Math 267 : HW 1

All questions are due Monday January 14th in Class

1. Simplify each number to the form $a+i b$
(a) $\frac{1}{3-i}$
(b) $\frac{4+i}{2-3 i}$
(c) $\frac{(12+5 i)^{2}}{2-4 i}$
2. Find all complex numbers z with $z^{6}=27 i$.
3. Use Euler's theorem to rewrite $\sum_{k=-\infty}^{+\infty} \frac{\sin (k x)}{k^{2}+1}$ as a sum of complex exponentials.
4. [Review of ODE: eigenvalue problem] Find all numbers σ such that,

$$
\left\{\begin{array}{l}
-\sigma X(x)=X^{\prime \prime}(x) \\
X(0)=0 \\
X^{\prime}(1)=0
\end{array}\right.
$$

has a solutions $X(x) \not \equiv 0$.
5. [Separation of variables] Substitute $u(x, t)=X(x) T(t)$ into,

$$
\left\{\begin{array}{l}
\partial_{t} u=\partial_{x}^{2} u-\partial_{x} u \\
u(0, t)=u(5, t)=0
\end{array}\right.
$$

Find an ODE for $X(x)$, and another for $T(t)$. Do not solve the ODEs.
Note: you should have boundary conditions for $X(x)$ and the initial condition for $T(t)$.
6. Fully solve:

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u=16 \partial_{x}^{2} u \\
u(0, t)=u(\pi, t)=0 \\
u(x, 0)=0 \\
\partial_{t} u(x, 0)=\cos (x) \sin (x)
\end{array}\right.
$$

Use the general solution formula from lecture.

