\qquad
Student-No: \qquad Section:

Grade:

The remainder of this page has been left blank for your workings.

Indefinite Integrals

1. 9 marks Each part is worth 3 marks. Please write your answers in the boxes.
(a) Calculate the indefinite integral $I=\int x^{2} e^{-3 x^{3}} d x$.

Answer: $I=-\frac{e^{-3 x^{3}}}{9}+C$
Solution: Let $u=3 x^{3}$, so $\frac{d u}{d x}=9 x^{2}$. Then,

$$
I=\frac{1}{9} \int e^{-u} d u=-\frac{e^{-u}}{9}+C=-\frac{e^{-3 x^{3}}}{9}+C
$$

(b) Calculate the indefinite integral $I=\int \frac{3 x-2}{x^{2}+6 x+8} d x$ for $x>0$.

$$
\text { Answer: } 7 \ln |x+4|-4 \ln |x+2|+C
$$

Solution: Factorise the denominator $x^{2}+6 x+8=(x+2)(x+4)$. Write the integrand as partial fractions:

$$
\frac{3 x-2}{(x+2)(x+4)}=\frac{A}{x+2}+\frac{B}{x+4}=\frac{A(x+4)+B(x+2)}{(x+2)(x+4)} .
$$

Use $x=-2$, so $-8=2 A$, that is, $A=-4$. Use $x=-4$, so $-14=-2 B$, that is, $B=7$. Then,

$$
I=-\int \frac{4}{x+2} d x+\int \frac{7}{x+4} d x=-4 \ln |x+2|+7 \ln |x+4|+C
$$

(c) (A Little Harder): Calculate the indefinite integral $\int x^{2} \sin x d x$.

$$
\text { Answer: } I=-x^{2} \cos (x)+2 x \sin (x)+2 \cos (x)+C
$$

Solution: Use I.B.P. with $u=x^{2}$ and $v^{\prime}=\sin (x)$ so $u^{\prime}=2 x$ and $v=-\cos (x)$. Then,

$$
I=-x^{2} \cos (x)+2 \int x \cos (x) d x
$$

Use I.B.P again to solve the integral on the R.H.S. with $w=x$ and $z^{\prime}=\cos (x)$, so $w^{\prime}=1$ and $z=\sin (x)$. Then,

$$
I=-x^{2} \cos (x)+2\left(x \sin (x)-\int \sin (x) d x\right)=-x^{2} \cos (x)+2 x \sin (x)+2 \cos (x)+C
$$

Definite Integrals

2. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate $I=\int_{0}^{\pi / 8} \tan ^{5}(2 x) \sec ^{2}(2 x) d x$.

Answer: $I=\frac{1}{12}$
Solution: Let $u=\tan (2 x)$, so $\frac{d u}{d x}=2 \sec ^{2}(2 x), u(0)=0$ and $u\left(\frac{\pi}{8}\right)=1$. Then,

$$
I=\frac{1}{2} \int_{0}^{1} u^{5} d u=\frac{1}{2}\left[\frac{u^{6}}{6}\right]_{0}^{1}=\frac{1}{12} .
$$

(b) Calculate $I=\int_{1}^{e} x^{2} \ln x d x$.

$$
\text { Answer: } I=\frac{1+2 e^{3}}{9}
$$

Solution: Use I.B.P. with $u=\ln (x)$ and $\hat{v}^{\prime}=x^{2}$, so $u^{\prime}=\frac{1}{x}$ and $v=\frac{x^{3}}{3}$. Then,

$$
\begin{aligned}
I & =\left[\frac{x^{3} \ln (x)}{3}\right]_{1}^{e}-\frac{1}{3} \int_{1}^{e} x^{3} \cdot \frac{1}{x} d x \\
& =\frac{e^{3}}{3}-\frac{1}{3}\left[\frac{x^{3}}{3}\right]_{1}^{e} \\
& =\frac{e^{3}}{3}-\frac{e^{3}}{9}+\frac{1}{9}=\frac{1+2 e^{3}}{9} .
\end{aligned}
$$

(c) (A Little Harder): Calculate $I=\int_{0}^{1} x^{3} \sqrt{1-x^{2}} d x$.

Answer: $I=\frac{2}{15}$
Solution: Let $x=\sin (\theta)$, so $\frac{d x}{d \theta}=\cos (\theta), \theta=\arcsin (x), \theta(0)=0$ and $\theta(1)=\frac{\pi}{2}$. Then,

$$
I=\int_{0}^{\frac{\pi}{2}} \sin ^{3}(\theta) \sqrt{1-\sin ^{2}(\theta)} \cos (\theta) d \theta=\int_{0}^{\frac{\pi}{2}} \sin ^{3}(\theta)|\cos (\theta)| \cos (\theta) d \theta
$$

Since $\cos (\theta) \geq 0$ when $0 \leq \theta \leq \frac{\pi}{2}$, we have $|\cos (\theta)|=\cos (\theta)$. Then,

$$
\begin{aligned}
I & =\int_{0}^{\frac{\pi}{2}} \sin ^{3}(\theta) \cos ^{2}(\theta) d \theta \\
& =\int_{0}^{\frac{\pi}{2}} \sin ^{2}(\theta) \cos ^{2}(\theta) \sin (\theta) d \theta \\
& =\int_{0}^{\frac{\pi}{2}}\left(1-\cos ^{2}(\theta)\right) \cos ^{2}(\theta) \sin (\theta) d \theta
\end{aligned}
$$

Now, let $u=\cos (\theta)$, so $\frac{d u}{d \theta}=-\sin (\theta), u(0)=1$ and $u\left(\frac{\pi}{2}\right)=0$. Then,

$$
I=-\int_{1}^{0}\left(1-\frac{u^{2}}{2}\right) u^{2} d u=-\left[\frac{u^{3}}{3}-\frac{u^{5}}{5}\right]_{1}^{0}=\frac{2}{15}
$$

Method II: Write the integral as

$$
I \equiv \int_{0}^{1} x^{2} \sqrt{1-x^{2}}(x d x)
$$

Set $u=1-x^{2}$, so that $x d x=-d u / 2$. Since $x=0$ and $x=1$ maps to $u=1$ and $u=0$, we use $x^{2}=1-u$ and get

$$
I=-\frac{1}{2} \int_{1}^{0}(1-u) u^{1 / 2} d u=\frac{1}{2} \int_{0}^{1}\left(u^{1 / 2}-u^{3 / 2}\right) d u=\frac{1}{2}\left(\frac{2}{3}-\frac{2}{5}\right)=\frac{2}{15} .
$$

Method III:

Let $u=\sqrt{1-x^{2}}$, so that $\frac{d u}{d x}=\frac{-x}{\sqrt{1-x^{2}}}$. We get $u(0)=1$ and $u(1)=0$. Then,

$$
I=-\int_{0}^{1} x^{2}\left(1-x^{2}\right)\left(\frac{-x}{\sqrt{1-x^{2}}}\right) d x=-\int_{1}^{0}\left(1-u^{2}\right) u^{2} d u=\frac{2}{15}
$$

Riemann Sum, FTC, and Volumes

3. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the infinite sum

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2 i}{n^{2}\left(4+i^{2} / n^{2}\right)}
$$

by first writing it as a definite integral. Then, evaluate this integral.

$$
\text { Answer: } \ln \left|\frac{5}{4}\right|
$$

Solution:

$$
\frac{2 i}{n^{2}\left(4+i^{2} / n^{2}\right)}=\frac{2 \frac{i}{n}}{4+i^{2} / n^{2}} \cdot \frac{1}{n} .
$$

So, $\Delta x=\frac{1}{n}, x_{i}=0+\frac{i}{n}$ and $x_{i}^{*}=x_{i}$. Then,

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2 i}{n^{2}\left(4+i^{2} / n^{2}\right)}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2 x_{i}^{*}}{4+\left(x_{i}^{*}\right)^{2}} \Delta x=\int_{0}^{1} \frac{2 x}{4+x^{2}} d x
$$

Let $u=4+x^{2}$, so that $\frac{d u}{d x}=2 x$, and $u(0)=4$ and $u(1)=5$. Then,

$$
\int_{0}^{1} \frac{2 x}{4+x^{2}} d x=\int_{4}^{5} \frac{1}{u} d u=\ln \left|\frac{5}{4}\right|
$$

(b) For $x>0$ define $F(x)=\int_{1}^{x} t^{1 / 2} d t$ and $g(x)=\sqrt{F\left(x^{4}\right)}$. Calculate $g^{\prime}(2)$.

Answer: $\frac{2 \cdot 2^{3} \sqrt{2^{4}}}{\sqrt{\left.\frac{2}{3}\left(2^{4}\right)^{\frac{3}{2}}-1\right)}}$ or $\frac{64}{\sqrt{42}}$
Solution: First, $F(x)=\frac{2}{3}\left(x^{\frac{3}{2}}-1\right)$ and $F^{\prime}(x)=\sqrt{x}$. Now differentiate g and use the chain rule twice to obtain,

$$
\begin{aligned}
g^{\prime}(x) & =\frac{4 x^{3} F^{\prime}\left(x^{4}\right)}{2 \sqrt{F\left(x^{4}\right)}} \\
& =\frac{2 x^{3} \sqrt{x^{4}}}{\sqrt{\frac{2}{3}\left(\left(x^{4}\right)^{\frac{3}{2}}-1\right)}} .
\end{aligned}
$$

So,

$$
g^{\prime}(2)=\frac{2 \cdot 2^{3} \sqrt{2^{4}}}{\sqrt{\frac{2}{3}\left(\left(2^{4}\right)^{\frac{3}{2}}-1\right)}}=\frac{64}{\sqrt{\frac{2}{3} 63}}=\frac{64}{\sqrt{42}}
$$

(c) Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $x=2(y-2)^{2}$ and $x=6-(y-2)^{2}$ about the vertical line $x=-2$. Do not evaluate the integral.

$$
\text { Answer: } \int_{2-\sqrt{2}}^{2+\sqrt{2}} \pi\left|\left(8-(y-2)^{2}\right)^{2}-\left(2(y-2)^{2}+2\right)^{2}\right| d y
$$

Solution:

First, find the intersection points of the two curves $x_{B}=2(y-2)^{2}$ (red curve) and $x_{T}=6-(y-2)^{2}$ (blue curve) by setting

$$
2(y-2)^{2}=6-(y-2)^{2} .
$$

This gives $y=2+\sqrt{2}$ or $y=2-\sqrt{2}$. Now, shift the functions so the rotation is around the y-axis. This gives $x=x_{B}+2=2(y-2)^{2}+2$ and $x=x_{T}+2=$ $6-(y-2)^{2}+2$. Finally, integrate over y to get

$$
V=\pi \int_{2-\sqrt{2}}^{2+\sqrt{2}}\left|\left(8-(y-2)^{2}\right)^{2}-\left(2(y-2)^{2}+2\right)^{2}\right| d y .
$$

4. (a) 2 marks Plot the finite area enclosed by $y^{2}=2 x$ and $y=x-4$.

Solution: The plot for $y^{2}=2 x$ (red curve) and $y=x-4$ (blue curve) is as shown, and the area is between these two curves.

(b) 4 marks Write a definite integral with specific limits of integration that determines this area. Do not evaluate the integral.

Solution: First, find the intersection points of the two curves from

$$
\frac{y^{2}}{2}=y+4 .
$$

This gives $y=4$ or $y=-2$.
Now, since $x_{T}=y+4$ and $x_{B}=y^{2} / 2$ satisfies $x_{T}>x_{B}$ on $-2<y<4$, we integrate over y to find the area A as

$$
A=\int_{-2}^{4}\left(x_{T}-x_{B}\right) d y=\int_{-2}^{4}\left(y+4-\frac{y^{2}}{2}\right) d y
$$

5. A solid has as its base the region in the $x y$-plane between $y=1-x^{2} / 49$ and the x-axis. The cross-sections of the solid perpendicular to the x-axis are squares.
(a) 4 marks Write a definite integral that determines the volume of the solid.

Solution:

The cross section at x is given by a square of side $l(x)=1-\frac{x^{2}}{49}$
So the area of the cross section is $A(x)=\left(1-\frac{x^{2}}{49}\right)^{2}$.
The volume is given by:

$$
V=\int_{-7}^{7}\left(1-\frac{x^{2}}{49}\right)^{2} d x
$$

(b) 2 marks Evaluate the integral to find the volume of the solid.

Solution: Let $u=\frac{x}{7}$, so that $\frac{d u}{d x}=\frac{1}{7}$. Then, $u=-7$ when $x=-1$ and $u=7$ when $x=1$. This gives,

$$
\begin{aligned}
V & =\int_{-7}^{7}\left(1-\left(\frac{x}{7}\right)^{2}\right)^{2} d x=7 \int_{-1}^{1}\left(1-u^{2}\right) d u \\
& =14 \int_{0}^{1}\left(1-2 u^{2}+u^{4}\right) d u=14\left[u-\frac{2 u^{3}}{3}+\frac{u^{5}}{5}\right]_{0}^{1}=\frac{112}{15}
\end{aligned}
$$

