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Abstract. The Teichmüller space Teich(S) of a surface S in genus g > 1 is a totally
real submanifold of the quasifuchsian space QF(S). We show that the determinant of the
Laplacian det′(∆) on Teich(S) has a unique holomorphic extension to QF(S). To realize
this holomorphic extension as the determinant of differential operators on S, we introduce a
holomorphic family {∆µ,ν} of elliptic second order differential operators on S whose param-
eter space is the space of pairs of Beltrami differentials on S and which naturally extends
the Laplace operators of hyperbolic metrics on S. We study the determinant of this fam-
ily {∆µ,ν} and show how this family realizes the holomorphic extension of det′(∆) as its
determinant.

1. Introduction

In this paper, we discuss determinants of Laplacians of Riemann surfaces and their holo-

morphic extensions.

Given a closed Riemannian manifold X with metric m, its corresponding Laplacian ∆ is

a self-adjoint positive definite elliptic second order differential operator on functions on X,

which has discrete spectrum

λ0 = 0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · → ∞.

The determinant of the operator ∆ may be defined formally as the product of the nonzero

eigenvalues of ∆. A regularization det′(∆) of this product was defined by Ray and Singer

[RS1] [RS2], using the zeta function of ∆.

This determinant det′(∆) has appeared to be very important in mathematics. For example,

in [OPS1], (see also [Sa2]), Osgood, Phillips and Sarnak studied − log det′(∆) as a “height”

function on the space of metrics on a compact orientable smooth surface S of genus g. For

g > 1, they showed that when restricted to a given conformal class of metrics on S, it

attains its minimum at the unique hyperbolic metric in this conformal class, and has no

other critical points. Thus, to find Riemannian metrics on S which are extremal, in the

sense that they minimize − log det′(∆), it suffices to consider its restriction to the moduli

space Mg of hyperbolic metrics on a Riemann surface S of genus g. It was shown by Wolpert

that this restriction is a proper function (see [W4]), which was used also by Osgood, Phillips

and Sarnak to show that the isospectral sets (with respect to the Laplacian) of isometry

classes of metrics on S are all compact in the C∞ topology (see [OPS2]).
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The universal cover of the orbifold Mg, with covering group the mapping class group

Γg, is the Teichmüller space Teich(S). The function − log det′(∆) lifts to a function on

the Teichmüller space Teich(S) invariant under Γg. In the first part of this paper, we are

interested in the function theoretic properties of log det′(∆) on Teich(S).

1.1. Holomorphic extensions of determinants of Laplacians. Before stating our first

main theorem, consider the special case of genus 1.

Example ([RS2] or [Sa1], p. 33, (A.1.7)). For z ∈ H, let Tz be the flat torus obtained by the

lattice of C generated by 1 and z. Then the determinant of Laplacian of this flat torus is

log det′(∆)(z) = log(2π(Im z)1/2|η(z)|2)

where η(z) = q1/24
∏∞

n=1(1− qn) for q = e2πiz is the Dedekind eta function; this is a modular

form of weight 1/2.

The manifold H has a complexification H × H, and the function log det′(∆)(z) on the

diagonal {w = z} has a unique holomorphic extension to H×H, namely,

log
(
2π(

z − w

2i
)1/2 η(z) η(w)

)
.

We show that even in higher genus g > 1, the function log det′(∆) has a unique holo-

morphic extension. In higher genus, the objects corresponding to H and H × H are the

Teichmüller space Teich(S) and the quasifuchsian space

QF(S) = Teich(S)× Teich(S) ∼= Teich(S)× Teich(S),

respectively where the real analytic manifold Teich(S) imbeds as the diagonal in QF(S).

Bers’s “simultaneous uniformization theorem” [Be] identifies the quasifuchsian space QF(S)

with the space of hyperbolic metrics modulo isotopies on the 3-manifold S ×R, whose ideal

boundary at infinity is conformally isomorphic to a pair of Riemann surfaces. McMullen

recently used the quasifuchsian space to study the geometry of the Teichmüller space via the

above complexification [Mc].

Now let us state our first main result.

Theorem 1.1. The function log det′(∆) on Teich(S) has a unique holomorphic extension

to the quasifuchsian space QF(S).

Remark. Historically, the first result in the spirit of Theorem 1.1 is due to Fay [F] who

obtained a holomorphic extension of the analytic torsion from the Picard variety of a compact

Riemann surface to the space of C∗-representations of its fundamental group.

Remark. We note that the holomorphic extension of log det′(∆n) of the Laplacian acting

on the (n, 0)-forms for n ≥ 2 is given by McIntyre and Teo [TM] using the holomorphic

extension of Selberg’s zeta function. Their method does not work in our case of log det′(∆)

=log det′(∆0)= log det′(∆1).

In the proof of Theorem 1.1, we use the Belavin-Knizhnik formula (see Theorem 2.6, also

see [W3] and [ZT]) and the holomorphic extension of the Weil-Petersson form constructed

by Platis [Pl] (see Theorem 2.3).
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We remark that the asymptotic behavior of log det′(∆) near the boundary of Teichmüller

space is important in both geometry and physics and was studied in [W4] and [BB]. It

would be interesting to understand the asymptotic behavior of the holomorphic extension of

log det′(∆) near the boundary of the quasifuchsian space.

In view of Theorem 1.1, it is natural to ask whether there is an actual family of elliptic

differential operators on S whose determinant realizes the holomorphic extension of det′(∆).

To address this question we introduce a family {∆µ,ν} of elliptic second order differential

operators on S which is holomorphic with respect to its parameter (µ, ν), the pair of Beltrami

differentials and which uniquely extends the Laplacians of hyperbolic metrics. Because

of holomorphy of this family, the differential operators ∆µ,ν cannot be self-adjoint off the

diagonal {µ = ν}. These operators ∆µ,ν are new examples of non-self-adjoint elliptic second

order differential operators with a natural geometric origin!

1.2. Holomorphic extensions of Laplacians and their determinants. To state our

theorem on the holomorphic extension ∆µ,ν of Laplacians we need a few terminologies. Recall

that a marking on S is a Riemann surface X0 together with an oriented diffeomorphism

between X0 and S. A Beltrami differential µ on X0 is a complex (−1, 1)-form which in one

(and hence all) local representations

µ = µ(z)
dz

dz

satisfies ‖µ‖∞ < 1. The space M(X0) of smooth Beltrami differentials on X0 is a contractible

complex analytic manifold modeled on a Fréchet space. Denote by M(S) the space of smooth

complex structures on S, which is equivalent by the uniformization theorem to the space of

hyperbolic metric on S. Then M(X0) gives a complex coordinate chart on M(S), in which

the origin 0 ∈M(X0) corresponds to X0 ∈M(S) (see [EE]). Denote the complex conjugate

of M(X0) by M(X0). The diagonal

{(µ, µ) | µ ∈M(X0)} ⊂M(X0)×M(X0)

is a totally real submanifold. Given 0 < k < 1 and E > 0, we introduce the space of Beltrami

differentials

Mk,E(X0) = {µ ∈M(X0) | ‖µ‖∞ < k and ‖µ‖C2(X0) < E}.
where the C2-norm ‖ · ‖C2(X0) is defined by the hyperbolic metric on X0.

The upper-half plane H with its standard hyperbolic metric y−2(dx2 + dy2) is the Rie-

mannian universal cover of X0; the covering transformation group G is called the Fuchsian

group of X0. The Laplacian of H is given by the formula

∆H = (z − z)2 ∂2

∂z∂z
,

where z is the standard coordinate of H, and it induces the Laplacian ∆ of the hyperbolic

surface X0 = H/G.

Denote by MG the set of Beltrami differentials on H which transform as

µ(z) = µ(g(z))
∂g

∂g
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for all g ∈ G. Then M(X0) is identified with MG. It is well known that for each Beltrami dif-

ferential µ on H there exists unique quasiconformal homeomorphism fµ : H → H satisfying

the Beltrami differential equation

∂f = µ ∂f

whose continuous extension to the real axis fixes 0, 1,∞.

We are now ready to state our second main theorem.

Theorem 1.2. There exists unique family of elliptic second order differential operators ∆µ,ν

on S parametrized by (µ, ν) ∈M(X0)×M(X0), with the following properties:

(1) ∆µ,ν depends holomorphically on (µ, ν);

(2) the lift of ∆µ,µ to H is the pull-back of the Laplacian ∆H by the quasiconformal

mapping fµ : H → H, i.e., ∆µ,µ is the Laplacian of the hyperbolic metric on S

induced by the pullback hyperbolic metric on H by the map fµ;

(3) given 0 < k < 1 and E > 0, there exists a constant ε > 0 such that if µ, ν ∈Mk,E(X0)

and

‖µ− ν‖C2(X0) < ε,

the determinant det′(∆µ,ν) is defined, and depends holomorphically on (µ, ν).

The operator ∆µ,ν is constructed by modifying the explicit expression for (fµ)∗∆H, incor-

porating the quasifuchsian parameter (µ, ν) and corresponding quasiconformal mapping fµ,ν .

We use a result of Ahlfors and Bers [AB], that the unique normalized solution of Beltrami

differential equation depends analytically on the Beltrami differential.

To establish property (3), we apply the definition of determinant using complex powers of

elliptic operators due to Seeley ([Se1], [Se2], [Sh], and [KV]). The restriction ‖µ−ν‖C2(X0) < ε

is introduced to satisfy the conditions for the construction of complex power.

Denote by d̃et′(∆) the holomorphic extension of det′(∆) to QF(S) obtained in Theo-

rem 1.1. We have the principal fiber bundle

(1.1)

Diff0(S) −−−→ M(X0)yπ

Teich(S),

where the projection π is known to be holomorphic (see [EE]). This gives rise to the principal

fiber bundle

(1.2)

Diff0(S)× Diff0(S) −−−→ M(X0)×M(X0)yπ×π̄

QF(S).

The lift (π × π̄)∗d̃et′(∆) is holomorphic on M(X0)×M(X0). We know by Theorem 1.2 (2)

that

det′(∆µ,µ) = (π × π̄)∗d̃et′(∆)(µ, µ),
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and by Theorem 1.2 (3) that the determinant det′(∆µ,ν) is defined and holomorphic on

some open neighborhood N of the diagonal in M(X0) × M(X0). Therefore, by analytic

continuation, we have the equality

det′(∆µ,ν) = (π × π̄)∗d̃et′(∆)(µ, ν) for (µ, ν) ∈ N ,

and we may regard the holomorphic function (π×π̄)∗d̃et′(∆) as the determinant of ∆µ,ν even

for those (µ, ν) to which Theorem 1.2 (3) does not apply. That is, on all of M(X0)×M(X0),

we may define

(1.3) det′(∆µ,ν) = (π × π̄)∗d̃et′(∆)(µ, ν).

Remark. From the family {∆µ,ν}, we may construct holomorphic families of elliptic operators

in a neighborhood of each Teichmüller point ([X0], [X0]) in QF (S), using the Ahlfors-Weill

section s of the fibre bundle (1.1) (see [AW] or [IT] pp. 153-157). This induces a holomorphic

section s× s̄ of fibration π× π̄ of (1.2), defined in a neighborhood U of the point ([X0], [X0])

in QF(S). Clearly, by (1.3),

det′(∆(s[X],s̄[Y ])) = d̃et′(∆)([X], [Y ]) on U .

However, this method does not give rise to a family of operators over all of QF(S), since by

Earle [Ea], there is no global holomorphic cross-section for the fibre bundle π : M(X0) →
Teich(S) of (1.1).

Plan of the paper. In Section 2, we prove Theorem 1.1 and in Section 3, we prove Theo-

rem 1.2. In subsequent sections, we provide proof of the results used in Section 3.

Acknowledgment. This paper is author’s 2005 thesis for Northwestern University. He

deeply thanks his thesis advisor Ezra Getzler for guidance and support. He is also grateful

to Curtis McMullen, Peter Sarnak, András Vasy, and Jared Wunsch for helpful discussions

or comments. He thanks anonymous referees for valuable remarks.

2. Holomorphic Extensions of Determinants of Laplacians

In this section, we use several fundamental facts of Teichmüller spaces and the determinant

of Laplacians to prove Theorem 1.1.

2.1. Preliminaries. In this subsection, we review the facts that we need on Teichmüller

spaces and quasifuchsian spaces, including the Belavin-Knizhnik formula and Platis’s theo-

rem. In the next subsection, we prove Theorem 1.1.

Determinants of Laplacians. Let ∆ be the Laplace-Beltrami operator on functions on a

compact Riemannian manifold M . Let

(2.1) ζ∆(s) =
∑

λ∈Spec(∆)\{0}

λ−s

be the zeta-function of ∆. The determinant det′(∆) is defined (see [RS1]) as

(2.2) − log det′(∆) =
dζ∆(0)

ds
.
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The sum in (2.1) is absolutely convergent for Re s > dim M
2

sufficiently large, and has a

meromorphic extension to the whole complex plane. This meromorphic extension is regular

at s = 0, and so there is no difficulty in taking the derivative at s = 0 in (2.2).

Teichmüller spaces. A general reference for this section is [IT].

Let S be an oriented closed surface with genus g > 1. The Teichmüller space Teich(S) of

S is the space of isotopy classes of hyperbolic Riemannian metrics on S, that is, metrics with

Gaussian curvature −1. By uniformization theorem, Teich(S) is also the space of isotopy

classes of complex structures on S.

The set of equivalence classes of hyperbolic metrics (or equivalently complex structures)

under orientation preserving diffeomorphisms on S forms the moduli space Mg of compact

Riemann surfaces of genus g.

Denote the group of orientation preserving diffeomorphisms on S by Diff+(S), and the

group of isotopies by Diff0(S). The mapping class group

Γg = Diff+(S)/Diff0(S)

is a discrete group which acts properly discontinuously on Teich(S). Thus Teich(S) is almost

a covering space of Mg, with covering transformation group Γg:

Γg −−−→ Teich(S)y
Mg = Γg\Teich(S)

The only caveat is that the action of Γg is not free, i.e. there are points in Teich(S) which are

fixed under some finite subgroups of Γg. These points descend toMg as orbifold singularities.

Fixing a hyperbolic metric on S, we may decompose S into 2g−2 pairs of pants, separated

by closed geodesics γ1, . . . , γ3g−3. A hyperbolic pair of pants is determined up to isometry

by the lengths of its boundary geodesics. Given the combinatorial pants decomposition of

S, we get a hyperbolic metric by specifying the lengths li (li > 0) of the geodesics γi and the

angle θi by which they are twisted along γi before gluing. Let τi = liθi/2π, i = 1, . . . , 3g− 3.

Then the system of variables

(l1, . . . , l3g−3, τ1, . . . , τ3g−3)

is a real analytic coordinate system on Teich(S), called the Fenchel-Nielsen coordinates of

Teich(S). This coordinate system gives a diffeomorphism

Teich(S) ≈ R3g−3
+ × R3g−3 .

There is a a natural symplectic form ωWP on Teich(S), called the Weil-Petersson form.

By a theorem of Wolpert ([W1], [W2]; see also [IT]), this form is given in Fenchel-Nielsen

coordinates by the formula

(2.3) ωWP =

3g−3∑
i=1

dli ∧ dτi.
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The Teichmüller space Teich(S) has a natural complex structure, for which ωWP is a

Kähler form. The following theorem is well known. (See, for example, [Ah].)

Theorem 2.1. For a closed surface S with genus g > 1, Teich(S) is biholomorphic to a

bounded open contractible domain in C3g−3.

Corollary 2.2. There are global holomorphic coordinates z = (z1, . . . , z3g−3) on Teich(S).

Quasifuchsian spaces. While Teichmüller space is a space of Riemann surfaces, the quasi-

fuchsian space defined by Lipman Bers (See [Be]) is a space of pairs of Riemann surfaces.

The quasifuchsian space QF(S) of the surface S may simply be defined as

QF(S) = Teich(S)× Teich(S).

Here, S denotes the surface S with the opposite orientation.

The complex conjugate X of a Riemann surface X is defined by the following diagram:

(2.4)

H −→ H
↓ ↓
X 99K X

The upper arrow is complex conjugation, and the vertical arrows are the universal coverings

given by the uniformization theorem for Riemann surfaces. There is a canonical map from

Teich(S) to Teich(S) defined by sending a Riemann surface X ∈ Teich(S) to its complex

conjugate X ∈ Teich(S). As complex manifolds, Teich(S) ∼= Teich(S), where Teich(S) is

the complex conjugate of Teich(S), i.e. the holomorphic structure of Teich(S) is the anti-

holomorphic structure of Teich(S).

The diagonal map

Teich(S) ↪→ Teich(S)× Teich(S)

sending X ∈ Teich(S) to (X,X) embeds Teich(S) as a totally real submanifold into QF(S).

The action of Γg on Teich(S) extends to QF(S) by the diagonal action: for ρ ∈ Γg and

(X, Y ) ∈ QF(S) = Teich(S)× Teich(S),

ρ · (X,Y ) = (ρ ·X, ρ · Y ).

By Corollary 2.2, QF(S) = Teich(S)× Teich(S) has global holomorphic coordinates

(z1, . . . , z3g−3, w1, . . . , w3g−3).

We abbreviate this coordinate system to (z, w). Then Teich(S) = {w = z} ⊂ QF(S).

Holomorphic extension of Weil-Petersson form. The following result is due to Platis

([Pl], Theorems 6 and 8).

Theorem 2.3. The differential form iωWP on the Teichmüller space Teich(S) has an ex-

tension Ω to the quasifuchsian space QF(S) which is a holomorphic non-degenerate closed

(2, 0)-form whose restriction to the diagonal Teich(S) ⊂ QF(S) ∼= Teich(S) × Teich(S) is

iωWP.

The following lemma is elementary.
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Lemma 2.4. Let U ⊂ Cn be a connected complex domain, and let φ be a holomorphic

function on U × U whose restriction to the diagonal U ⊂ U × U vanishes. Then φ vanishes

on all of U × U .

We can now prove the following result.

Proposition 2.5. In terms of the holomorphic coordinate system

(z, w) = (z1, . . . , z3g−3, w1, . . . , w3g−3)

on Teich(S)× Teich(S), the 2-form Ω of Theorem 2.3 may be written locally as

Ω =
∑
i,j

Ωij dz
i ∧ dwj.

Proof. Since Ω is (2, 0) form, we may write

Ω =
∑
i,j

(
Aij dz

i ∧ dzj +Bij dz
i ∧ dwj + Cij dw

i ∧ dwj
)
.

Because the restriction iωWP of Ω to the diagonal {w = z} is (1, 1)-form, we see that Aij

and Cij vanish on the diagonal. Since Ω is holomorphic, Lemma 2.4 shows that Aij and Cij

vanish. �

The Laplacian on hyperbolic surfaces and the Belavin-Knizhnik formula. Let X

be a compact hyperbolic surface of genus g > 1, and let ∆ be the Laplacian on scalar

functions on X. On the universal cover H of X, the pull-back of ∆ by the covering map may

be written as

∆ = (z − z)2 ∂2

∂z∂z
.

The Siegel upper half space Pg is the space of complex symmetric matrices in Cg×g with

positive definite imaginary part. The period matrix τ is a holomorphic map from Teich(S)

to Pg.

We will use the Belavin-Knizhnik formula. (See the article by Wolpert [W3] and the one

by Zograf and Takhtajan [ZT].) We only need the following special case of this theorem

([ZT], Theorem 2).

Theorem 2.6. In Teich(S),

∂∂ log

(
det′(∆)

det(Im τ)

)
= − i

6π
ωWP,

where Im τ is the imaginary part of the period matrix τ . The differential operator ∂∂ comes

from the complex structure on Teich(S).

This formula and the result of the next section together with the theorem of Platis are

the key ingredients in the construction of the holomorphic extension of log det′(∆).
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2.2. Holomorphic extension of log det′(∆). The following is a key step in the proof of

Theorem 1.1.

Proposition 2.7. Let V and W be domains in the complex space Cn diffeomorphic to the

open unit ball. Consider V ×W ⊂ Cn × Cn, with holomorphic coordinates (z, w), and let

∂z = dzi ∂zi
and ∂w = dwj ∂wj

. Suppose Ω is a holomorphic closed 2-form on V ×W which

is locally written as

Ω =
∑
i,j

Ωijdz
i ∧ dwj.

Then there is a holomorphic function q on V ×W such that ∂z∂wq = Ω.

Proof. Choose smooth polar coordinates on V and W , and denote the centers of these coor-

dinate systems by z0 and w0 respectively. Denote the radial line in polar coordinates from

z0 to the point z ∈ V by v(z); similarly, denote the radial line in polar coordinates from w0

to the point w ∈ W by w(w). More generally, if c is a smooth chain in V , let v(c) denote

the cone on c with vertex z0, and similarly if c is a smooth chain in W , let w(c) denote the

cone on c with vertex w0.

Define q(z, w) by the formula

q(z, w) =

∫
v(z)×w(w)

Ω.

Since the chain v(z)×w(w) varies smoothly as (z, w) varies, the function q(z, w) is smooth.

Observe that q is unchanged by isotopies of the coordinate systems on V and W which fix

the centers z0 and w0, and that q vanishes on V × {w0} and on {z0} ×W .

If c is a differentiable curve in W parametrized by the interval [0, t], we have by Stokes’s

theorem

q(z, c(t))− q(z, c(0)) =

∫
v(z)×c

Ω +

∫
{z}×w(c)

Ω−
∫
{z0}×w(c)

Ω−
∫

v(z)×w(c)

dΩ.

The second and third terms on the right-hand side vanish, since Ω vanishes when restricted

to the 2-simplex {z}×w(c), and the last term vanishes since dΩ = 0. Taking the limit t→ 0,

we see that

(2.5) ι(0, c′(0))dq(z, c(0)) = −
∫

v(z)×c(0)

ι(0, c′(0))Ω.

Since Ω is holomorphic along {z} ×W , it follows that q is holomorphic along {z} ×W as

well. A similar argument shows that q is holomorphic along V × {w}; combining these two

calculations, we see that q is holomorphic on V ×W .

We now calculate ∂w∂zq. By (2.5),

∂wq(z, w) = −
n∑

i=1

dwi

∫
v(z)×{w}

ι(∂wi)Ω.
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If c is a differentiable curve in V , parametrized by the interval [0, t], we have by Stokes’s

theorem

(2.6) (∂wq)(c(t), w)− (∂wq)(c(0), w) =
n∑

i=1

dwi

(
−

∫
c×{w}

ι(∂wi)Ω +

∫
v(c)×{w}

dι(∂wi)Ω

)
.

The second term on the right-hand side vanishes. Indeed,

dι(∂wi)Ω = −∂zkΩjidz
k ∧ dzj − ∂wkΩjidw

k ∧ dzj

= −
∑
j<k

(
∂zkΩji − ∂zjΩki

)
dzk ∧ dzj − ∂wkΩjidw

k ∧ dzj

= −∂wkΩjidw
k ∧ dzj.

Restricting to v(c)× {w}, this differential form vanishes.

Taking t→ 0 in (2.6), we see that

ι(c′(0), 0)d(∂wq)(c(0), w) = −
n∑

i=1

dwi ι(c′(0), 0)ι(∂wi)Ω(c(0), w),

or in other words, ∂z∂wq = Ω. �

From Proposition 2.5, we know that the holomorphic 2-form Ω of Theorem 2.3 satisfies

the hypotheses of Theorem 2.7. Restricted to the diagonal Teich(S) = {w = z} ⊂ QF(S),

the differential equation in Theorem 2.7 for the holomorphic function q on QF(S) becomes

∂∂q = iωWP.

Thus, the proof of Theorem 2.7 gives a method of constructing a Kähler potential for the

Kähler form iωWP on the Teichmüller space, using the extended form Ω to quasifuchsian

space.

Example. (See p. 214 in [IT]) When S has genus 1, the Teichmüller space Teich(S) may be

identified with the upper half plane H, and

ωWP = −i(z − z)−2 dz ∧ dz.

One easily finds the Kähler potential q(z) = log(z − z). The method used in the proof of

Theorem 2.7, applied to the 2-form Ω = (z −w)−2 dz ∧ dw, yields the holomorphic function

q(z, w) = log(z − w)− log(z0 − w)− log(z − w0) + log(z0 − w0)

on the quasifuchsian space H×H.

Using the holomorphic function q on QF(S), we now construct the holomorphic extension

of log det′(∆). The holomorphic function

q̃(z, w) =
1

2

(
q(z, w) + q(w, z)

)
on QF(S) restricts to a real function q̃ on the diagonal such that

∂∂q̃ = iωWP.
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Theorem 2.8. There exists a unique holomorphic extension of log det′(∆) to the quasifuch-

sian space QF(S). In coordinates (z, w) on QF(S) ∼= Teich(S) × Teich(S), this extension

has the form

log det′(∆)(z, w) = − 1

6π
q̃(z, w) + log det((τ(z)− τ(w))/2i) + f(z) + f(w).

Proof. By Theorem 2.6, the one-form

α = ∂
(
log det′(∆) +

1

6π
q̃ − log det(Im τ)

)
is holomorphic. Since Teich(S) is simply connected, it follows that there is a differentiable

function f such that

df = α.

Since ∂f = α0,1 = 0, f is seen to be holomorphic. The theorem is now proved by analytically

extending each of the functions det(Im τ), q̃, f and f in the holomorphic factorization

log det′(∆) = log det(Im τ) + Cg q̃ + f + f

on Teich(S) to QF(S). The holomorphic extension of q̃ is evident, since it is by construction

the restriction of the holomorphic function q̃ on QF(S). The function f is extended to f(z),

the function f to f(w), and the function det(Im τ) to

log det((τ(z)− τ(w))/2i).

(Note that the matrix τ(z) − τ(w) is everywhere invertible on QF(S).) The uniqueness of

the holomorphic extension of log det′(∆) follows from Lemma 2.4. �

It would not be hard, using this theorem, to give an explicit lower bound for the radius

of convergence of the real analytic function log det′(∆) on Teich(S).

3. Holomorphic Extensions of Laplacians and Their Determinants

In this section, we prove Theorem 1.2. In Section 3.1, we construct the family {∆µ,ν},
and show that it satisfies properties (1) and (2) in Theorem 1.2. In Section 3.2, we show

the property (3) of Theorem 1.2. In Section 4, we provides several necessary estimates on

quasiconformal mappings. Using the results of Section 4, we prove in Sections 5 and 6 the

results which are used in Section 3.2. From now on, we denote by ∂ and ∂ the Cauchy-

Riemann operators 1
2
(∂x − i∂y) and 1

2
(∂x + i∂y), respectively.

3.1. The holomorphic extension ∆µ,ν of the Laplacian. In this subsection, we con-

struct the family {∆µ,ν} of elliptic second order differential operators of Theorem 1.2, and

demonstrate properties (1) and (2).

Unless otherwisely stated, we restrict our domain to H, and denote by µ and ν smooth

Beltrami differentials on H (that is, smooth complex valued functions on H satisfying ‖µ‖∞,

‖ν‖∞ < 1). By µ̂ we denote a Beltrami differential on the lower half plane H defined by

µ̂(z) = µ(z). Denote by ∂µ the operator ∂ − µ∂, and by ∂µ the operator ∂ − µ∂.

The following definition is due to Ahlfors and Bers.
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Definition 3.1. Given a pair (µ, ν) of Beltrami differentials on H, denote by fµ,ν : C → C
the unique continuous normalized solution (i.e. fixing 0, 1 and ∞) of the Beltrami equation

on C, {
∂µfµ,ν = 0, Im z > 0,

∂ ν̂fµ,ν = 0, Im z < 0.

Let fµ = fµ,µ.

We have the following result of Ahlfors and Bers [AB].

Lemma 3.1. fµ,ν is a homeomorphism of the Riemann sphere Ĉ = C∪{∞}. In particular,

it is an open embedding of H into C, and ∂fµ,ν is nowhere zero on H.

By complex conjugation of the Beltrami differential equation in Definition 3.1, we see that

(3.1) fν,µ(z) = fµ,ν(z).

In particular, fµ(z) = fµ(z) and thus fµ maps H onto H. In fact, fµ,ν maps H onto H if

and only if fµ|R ≡ f ν |R.

In our construction of ∆µ,ν , we use the result of Ahlfors and Bers that the normalized

solutions of the Beltrami equations depend analytically on the Beltrami differentials. The

following lemma summarizes what we need (see [AB]).

Lemma 3.2. For each z ∈ H, fµ,ν(z), fν,µ(z), ∂fµ,ν(z) and ∂fν,µ(z), depend holomorphically

on µ and anti-holomorphically on ν.

Now, we start with the following key calculation in our construction of ∆µ,ν . By Lemma 3.1

and the inequality |µ| < 1, the function

(3.2) α =
1

(1− |µ|2)∂fµ

is bounded on H.

Proposition 3.3.

(fµ)∗∂∂ = |α|2
(
−µ ∂2 + (1 + |µ|2) ∂∂ − µ ∂

2
+ (∂µ logα) ∂ + (∂µ logα) ∂

)
.

One easily sees that when µ = 0, the above formula for (fµ)∗∂∂ reduces to ∂∂.

In the proof of Proposition 3.3, we denote fµ by f , and (fµ)−1 by h. By the chain rule

applied to the equations h ◦ f = z and h ◦ f = z, and the Beltrami equation, we see that

(3.3)

(
∂h ◦ f ∂h ◦ f
∂h ◦ f ∂h ◦ f

)
=

(
∂f ∂f

∂f ∂f

)−1

=

(
α −µα

−µα α

)
.

By the chain rule applied to the equation ∂h ◦ f = α, we see that(
∂f ∂f

∂f ∂f

) (
∂2h ◦ f
∂∂h ◦ f

)
=

(
∂α

∂α

)
.

Applying (3.3), we see that

(3.4) ∂∂h ◦ f = |α|2 ∂µ logα
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Proof of Proposition 3.3. If u is a C∞ function on H, then

(fµ)∗∂∂u = (∂∂(u ◦ h)) ◦ f.

We have

∂∂(u ◦ h) = ∂
(
(∂u ◦ h)∂h+ (∂u ◦ h)∂h

)
= (∂2u ◦ h)∂h∂h+ (∂∂u ◦ h)∂h∂h

+ (∂∂u ◦ h)∂h∂h+ (∂
2
u ◦ h)∂h∂h

+ (∂u ◦ h)∂∂h+ (∂u ◦ h)∂∂h.

Composing on the right with f , we see that(
∂∂(u ◦ h)

)
◦ f = ∂2u(∂h ◦ f)(∂h ◦ f) + ∂∂u(∂h ◦ f)(∂h ◦ f)

+ ∂∂u(∂h ◦ f)(∂h ◦ f) + ∂
2
u(∂h ◦ f)(∂h ◦ f)

+ ∂u(∂∂h ◦ f) + ∂u(∂∂h ◦ f).

Applying (3.3) and (3.4), the proposition follows. �

We wish to find an extension of (fµ)∗∂∂ which is holomorphic in µ. Because the formula

for (fµ)∗∂∂ contains quantities such as |∂fµ|2 and |µ|2, simply replacing fµ by fµ,ν does not

give a holomorphic extension of ∂∂. Nor do other simple extensions, such as (fµ)∗∂ (f ν)∗∂.

On the other hand, replacing fµ, fµ and µ by fµ,ν , fν,µ, and ν, respectively we obtain by

Lemma 3.2 an operator which depends holomorphically on µ and anti-holomorphically on ν.

Definition 3.2. Given a pair of Beltrami differentials (µ, ν), let

αµ,ν =
1

(1− µν)∂fµ,ν

Define a second order differential operator ∆µ,ν on functions on H by the formula

∆µ,ν = (fµ,ν − fν,µ)2(∂∂)µ,ν

where

(∂∂)µ,ν = αµ,ναν,µ

(
−µ ∂2 + (1 + µν) ∂∂ − ν ∂

2
+ (∂µ logαµ,ν) ∂ + (∂ν logαν,µ) ∂

)
.

The principal symbol of ∆µ,ν in complex coordinates (z, ζ) on the cotangent bundle T ∗H,

where σ(∂) = iζ, equals

σ2(∆µ,ν)(ζ) = −(fµ,ν − fν,µ)2 αµ,ναν,µ(ζ − µζ)(ζ − νζ)

Lemma 3.4. The differential operator ∆µ,ν is elliptic for any pair of Beltrami differentials

(µ, ν).

Proof. By (3.1), we have

fµ,ν(z)− fν,µ(z) = fµ,ν(z)− fµ,ν(z)

which is nowhere vanishing on H, since fµ,ν is a homeomorphism of C. The functions

∂fµ,ν and ∂fν,µ are nowhere vanishing on H by Lemma 3.1. We also have the bounds

‖µ(z)‖∞, ‖ν(z)‖∞ < 1, and the lemma follows. �
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The following theorem is immediate.

Theorem 3.5. The elliptic family ∆µ,ν is holomorphic in µ and anti-holomorphic in ν, and

coincides with (fµ)∗∆ when µ = ν.

The following proposition shows that ∆µ,ν is the unique such family of operators.

Proposition 3.6. Let Aµ,ν be a family of operators on C∞(H) holomorphic in µ and anti-

holomorphic in ν. If Aµ,µ = 0 for all µ, then Aµ,ν = 0 for all µ, ν.

We need an elementary lemma.

Lemma 3.7. Let φ(s, t) be a function of complex variables s, t which is holomorphic in s

and anti-holomorphic in t. Suppose φ(s, s) = 0 for all s. Then φ(s, t) = 0 for all s, t.

Proof of Proposition 3.6. Fix ψ ∈ C∞(H), z ∈ H, and Beltrami differentials µ, ν. Let s, t

be complex parameters. Then φ(s, t) = (A(1−s)µ+sν,(1−t)µ+tνψ)(z) is holomorphic in s and

anti-holomorphic in t, and φ(s, s) = 0 for all s. By Lemma 3.7, φ(s, t) = 0 for all s, t. This

shows the proposition. �

Now fix a Riemann surface X0 and the corresponding Fuchsian group G of the covering

map H → X0. We show that the restriction of the family {∆µ,ν} to G-invariant Beltrami

differentials µ, ν ∈MG on H induces a family of elliptic differential operators on X0.

Lemma 3.8. If µ ∈MG and g ∈ G, g∗(fµ)∗∆ = (fµ)∗∆.

Proof. By the invariance of the hyperbolic metricm0 on H under conformal mappings, and by

the invariance of µ under G, it is clear that the pull-back metric (fµ)∗m0 is invariant under

G. So the Laplacian (fµ)∗∆ associated to the pull-back metric (fµ)∗m0 is also invariant

under G. �

Proposition 3.9. For every g ∈ G, and for every µ, ν ∈MG, g∗∆µ,ν = ∆µ,ν.

Proof. Fix g ∈ G. The family of operators g∗∆µ,ν − ∆µ,ν is holomorphic in µ and anti-

holomorphic in ν, and by Lemma 3.8, it vanishes for µ = ν. Therefore, by Proposition 3.6,

g∗∆µ,ν −∆µ,ν = 0 for all µ, ν ∈MG. �

By Proposition 3.9 and the identification of MG with M(X0), we have

Theorem 3.10. There is a unique family {∆µ,ν | µ, ν ∈ M(X0)} of elliptic second order

differential operators on X0 which satisfies properties (1) and (2) of Theorem 1.2.

3.2. Determinant of ∆µ,ν. In this section, we consider the determinant of ∆µ,ν and estab-

lish the property (3) in Theorem 1.2. To define the determinant of ∆µ,ν , we use the method

of using complex powers of elliptic operators developed by Seeley [Se1], [Se2], although we

follow Shubin [Sh] more closely. (See also [KV].)

For the Fuchsian group G of X0, let P be the closure of a fixed fundamental domain of G.

Let Q be the neighborhood of P consisting of the union of all translates of P by elements of

G whose intersection with P is nonempty.
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Definition 3.3. Given 0 < k < 1 and E > 0, let

MG
k,E = {µ ∈MG | ‖µ‖∞ ≤ k, ‖µ‖C2(Q) ≤ E}

where the C2-norm is defined using the flat metric on H.

The following theorems will be proved in Sections 5, 6.

Theorem 3.11. Given 0 < k < 1, E > 0 and 0 < θ0 < π, there is ε > 0 such that if

µ, ν ∈MG
k,E and ‖µ− ν‖C1(Q) < ε, then

| arg(σ2(∆µ,ν))| < θ0.

Theorem 3.12. There exists a constant C > 0 such that for every µ, ν ∈MG
k,E and for any

nonzero eigenvalue λ of ∆µ,ν on X0 = H/G,

|λ| ≥ C −O(‖µ− ν‖C2(Q)).

Fix 0 < θ0 < π. For the rest of section denote ∆µ,ν by A and assume that (µ, ν) belongs

to

Nε = {(µ, ν) | µ, ν ∈MG
k,E and ‖µ− ν‖C2(Q) ≤ ε}

where ε > 0 will be determined in the following.

3.2.1. Determinant of ∆µ,ν. By Theorem 3.11, we know that for sufficiently small ε the

principal symbol σ2(A)(x, ζ) does not take values in the closed conical sector

Λ = {λ : θ0 ≤ argλ ≤ 2π − θ0}

in the spectral plane C for any (x, ζ) ∈ T ∗S \ S. This condition ensures that Spec(A)∩Λ is

finite, so there is a closed sector Λ0 ⊂ Λ which has only zero spectrum inside.

By Theorem 3.12, for sufficiently small ε > 0, there is ρ > 0 such that

Spec(A) ∩ {z | |z| < ρ} ⊂ {0}.

Given exp(iθ) ∈ Λ0, let Γ(θ) be the contour Γ1,θ(ρ) ∪ Γ0,θ(ρ) ∪ Γ2,θ(ρ), where

Γ1,θ(ρ) = {x exp(iθ) | x ≥ ρ},
Γ0,θ(ρ) = {ρ exp(iφ) | θ > φ > θ − π},
Γ1,θ(ρ) = {x exp(i(θ − π)) | ρ ≤ x}.

Denote by Rλ the resolvent (A− λI)−1. Then for Re s < 0, define

(As)(θ) =
i

2π

∫
Γ(θ)

λsRλ dλ.

By the symbol calculus of [Sh], As is trace class for Re s < −1. In the following, we omit θ

from the notation for (As)(θ) and Γ(θ).

For s ∈ C, define the modified complex power As,o of A by

As,o = AkAs−k
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where k is an integer chosen so that Re s−k < 0. To see that this definition does not depend

on the choice of k, consider the operator

P0 =
i

2π

∫
|λ|=ρ

Rλ dλ.

Observe that P 2
0 = P0, P0As = 0, and that P0 commutes with A, As and As,o. Then the

well-definedness of As,o follows since

AkA−k = A−kA
k = 1− P0.

The modified complex power As,o has group property:

As,oAw,o = As+w,o.

Following the arguments in [Sh] (pp. 94–106), we may show that the kernel A−s,o(x, y) dy

of A−s,o can be meromorphically extended to all of C, with simple poles contained in the set{2− j

2

∣∣∣ j ≥ 0
}
\ {−j | j ≥ 0}.

It follows that the meromorphic function

Tr(A−s,o) =

∫
M

A−s,o(x, x) dx

is regular at s = 0.

Definition 3.4. det′(A) = exp(−∂s|s=0 Tr(A−s,o))

As remarked by Kontsevich and Vishik in [KV], a change in the choice of contour Γθ

changes ∂s|s=0 TrA−s,o by an element of 2πiZ. After taking the exponential, the determinant

det′(A) is well-defined.

We summarize our discussion in the following theorem.

Theorem 3.13. There exists ε > 0 such that det′(∆µ,ν) is defined on Nε.

3.2.2. Holomorphy of det′(∆µ,ν). Suppose A belongs to a differentiable family of operators

all of which satisfy the above conditions for a fixed contour Γ. Then we have the following

well-known variation formula for the determinant, which can be proved by symbol calculus

of the kernel of complex powers as in [Sh].

(3.5) d log det′(A) = ∂s|s=0 Tr(sA−s−1,o dA)

In order to argue from (3.5) that det′(∆µ,ν) is holomorphic with respect to µ and ν, we

must clarify one subtle point: the contour Γ must be chosen so that the spectrum of the

operator ∆µ,ν does not cross it as we perform the differentiation.

Fix µ1, ν1 ∈M(X0) and δ > 0. For complex numbers |s|, |t| < δ, let

(µs, νt) = (µ+ sµ1, ν + tν1) ∈ Nε

and denote ∆µs,νt by A(s, t) and ∆µs,νt − λ for λ ∈ Λ by Aλ(s, t).
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Lemma 3.14. If δ is sufficiently small, there exists R > 0 such that the resolvent Aλ(s, t)
−1

is bounded on

ΛR = {λ ∈ Λ | |λ| ≥ R}.

Proof. Consider a parametrix Bλ(s, t) of A(s, t) and consider the equation

Bλ(s, t)Aλ(s, t) = I + Cλ(s, t),

where Cλ(s, t) is a smoothing operator such that

(1 + |λ|)‖Cλ(s, t)‖

is bounded. (See [Sh] pp.85–86.) By continuity of the kernel of Cλ(s, t) with respect to s, t,

we see that ‖Cλ(s, t)‖ is uniformly bounded for |s|, |t| < δ, when δ is sufficiently small, and

from this the existence of R. �

The boundedness of the resolvent Aλ(s, t)
−1 is an open condition; thus, if the operator

A(0, 0) has no eigenvalues in the bounded domain

{z ∈ Λ0 | ρ < |z| < R},

then A(s, t) has no eigenvalues in this domain either, for sufficiently small δ. Recall that the

only eigenvalue of A(s, t) inside the disk {z | |z| < ρ} is 0, for sufficiently small δ.

In conclusion, for each (µ, ν) ∈ Nε we can choose a contour Γ in such a way that the only

eigenvalue of ∆µs,νt inside Γ is zero, for any small variation (µs, νt) of (µ, ν) in Nε. Since the

determinant is independent of the choice of the contour, we have

Theorem 3.15. The function det′(∆µ,ν) is holomorphic in the region Nε, where ε is chosen

as in Theorem 3.13.

The property (3) in Theorem 1.2 is a direct consequence of this theorem. Note that the

flat Euclidean norm ‖ · ‖C2(Q) for MG and the hyperbolic norm ‖ · ‖C2(X0) for M(X0) are

equivalent since Q is a finite cover of compact X0.

4. Estimates for quasiconformal mappings

We start by reviewing some basic facts about quasiconformal mappings due to Ahlfors

and Bers [AB]. Given p > 2, let Cp > 1 be the constant associated to p by Ahlfors and Bers

(see p. 386, [AB]); note that

lim
p↘2

Cp = 1.

Fix 0 < k < 1, and choose p > 2 such that Cp < 1/k. We abbreviate Lp(C) to Lp. Let µ

and ν be complex valued functions in L∞(C) with norm ‖µ‖∞, ‖ν‖∞ ≤ k.

Definition 4.1. [AB] The normalized solution wµ : C → C of the Beltrami equation ∂µw
µ =

0 is the unique continuous solution which fixes 0, 1, and ∞.

It is known that the function wµ is a homeomorphism of the Riemann sphere Ĉ = C∪{∞}.
If wν = wρ ◦ wµ, then

ρ =

(
ν − µ

1− µν

∂wµ

∂wµ

)
◦ (wµ)−1,
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and (wµ)−1 = wµ̃ where

(4.1) µ̃ =

(
−µ∂w

µ

∂wµ

)
◦ (wµ)−1.

Note that ‖µ̃‖∞ = ‖µ‖∞.

Denote the spherical distance in the extended complex plane by [z1, z2]. By Lemma 16 of

[AB], there are positive constants α(k) and c(k) such that

[wµ(z1), w
µ(z2)] ≤ c(k) [z1, z2]

α(k).

Let DR = {z ∈ C | |z| ≤ R} be the disk of radius R in C. Since the spherical and

Euclidean distances are equivalent in compact domains, we see that if z1, z2 ∈ DR, then

(4.2) |wµ(z1)− wµ(z2)| ≤ c(k,R) |z1 − z2|α(k).

In particular, taking z0 = 0, we see that

(4.3) ‖wµ‖L∞(BR) ≤ c(k,R)Rα(k).

We also have the following lemma. (See p. 398 of [AB].)

Lemma 4.1. If µ and ν are Beltrami differentials on Ĉ with ‖µ‖∞, ‖ν‖∞ ≤ k, then for all

z ∈ Ĉ,

[wµ(z), wν(z)] ≤ C(k) ‖µ− ν‖∞.

In particular,

(4.4) ‖wµ − wν‖L∞(DR) ≤ C(k,R) ‖µ− ν‖∞.

We will need the following interior Schauder estimates for the operators ∂µ.

Proposition 4.2. Fix a bounded open domain Ω in C, a relatively compact open subset

Ω1 ⊂⊂ Ω, a positive integer n, and real numbers 0 < δ < 1, 0 < k < 1, and E > 0.

Let µ and ν be Beltrami differentials on C satisfying ‖µ‖∞, ‖ν‖∞ ≤ k and ‖µ‖Cn−1,δ(Ω),

‖ν‖Cn−1,δ(Ω) ≤ E. Then there is a positive constant C, depending only on the above data,

such that ‖wµ‖Cn,δ(Ω1) ≤ C and

‖wµ − wν‖Cn,δ(Ω1) ≤ C{‖µ− ν‖Cn−1,δ(Ω) + ‖µ− ν‖∞}.

Proof. As long as ‖µ‖L∞(Ω) is bounded by k < 1, the operators ∂µ are uniformly elliptic on

Ω, and we have the uniform Schauder estimates

‖wµ‖Cn,δ(Ω1) ≤ C‖wµ‖C0(Ω),

from which ‖wµ‖Cn,δ(Ω1) ≤ C follows by (4.3).

Note that

∂µ(wµ − wν) = (µ− ν)∂wν

This implies the uniform Schauder estimates

‖wµ − wν‖Cn,δ(Ω1) ≤ C{‖wµ − wν‖C0(Ω) + ‖(µ− ν)∂wν‖Cn−1,δ(Ω)},

and applying (4.4), the desired estimate on ‖wµ − wν‖Cn,δ(Ω1) follows. �

The goal of the rest of section is to verify the following theorem.
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Theorem 4.3. Let Ω1 ⊂⊂ Ω ⊂⊂ C. Suppose that ‖µ‖∞ ≤ k and that ‖∂µ‖Lp(Ω) < ∞.

Then the normalized solution wµ of the Beltrami equation of µ satisfies

inf
Ω1

|∂wµ| ≥ Ce−C‖∂µ‖Lp(Ω) .

We will first consider the case where µ has compact support; we imitate the proof of

Lemma 7 in [AB]. First, we recall some results from [AB] on the inhomogeneous Beltrami

equation.

Definition 4.2. For σ ∈ Lp, let wµ,σ : C → C be the unique solution of the inhomogeneous

Beltrami equation ∂µw = σ such that w(0) = 0 and ∂w ∈ Lp.

Two properties of wµ,σ which we will need are

‖∂wµ,σ‖p ≤
Cp ‖σ‖p

1− kCp

(4.5)

and

|wµ,σ(z1)− wµ,σ(z2)| ≤
cp‖σ‖p

1− kCp

|z1 − z2|1−2/p.(4.6)

(For the definition of the constant cp, see p. 386 of [AB].)

Lemma 4.4. Suppose that ‖µ‖∞ ≤ k and that ∂µ ∈ Lp. If µ has support in DR, there is a

constant C, depending only on R, such that

inf
z∈C

|∂wµ| ≥ 1

1 + k
e−C‖∂µ‖p .

Proof. Let λ = wµ,∂µ. By (4.5),

‖∂λ‖p ≤ C‖∂µ‖p,(4.7)

while by (4.6),

|λ(z1)− λ(z2)| ≤ C ‖∂µ‖p|z1 − z2|1−2/p.

Since λ(0) = 0,

(4.8) |λ(z)| ≤ C ‖∂µ‖p|z|1−2/p.

In particular, when |z| ≤ R + 1,

‖λ(z)‖ ≤ C(R + 1)1−2/p‖∂µ‖p.

If R + 1 < |z| < r, then since ∂λ(z) = 0 for |z| > R, Green’s formula shows that

λ(z) =
1

2πi

∫
|ζ|=r

λ(ζ)

ζ − z
dζ +

1

2πi

∫ ∫
DR

∂λ(ζ)

ζ − z
dζdζ.

Thus

dλ(z) =
1

2πi

∫
|ζ|=r

λ(ζ)

(ζ − z)2
dζ +

1

2πi

∫ ∫
DR

∂λ(ζ)

(ζ − z)2
dζdζ.
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By (4.8),∣∣∣∣ 1

2πi

∫
|ζ|=r

λ(ζ)

(ζ − z)2
dζ

∣∣∣∣ ≤ 1

2π(r − |z|)2

∫
|ζ|=r

|λ(ζ)| |dζ| ≤ C
r1−2/p

(r − |z|)2
‖∂µ‖p.

By (4.7), ∣∣∣∣ 1

2πi

∫ ∫
DR

∂λ(ζ)

(ζ − z)2
dζdζ

∣∣∣∣ ≤ 1

2π(|z| −R)2

∫ ∫
DR

|∂λ(ζ)| |dζdζ|

≤ C
(πR2)1−1/p

2π(|z| −R)2
‖∂µ‖Lp(Ω).

Taking r →∞, we see that

|dλ(z)| ≤ C
‖∂µ‖p

(|z| −R)2
.

Let ẑ = z/|z|. It follows that

|λ(z)| ≤ |λ((R + 1)ẑ)|+
∫ r

R+1

|dλ(sẑ)| ds

≤ C‖∂µ‖p

(
(R + 1)1−1/p +

∫ ∞

1

ds

s2

)
.

In summary, we see that

(4.9) ‖λ‖∞ ≤ C‖∂µ‖p.

Let ρ = eλ. Since ∂ρ = ∂(µρ), there exists a C1 function f such that ∂f = ρ and

∂f = µρ. As remarked in [AB], f is a homeomorphism on the extended complex plane Ĉ
and f(∞) = ∞. Clearly, the normalized solution wµ is

wµ(z) =
f(z)− f(0)

f(1)− f(0)
,

hence

|∂wµ| ≥ e−|λ|

|f(1)− f(0)|
.

The numerator is bounded below by (4.9), while the denominator is bounded above using

the mean value theorem:

|f(1)− f(0)| ≤ sup
D

(|∂f |+ |∂f |)

≤ (1 + k) sup
D
e|λ| ≤ (1 + k)eC‖∂µ‖p . �

Proof of Theorem 4.3. Choose an open set Ω′ such that Ω1 ⊂⊂ Ω′ ⊂⊂ Ω. Let η be a C∞

cut-off function which equals 1 on Ω′ and 0 outside Ω. Let ψ = wηµ ◦ (wµ)−1. Note that

∂ψ = 0 on wµ[Ω′]. Thus, on Ω′,

∂wηµ = (∂ψ ◦ wµ)∂wµ.
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It follows that

(4.10) |∂wµ| = |∂wηµ|
|∂ψ ◦ wµ|

.

We must bound this below on Ω1. The numerator is bounded below by Lemma 4.4.

To get an upper bound for the denominator of (4.10), note

sup
Ω1

|∂ψ ◦ wµ| = sup
wµ[Ω1]

|∂ψ|.

Let r = dist(wµ[Ω1],C\wµ[Ω′]). Since ψ is holomorphic on wµ[Ω′], we see that for z ∈ wµ[Ω1],

∂ψ(z) =
1

2πi

∫
|ζ−z|=r

ψ(ζ)

(ζ − z)2
dζ

and therefore,

sup
Ω1

|∂ψ ◦ wµ| ≤ r−1 sup
wµ[Ω′]

|ψ|.

But, by (4.3),

sup
wµ[Ω′]

|ψ| = sup
wµ[Ω′]

|wηµ ◦ (wµ)−1| = sup
Ω′
|wηµ| ≤ C.

It remains to bound r below.

Recall the definition (4.1) of the Beltrami differential µ̃. By (4.2) and (4.3), if z1 ∈ wµ[Ω1]

and z2 ∈ C \ wµ[Ω′], there is a constant α(k) > 0 such that

|wµ̃(z1)− wµ̃(z2)| ≤ C|z1 − z2|α(k).

From this, we have

dist(Ω1,C \ Ω′) ≤ C dist(wµ[Ω1],C \ wµ[Ω′])α.

So r ≥ C dist(Ω1,C \ Ω)1/α. �

5. Proof of Theorem 3.11

Recall that

σ2(∆µ,ν) = −(fµ,ν − fν,µ)2 ((1− µν)2∂fµ,ν∂fν,µ)−1(ζ − µζ)(ζ − νζ).

By invariance of ∆µ,ν under G we only need to estimate the argument of this symbol on P ,

and for this we will use the results of Section 4.

5.1. Angle estimates for (ζ − µζ)(ζ − νζ). Let % = µ− ν. Then

(ζ − µζ)(ζ − νζ) = (1 + µν)ζζ − µζ
2 − νζ2

= (1 + |ν|2)|ζ|2 − (νζ
2
+ νζ2) + %ν|ζ|2 − %ζ

2
.

But

(1 + |ν|2)|ζ|2 − (νζ
2
+ νζ2) ≥ (1− |ν|)2|ζ|2 ≥ (1− k)2|ζ|2,

while on P ,

|%ν|ζ|2 − %ζ
2| ≤ 2ε|ζ|2.
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Therefore, for sufficiently small ε, we have on P

| arg((ζ − µζ)(ζ − νζ))| = O(ε).

5.2. Angle estimates for −(fµ,ν − fν,µ)2. We estimate arg(−(fµ,ν − fν,µ)2) by means of

the decomposition

fµ,ν − fν,µ = (fµ − fµ) + (fµ,ν − fµ) + (fµ − fν,µ).

Lemma 5.1. There is a constant C = C(k, P ) > 0 such that if µ is a Beltrami differential

such that ‖µ‖∞ ≤ k, and z ∈ P ,

Im fµ(z) > C.

Proof. Let F (K) be the family of K-quasiconformal mappings from the H to itself fixing 0,

1 and ∞. In particular, fµ ∈ F (K), with

K =
1 + k

1− k
,

By Theorem 2.1 of [Le], F (K) is normal on H, that is, every sequence of elements of F (K)

contains a subsequence which is locally uniformly convergent in H. Let y be the infimum

y = inf
f∈F (K),z∈P

Im f(z).

Choose sequence (fn) ∈ F (K) and (zn) ∈ P such that

lim
n→∞

Im fn(zn) → y.

Since P is compact, by passing to a subsequence, we may assume that (zn) converges to

a limit z∞ ∈ P . Since F (K) is normal, there is a subsequence which is locally uniformly

convergent in H, with continuous limit f∞ such that Im f∞(z∞) = y. By Theorem 2.2 of

[Le], f∞ is K-quasiconformal, hence injective. Thus, y > 0, since f∞(z∞) is in the interior

of D. �

It follows that

inf
P
|fµ − fµ| ≥ C.

By (4.4),

‖fµ − fν,µ‖L∞(P ) + ‖fµ,ν − fµ‖L∞(P ) ≤ C‖%‖∞ ≤ Cε.

Therefore, for sufficiently small ε, we have on P ,

| arg(−(fµ,ν − fν,µ)2)| = O(ε).

5.3. Angle estimates for 1− µν. We have

1− µν = 1− |ν|2 − %ν.

Since 1− |ν|2 ≥ 1− k2 and |%ν| ≤ εk, we see that

| arg(1− µν)| = O(ε).
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5.4. Angle estimates for ∂fµ,ν∂fµ,ν. To estimate the argument of

∂fµ,ν∂fν,µ = (∂fµ + ∂fµ,ν − ∂fµ)(∂fµ + ∂fν,µ − ∂fµ)

= |∂fµ|2 + ∂fµ(∂fν,µ − ∂fµ) + ∂fµ(∂fµ,ν − ∂fµ)

+ (∂fµ,ν − ∂fµ)(∂fν,µ − ∂fµ),

we need a lower bound for |∂fµ| and upper bounds for ∂fµ, ∂fµ,ν − ∂fµ and ∂fν,µ − ∂fµ.

Theorem 4.3, applied with Ω1 = P and Ω = Q, implies that

inf
P
|∂fµ| ≥ C.

By Proposition 4.2, we have the estimates ‖fµ‖C1,δ(P ) < C,

‖fµ,ν − fµ‖C1,δ(P ) < C‖µ− ν‖∞,

and ‖fν,µ − fµ‖C1,δ(P ) < C(‖µ− ν‖C1(Q) + ‖µ− ν‖∞). Therefore, for sufficiently small ε, we

have on P ,

| arg(∂fµ,ν∂fν,µ)| = O(ε).

Combining the above estimates, we obtain Theorem 3.11.

6. Proof of Theorem 3.12

Before we proceed for the proof let us fix some notations. Let m0 be the Kähler form of

the standard hyperbolic metric on H, let

m = (fµ)∗m0 = −2i
|∂fµ|2(1− |µ|2)

(fµ − fµ)2
dz ∧ dz

be the Kähler form of the pull-back hyperbolic metric by fµ induced on X0, and let ∆m be

the corresponding Laplacian. Let 〈−,−〉 be the inner product on L2(X0,m), and let ‖ · ‖2

be the L2-norm. With respect to the frame {dz, dz} of the cotangent bundle T ∗X0 ⊗C, the

Hodge star operator ? (with respect to m) acts on 1-forms as

?

(
a

b

)
=

i

(1− |µ|2)2

(
2µ −(1 + |µ|2)

|µ|2 + 1 −2µ

) (
ā

b̄

)
.

From this, it is easy to see that for u ∈ C∞(X0),

‖du‖2
2 =

∫
X0

du ∧ ?du ≥
∫

P

(1− |µ|2)(|∂u|2 + |∂u|2) i dz ∧ dz
2

(6.1)

≥ (1− k)‖du‖2
L2(X0,m0).

If ∇ is the gradient operator of the metric m, and ∇∗ is its adjoint with respect to 〈−,−〉,
then ∆m = ∇∗∇; it follows that 〈∆mu, u〉 = ‖∇u‖2

2.

Lemma 6.1. Let ε = ‖µ− ν‖C2(Q). Write f = Oi(ε
`) to denote that f is a Ci function (or

tensor) such that ‖f‖Ci(P ) ≤ C(k,E)ε`. Then we have

(1)
fµ,ν = O2(1), (∂fµ,ν)

−1 = O0(1), fµ,ν − fµ = O2(ε) fµ,ν − f ν = O2(ε),

αµ,ν = O1(1), ∂µ logαµ,ν = O0(1), m/m0 = O0(1);
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(2)
fµ,ν − fν,µ = fµ − fµ +O2(ε), αµ,ν = α+O1(ε)

∂µ logαµ,ν = ∂µ logα+O0(ε), ∂ν logαν,µ = ∂µ logα+O0(ε);

(3) ∆µ,ν = ∆m +O1(ε)∂∂ +O1(ε)∂
2
+O0(ε)∂ +O0(ε)∂.

Proof. (1) is by Proposition 4.2 and by Theorem 4.3, (2) is by straightforward calculation

using (1), and (3) is by (1) and (2) and the definition of ∆µ,ν (see Definition 3.2). �

From Lemma 6.1 (3), we may write

∆µ,ν = ∆m +O1(ε)∇2 +O0(ε)∇,

where Oi(ε) is a tensor on X0 whose Ci-norm is bounded by ε. Localization (by a partition

of unity) and integration by parts shows that

(6.2) 〈u,∆µ,νu〉 =
(
1 +O(ε)

)
‖∇u‖2 +O(ε)‖u‖2

2.

Let U be the space of constant functions on X0, let U⊥ be its orthogonal complement in

L2(X0,m), and let ∆∗
µ,ν be the adjoint of ∆µ,ν with respect to the metric m. If f ∈ C∞(X0),

∆∗
µ,νf ∈ U⊥. Therefore, every eigenfunction u of ∆∗

µ,ν with nonzero eigenvalue λ belongs to

U⊥. If we let

v = u−
∫

X0
um0∫

X0
m0

,

then clearly,
‖dv‖2

2

‖v‖2
2

≤ ‖du‖2
2

‖u‖2
2

=
‖∇u‖2

2

‖u‖2
2

.

By (6.1),

‖dv‖2
L2(X0,m0) . ‖dv‖2

2.

Since m and m0 are equivalent metrics, that is, C−1m0 ≤ m ≤ Cm0, we see that

‖v‖2
2 =

∫
X0

|v|2m ∼
∫

X0

|v|2m0.

By the Poincaré inequality applied to v for the metric m0 on X0, we see that

0 < C ≤ ‖∇u‖2
2

‖u‖2
2

,(6.3)

where the bound C depends only on k and E.

Since u is an eigenfunction of ∆∗
µ,ν with nonzero eigenvalue λ, we have by (6.2),

|λ| ‖u‖2
2 = |〈u,∆∗

µ,νu〉| = |〈∆µ,νu, u〉|
≥

(
1−O(ε)

)
‖∇u‖2

2 −O(ε)‖u‖2
2.

Therefore by the Poincaré inequality (6.3), we see that for sufficiently small ε,

|λ| ≥ C −O(ε).

This completes the proof of Theorem 3.12, since the spectrum of ∆∗
µ,ν is the complex conju-

gate of the spectrum of ∆µ,ν .
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