
$$

(b) Take the z-transform of both sides,

$$
Y(z)-3 z^{-1} Y(z)=X(z)
$$

and rearrange:

$$
Y(z)=\frac{z}{z-3} X(z)=H(z) X(z)
$$

Note that since the system is causal, for $H(z)=\frac{z}{z-3}, \mathrm{ROC}$ is $|z|>3$. Here, since $x[n]=-5^{n} u[-n]=-5 \cdot 5^{n-1} u[-(n-1)-1]$, by timeshifting property $X(z)=5 z^{-1} \frac{z}{z-5}=5 \frac{1}{z-5}$ with ROC $|z|<5$. For $H(z) X(z)=5 \frac{z}{z-3} \frac{1}{z-5}$, the ROC is given by the intersection, so it is $3<|z|<5$. By partial fractions,

$$
\begin{aligned}
Y(z) & =5 \frac{z}{z-3} \frac{1}{z-5}=z \frac{5}{2}\left(\frac{1}{z-5}-\frac{1}{z-3}\right) \\
& =\frac{5}{2}\left(\frac{z}{z-5}-\frac{z}{z-3}\right)
\end{aligned}
$$

To get the desired ROC, we must have:

$$
y[n]=\underline{\frac{5}{2}}\left(-5^{n} u[-n-1]-3^{n} u[n]\right) .
$$

5. Consider the LTI given by the difference equation:

$$
6 y[n+2]-y[n+1]-y[n]=x[n]
$$

(a) Find the system function $H(z)$. (The system function is by definition, the z-transform of the impulse response function $h[n]$.)
(b) Plot the poles of $H(z)$, and state the possible regions of convergence.
(c) Find the impulse response $h[n]$ that is neither left or right-sided. (Here, $h[n]$ is called left-sided if $h[n]=0$ for all large positive number n, i.e. $n \geq n_{0}$ for a positive number n_{0}, and it is called right-side if $h[n]=0$ for all sufficiently negative numbers n, i.e. $n<n_{0}$ for a negative number n_{0}.
(d) When the impulse response function $h[n]$ is given from part(c), calculate the output for the input $x[n]=u[n+4]-u[n]$.

Answer
(a) Take the z-transform of both sides, and rearrange:

$$
Y(z)=\frac{1}{6 z^{2}-z-1} X(z)=H(z) X(z)
$$

(b) Factoring, $H(z)=\frac{1}{6} \frac{1}{z+\frac{1}{3}} \frac{1}{z-\frac{1}{2}}$. There is a pole at $-\frac{1}{3}$ and another at $+\frac{1}{2}$. Possible ROC are: $|z|<\frac{1}{3}, \frac{1}{3}<|z|<\frac{1}{2}$, and $\frac{1}{2}<|z|$.
(c) Only the ROC $\frac{1}{3}<|z|<\frac{1}{2}$ corresponds to neither left or right-sided. By partial fractions,

$$
H(z)=\frac{1}{6} \frac{1}{z+\frac{1}{3}} \frac{1}{z-\frac{1}{2}}=-\frac{1}{5} \frac{1}{z} \frac{z}{z+\frac{1}{3}}+\frac{1}{5} \frac{1}{z} \frac{z}{z-\frac{1}{2}}
$$

To get the desired ROC (and using the time-shift property), we must have:

$$
\begin{aligned}
h[n] & =-\frac{1}{5}\left(-\frac{1}{3}\right)^{(n-1)} u[(n-1)]+\frac{1}{5}(-1)\left(\frac{1}{2}\right)^{(n-1)} u[-(n-1)-1] \\
& =\frac{3}{5}\left(\frac{-1}{3}\right)^{n} u[n-1]-\frac{2}{5}\left(\frac{1}{2}\right)^{n} u[-n]
\end{aligned}
$$

(d) Note that $y[n]=(h * x)[n]$. One may try to use z-tranform, but, in this case, note that the ROC is the intersection of ROC of $X(z)$ and that of $H(z)$, so the intersection of $|z|>1$ and $\frac{1}{3}<|z|<\frac{1}{2}$, therefore, the ROC for $Y(z)$ is an empty set. This means the z transform method does not apply in this case.
Therefore, we apply the definition of the convolution:

$$
\begin{aligned}
y[n] & =\sum_{k=-\infty}^{\infty}\left(\frac{3}{5}\left(\frac{-1}{3}\right)^{k} u[k-1]-\frac{2}{5}\left(\frac{1}{2}\right)^{k} u[-k]\right)(u[(n-k)+4]-u[n-k]) \\
& =\sum_{k=n+1}^{n+4}\left(\frac{3}{5}\left(\frac{-1}{3}\right)^{k} u[k-1]-\frac{2}{5}\left(\frac{1}{2}\right)^{k} u[-k]\right) \\
& =\sum_{k=n+1}^{n+4} \frac{3}{5}\left(\frac{-1}{3}\right)^{k} u[k-1]-\sum_{k=n+1}^{n+4} \frac{2}{5}\left(\frac{1}{2}\right)^{k} u[-k]
\end{aligned}
$$

There are many cases here; each case takes a couple lines, and a geometric sum or two.
Let us first handle $\sum_{k=n+1}^{n+4} \frac{3}{5}\left(\frac{-1}{3}\right)^{k} u[k-1]$.
Case $n+4<1$, i.e. $n \leq-4$: the sum is zero.
Case $n+1<1 \leq n+4$, i.e. $n=-1,-2,-3$: the sum reduces to
$\sum_{k=1}^{n+4} \frac{3}{5}\left(\frac{-1}{3}\right)^{k}=\frac{3}{5}\left(\frac{-1}{3}\right) \frac{1-\left(-\frac{1}{3}\right)^{n+4}}{1-\left(-\frac{1}{3}\right)}=-\frac{3}{20}\left(1-\left(-\frac{1}{3}\right)^{n+1}\right)$.
Case $1 \leq n+1$, i.e. $n \geq 0$: the sum reduces to $\sum_{k=n+1}^{n+4} \frac{3}{5}\left(\frac{-1}{3}\right)^{k}=$ $\frac{3}{5}\left(\frac{-1}{3}\right)^{n+1} \frac{1-\left(-\frac{1}{3}\right)^{4}}{1-\left(-\frac{1}{3}\right)}=\frac{4}{9}\left(-\frac{1}{3}\right)^{n+1}$.
Now, let us handle $\sum_{k=n+1}^{n+4} \frac{2}{5}\left(\frac{1}{2}\right)^{k} u[-k]$.
Case $n+1>0$, i.e. $n>-1$: the sum is zero.
Case $n+1 \leq 0<n+4$, i.e. $n=-1,-2,-3$: the sum reduces to
$\sum_{k=n+1}^{0} \frac{2}{5}\left(\frac{1}{2}\right)^{k}=\frac{2}{5}\left(\frac{1}{2}\right)^{n+1} \frac{1-\left(-\frac{1}{2}\right)^{-(n+1)}}{1-\frac{1}{2}}=\frac{4}{5}\left(\left(\frac{1}{2}\right)^{n+1}-(-1)^{n+1}\right)$.

Case $n+4 \leq 0$, i.e. $n \leq-4$: the sum reduces to $\sum_{k=n+1}^{n+4} \frac{2}{5}\left(\frac{1}{2}\right)^{k}=$ $\frac{3}{5}\left(\frac{1}{2}\right)^{n+1} \frac{1-\left(\frac{1}{2}\right)^{4}}{1-\frac{1}{2}}=\frac{9}{16} \cdot\left(\frac{1}{2}\right)^{n}$.
Combining all these, we get

$$
y[n]=\left\{\begin{aligned}
\frac{4}{9} \cdot\left(-\frac{1}{3}\right)^{n+1} & \text { for } n \geq 0 \\
-\frac{3}{20}\left(1-\left(-\frac{1}{3}\right)^{n+1}\right)-\frac{4}{5}\left(\left(\frac{1}{2}\right)^{n+1}-(-1)^{n+1}\right) . & \text { for } n=-1,-2,-3 \\
-\frac{9}{16} \cdot\left(\frac{1}{2}\right)^{n} & \text { for } n \leq-4
\end{aligned}\right.
$$

6. Consider the LTI given by the difference equation:

$$
y[n+1]-2 y[n]+y[n-1]=i y[n-1]+x[n+1]
$$

(a) Find the system function $H(z)$. (The system function is by definition, the z-transform of the impulse response function $h[n]$.)
(b) Plot the poles of $H(z)$, and state the possible regions of convergence.
(c) Find the impulse response $h[n]$ that makes the LTI causal.
(d) Calculate the output when $x[n]=\delta_{-1}[n]+\delta_{2}[n]$

Answer
(a)

$$
\left(z-2+z^{-1}\right) Y(z)=i z^{-1} Y(z)+z X(z) \Rightarrow \quad Y(z)=\frac{z}{z-2+(1-i) z^{-1}} X(z)
$$

(b) Factoring and using partial fractions:

$$
\begin{aligned}
H(z)=\frac{z^{2}}{z^{2}-2 z+(1-i)} & =\frac{z^{2}}{\left(z-1+\frac{1+i}{2}\right)\left(z-1-\frac{1+i}{2}\right)} \\
& =\frac{-1+i}{2} \frac{z^{2}}{z-1+\frac{1+i}{2}}+\frac{1-i}{2} \frac{z^{2}}{z-1-\frac{1+i}{2}}
\end{aligned}
$$

There are poles at $+\frac{1}{2}+\frac{i}{2}$ and $+\frac{3}{2}-\frac{i}{2}$, in the first and fourth quadrants, respectively. The possible regions of convergence are: $|z|<\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}<|z|<\frac{\sqrt{10}}{2}$ and $\frac{\sqrt{10}}{2}<|z|$. Only the last ROC is causal.
(c) The strictly right-sided signal giving the formula for $H(z)$ is:

$$
h[n]=\left[\frac{-1+i}{2}\left(\frac{1-i}{2}\right)^{n+1}+\frac{1-i}{2}\left(\frac{3+i}{2}\right)^{n+1}\right] u[n+1]
$$

(d) As always, $y[n]=h[n] * x[n]$, and convolving by delta shifts time:

$$
y[n]=h[n+1]+h[n-2]
$$

that is,

$$
\begin{aligned}
& \frac{-1+i}{2}\left(\frac{1-i}{2}\right)^{n+2} u[n+2]+\frac{1-i}{2}\left(\frac{3+i}{2}\right)^{n+2} u[n+2] \\
& +\frac{-1+i}{2}\left(\frac{1-i}{2}\right)^{n-1} u[n-1]+\frac{1-i}{2}\left(\frac{3+i}{2}\right)^{n-1} u[n-1]
\end{aligned}
$$

