MATH 121:201 Honours Integral Calculus Written Home Work (WHW) assignment 2

Due: Jan. 23, (Fri), 2015, by 2pm.

Material: [Adams\& Essex] Sections 5.1-5.6 and Appendix IV.
In the following problems, you can use the definitions and results contained in the textbook 5.1-5.6, Appendix IV (but, not the exercises).

You have to give clear justifications.
Problem 1: Solve the integral equation, namely, find the function f (assuming f is continuous) satisfying the equation:

$$
f\left(x^{3}\right)=1+\int_{x^{3}}^{1} f(t) d t
$$

Problem 2: Evaluate the following sums.
A.

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{2 n} k \frac{e^{k^{2} / n^{2}}}{n^{2}}
$$

Give justification.
B.*

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \tan \left(k / n^{2}\right)
$$

Give a justification. This problem is subtile and you would need to apply an ϵ argument for a rigorous treatment of the limit.

Problem 3: You need to recall the rigorous definitions of continuity and differentiability of a function.

Suppose f is a Riemann integrable function on the interval $[0,1]$. (Notice that we do not assume that f is continuous.) Suppose that $0 \leq f(x) \leq 1$ for all $x \in[0,1]$. Define the function $F(x)=\int_{0}^{x} f(t) d t$ for $0 \leq x \leq 1$.
A. Is $F(x)$ continuous for $0 \leq x \leq 1$? Justify rigorously.
B. Is $F(x)$ differentiable for $0<x<1$? Justify rigorously.

Problem 4:

In this problem, you have to give rigorous justification (sometimes using ϵ argument).

For each $x_{0} \in \mathbf{R}$ define a function $h_{x_{0}}$ by

$$
h_{x_{0}}= \begin{cases}1 & \text { if } x=x_{0} \\ 0 & \text { if } x \neq x_{0}\end{cases}
$$

A. Prove that $h_{x_{0}}$ is integable on any $[a, b]$ and that $\int_{a}^{b} h_{x_{0}}(x) d x=0$.
B. Assume f is integrable on $[a, b]$ and $g:[a, b] \rightarrow \mathbf{R}$ satisfies $g(x)=f(x)$ for all $x \neq x_{0}$, for some $x_{0} \in[a, b]$. Prove that g is also integrable on $[a, b]$ and $\int_{a}^{b} g(x) d x=\int_{a}^{b} f(x) d x$.
Hint: Show that $g=f+c h_{x_{0}}$ for some c.
C. Show there is no solution F to the differential equation $F^{\prime}(x)=h_{0}(x)$ for $x \in[-1,1]$.

