First Name:	Last Name:	
Student-No:	Section:	
	Grade:	

The remainder of this page has been left blank for your workings.

VERSIONE

Indefinite Integrals

- 1. 9 marks Each part is worth 3 marks. Please write your answers in the boxes.
 - (a) Calculate the indefinite integral $\int e^{-x} \sqrt{1 + e^{-x}} \, dx$.

Answer:
$$I = -\frac{2}{3} (1 + e^{-x})^{3/2} + C$$

Solution:

Method I: Let $u = 1 + e^{-x}$, so that $e^{-x}dx = -du$. Then,

$$I = -\int \sqrt{u} \, du = -\frac{2}{3}u^{3/2} + C \, .$$

Using $u = 1 + e^{-x}$ we get $I = -\frac{2}{3} (1 + e^{-x})^{3/2} + C$.

Method II: Let $u = \sqrt{1 + e^{-x}}$, so that $u^2 = 1 + e^{-x}$. Differentiating implicitly gives $e^{-x} dx = -2u du$. Then,

$$I = -2\int u^2 \, du = -\frac{2}{3}u^3 + C \, .$$

Using $u = \sqrt{1 + e^{-x}}$ we get $I = -\frac{2}{3}(1 + e^{-x})^{3/2} + C$.

(b) Calculate the indefinite integral $\int (x+1)e^{-x} dx$ for x > 0. Answer: $I = -(x+2)e^{-x} + C$.

Solution:

Method I: Let u = (x + 1) and $dv/dx = e^{-x}$. We calculate du/dx = 1 and $v = -e^{-x}$, so that one step of integration by parts gives

$$I = uv - \int v \frac{du}{dx} dx = -(x+1)e^{-x} + \int e^{-x} dx = -(x+1)e^{-x} - e^{-x} + C.$$

Method II: First, write

$$\int (x+1)e^{-x} \, dx = \int xe^{-x} \, dx + \int e^{-x} \, dx = \int xe^{-x} \, dx - e^{-x} \, .$$

Let $u = e^{-x}$, so that $e^{-x} dx = -du$ and $\log u = -x$. Then,

$$\int xe^{-x} dx = \int \log(u) du = u \log(u) - u + C.$$

Using $u = e^{-x}$ we get $\int xe^{-x} dx = -xe^{-x} - e^{-x} + C$ and hence

$$\int (x+1)e^{-x} \, dx = -(x+2)e^{-x} + C$$

(c) (A Little Harder): Calculate the indefinite integral $\int \tan^5(x) \sec^3(x) dx$.

Answer:
$$I = \frac{\sec^7(x)}{7} - \frac{2\sec^5(x)}{5} + \frac{\sec^3(x)}{3} + C.$$

Solution:

Method I: Let $u = \sec x$, so that $du = \tan(x) \sec(x) dx$. Then, using the identity $\tan^2(x) = \sec^2(x) - 1 = u^2 - 1$,

$$I = \int (u^2 - 1)^2 u^2 du = \int (u^6 - 2u^4 + u^2) du = \frac{u^7}{7} - \frac{2u^5}{5} + \frac{u^3}{3} + C$$

Using $u = \sec(x)$ we get $I = \frac{\sec^7(x)}{7} - \frac{2\sec^5(x)}{5} + \frac{\sec^3(x)}{3} + C$. Method II: First note that

$$I = \int \frac{\sin^5(x)}{\cos^8(x)} dx.$$

Let $u = \cos x$, so that $du = -\sin(x) dx$. Then, using the identity $\sin^2(x) = 1 - \cos^2(x) = 1 - u^2$, $I = -\int \frac{(1-u^2)^2}{u^8} du = -\int \left(\frac{1}{u^8} - \frac{2}{u^6} + \frac{1}{u^4}\right) du = \frac{1}{7u^7} - \frac{2}{5u^5} + \frac{1}{3u^3} + C$. Using $\frac{1}{u} = \sec(x)$ we get $I = \frac{\sec^7(x)}{7} - \frac{2\sec^5(x)}{5} + \frac{\sec^3(x)}{3} + C$. Method III: Let $u = \sec^2(x)$, so that $\sec^2(x) \tan(x) dx = \frac{1}{2} du$. We assume that $\sec(x) > 0$ so that $\sqrt{u} = \sec(x)$. The case of $\sec(x) < 0$ follows by plugging $\sqrt{u} = -\sec(x)$. Then, using the identity $\tan^2(x) = \sec^2(x) - 1 = u - 1$, we get $I = \frac{1}{2} \int (u - 1)^2 \sqrt{u} \, du = \frac{1}{2} \int (u^{5/2} - 2u^{3/2} + u^{1/2}) \, du = \frac{u^{7/2}}{7} - \frac{2u^{5/2}}{5} + \frac{u^{3/2}}{3} + C$. Using $\sqrt{u} = \sec(x)$ we get $I = \frac{\sec^7(x)}{7} - \frac{2\sec^5(x)}{5} + \frac{\sec^3(x)}{3} + C$.

Definite Integrals

- 2. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
 - (a) Calculate $I = \int_0^{\pi/8} \sin^2(2x) dx$.

Answer: $I = \frac{\pi}{16} - \frac{1}{8}$. Solution: Use $\sin^2(x) = \frac{1 - \cos(2x)}{2}$ to get $I = \int_0^{\pi/8} \frac{1 - \cos(4x)}{2} \, dx = \left[\frac{x}{2} - \frac{\sin(4x)}{8}\right]_{x=0}^{\pi/8} = \frac{\pi}{16} - \frac{1}{8}.$

(b) Calculate $I = \int_1^e x^2 \ln x \, dx$.

Answer:
$$I = \frac{2e^3}{9} + \frac{1}{9}$$
.

Solution: Let $u = \ln x$ and $dv/dx = x^2$. We calculate $du/dx = \frac{1}{x}$ and $v = \frac{x^3}{3}$, so that one step of integration by parts gives

$$I = \frac{x^3}{3} \ln x \Big|_{x=1}^e - \int_1^e \frac{x^2}{3} \, dx = \frac{e^3}{3} - \frac{x^3}{9} \Big|_{x=1}^e = \frac{e^3}{3} - \frac{e^3}{9} + \frac{1}{9} = \frac{2e^3}{9} + \frac{1}{9}.$$

(c) (A Little Harder): Calculate $I = \int_0^\infty e^{-x} \sin(x) \, dx$. Answer: $I = \frac{1}{2}$.

Answer:
$$I = \frac{1}{2}$$

Solution: We first recall that

$$I = \int_0^\infty e^{-x} \sin(x) \, dx = \lim_{L \to \infty} \int_0^L e^{-x} \sin(x) \, dx \, .$$

We compute the indefinite integral $\int e^{-x} \sin(x) dx$. Let $u = \sin(x)$ and dv/dx = e^{-x} . We calculate $du/dx = \cos(x)$ and $v = -e^{-x}$, so that one step of integration by parts gives

$$\int e^{-x} \sin(x) \, dx = -e^{-x} \sin(x) + \int e^{-x} \cos(x) \, dx \, .$$

Let $u = \cos(x)$ and $dv/dx = e^{-x}$. We calculate $du/dx = -\sin(x)$ and $v = -e^{-x}$, so that another step of integration by parts gives

$$\int e^{-x} \sin(x) \, dx = -e^{-x} \sin(x) - e^{-x} \cos(x) - \int e^{-x} \sin(x) \, dx$$

Moving $\int e^{-x} \sin(x) dx$ to the left-hand-side and dividing by 2 yields

$$\int e^{-x} \sin(x) \, dx = \frac{-e^{-x}}{2} (\sin(x) + \cos(x)) \, .$$

It follows that

$$I = \lim_{L \to \infty} \left[\frac{-e^{-x}}{2} (\sin(x) + \cos(x)) \right] \Big|_{x=0}^{L} = \lim_{L \to \infty} \left[\frac{1}{2} - \frac{e^{-L} (\sin(L) + \cos(L))}{2} \right] = \frac{1}{2}.$$

Riemann Sum, FTC, and Volumes

- 3. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
 - (a) Calculate the infinite sum

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{8i}{n^2} e^{-4i^2/n^2}$$

by first writing it as a definite integral. Then, evaluate this integral.

Answer: $1 - e^{-4}$

Solution: We identify $a = 0, b = 1, \Delta x = 1/n, x_i = i/n$, and $f(x_i) = 8x_i e^{-4x_i^2}$. This yields

$$S \equiv \lim_{n \to \infty} \sum_{i=1}^{n} \frac{8i}{n^2} e^{-4i^2/n^2} = \lim_{n \to \infty} \sum_{i=1}^{n} (\Delta x) f(x_i) = \int_0^1 8x e^{-4x^2} \, dx \, .$$

To calculate the integral we let $u = 4x^2$, which yields

$$S = -e^{-4x^2} |_{x=0}^1 = 1 - e^{-4}.$$

(b) For x > 0 define $F(x) = \int_1^x t^{-1/2} dt$ and $g(x) = \sqrt{F(x^2)}$. Calculate g'(2). Answer: $g'(2) = \frac{1}{\sqrt{2}}$.

Solution: We use the product rule to get $g'(x) = \frac{1}{2\sqrt{F(x^2)}}F'(x^2)2x$. Now, by FTC I, we get $F'(x^2) = (x^2)^{-1/2} = \frac{1}{x}$. This yields,

$$g'(x) = \frac{1}{\sqrt{F(x^2)}}$$
 (1)

Now, let x = 2 and calculate that

$$F(4) = \int_{1}^{4} t^{-1/2} dt = \left[2\sqrt{t} \right]_{t=1}^{4} = 4 - 2 = 2.$$

Therefore, from (1), we get

$$g'(2) = \frac{1}{\sqrt{F(4)}} = \frac{1}{\sqrt{2}}$$

(c) Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $x = (y - 2)^2$ and $x = 2 - (y - 2)^2$ about the vertical line x = -2. Do not evaluate the integral.

The two curves intersect when $(y-2)^2 = 2 - (y-2)^2$, which yields $(y-2)^2 = 1$ so that $y-2 = \pm 1$. This gives y = 1 and y = 3 for both x = 1. The intersection points are in the first quadrant. Define $x_R = 2 - (y-2)^2$ (right blue curve) and $x_L = (y-2)^2$ (left red curve). Then, at each y in [1,3], we have that (x_R+2) and (x_L+2) are the distances of the two curves from the axis of rotation x = -2shown by the orange curve. This yields

$$V = \pi \int_{1}^{3} \left[(x_{R} + 2)^{2} - (x_{L} + 2)^{2} \right] dy,$$

= $\pi \int_{1}^{3} \left[\left(4 - (y - 2)^{2} \right)^{2} - \left((y - 2)^{2} + 2 \right)^{2} \right] dy$
= $12\pi \int_{1}^{3} \left[1 - (y - 2)^{2} \right] dy.$

4. (a) 2 marks Plot the finite area enclosed by $y^2 = 4 - x$ and x = 3y - 6.

(b) 4 marks Write a definite integral with specific limits of integration that determines this area. Do not evaluate the integral.

Answer: $\int_{-5}^{2} \left[(4 - y^2) - (3y - 6) \right] dy.$

Solution: To find the intersection points we set $y^2 = 4 - x = 4 - (3y - 6)$. This yields, $y^2 + 3y - 10 = (y - 2)(y + 5) = 0$, which gives y = -5 and y = 2. We label $x_T = 4 - y^2$ (red curve) and $x_B = 3y - 6$ (blue curve), and observe that $x_T > x_B$ on -5 < y < 2. The area is best calculated as an integral in y, so that

$$A = \int_{-5}^{2} (x_T - x_B) \, dy = \int_{-5}^{2} \left[(4 - y^2) - (3y - 6) \right] \, dy \, dy$$

Alternatively, the area can be calculated as an integral in x, so that

$$A = \int_{-20}^{0} \left(\frac{x+6}{3} - \sqrt{4-x} \right) \, dx + \int_{0}^{4} 2\sqrt{4-x} \, dx \, .$$

- 5. A solid has as its base the region in the xy-plane between $y = 1 x^2/36$ and the x-axis. The cross-sections of the solid perpendicular to the x-axis are squares.
 - (a) 4 marks Write a definite integral that determines the volume of the solid.

Solution: The intersection points with the x-axis are $x = \pm 6$. This gives, $V = \int_{-6}^{6} A(x) dx$ as the volume, where A(x) is the cross-sectional area of the solid at position x. This cross-section is a square that has area $A(x) = [y(x)]^2$. Here we have used the fact that the area of a square with side of length b is b^2 . This gives,

$$V = \int_{-6}^{6} [y(x)]^2 dx = \int_{-6}^{6} \left[1 - \frac{x^2}{36}\right]^2 dx$$

(b) 2 marks **Evaluate the integral** to find the volume of the solid.

Answer:
$$32/5$$

Solution: Since the integrand is even, we write $V = 2 \int_0^6 \left[1 - \frac{x^2}{36}\right]^2 dx$. Now put x = 6u, so that dx = 6du, and so $V = 12 \int_0^1 (1 - u^2)^2 du = 12 \int_0^1 (1 - 2u^2 + u^4) du = 12 \left(1 - \frac{2}{3} + \frac{1}{5}\right) = \frac{32}{5}$.