$\qquad$
Student-No: $\qquad$ Section:

> Grade:

The remainder of this page has been left blank for your workings.

## Indefinite Integrals

1. 9 marks Each part is worth 3 marks. Please write your answers in the boxes.
(a) Calculate the indefinite integral $\int e^{-x} \sqrt{1+e^{-x}} d x$.

$$
\text { Answer: } I=-\frac{2}{3}\left(1+e^{-x}\right)^{3 / 2}+C
$$

## Solution:

Method I: Let $u=1+e^{-x}$, so that $e^{-x} d x=-d u$. Then,

$$
I=-\int \sqrt{u} d u=-\frac{2}{3} u^{3 / 2}+C .
$$

Using $u=1+e^{-x}$ we get $I=-\frac{2}{3}\left(1+e^{-x}\right)^{3 / 2}+C$.
Method II: Let $u=\sqrt{1+e^{-x}}$, so that $u^{2}=1+e^{-x}$. Differentiating implicitly gives $e^{-x} d x=-2 u d u$. Then,

$$
I=-2 \int u^{2} d u=-\frac{2}{3} u^{3}+C .
$$

Using $u=\sqrt{1+e^{-x}}$ we get $I=-\frac{2}{3}\left(1+e^{-x}\right)^{3 / 2}+C$.
(b) Calculate the indefinite integral $\int(x+1) e^{-x} d x$ for $x>0$.

$$
\text { Answer: } I=-(x+2) e^{-x}+C \text {. }
$$

## Solution:

Method I: Let $u=(x+1)$ and $d v / d x=e^{-x}$. We calculate $d u / d x=1$ and $v=-e^{-x}$, so that one step of integration by parts gives

$$
I=u v-\int v \frac{d u}{d x} d x=-(x+1) e^{-x}+\int e^{-x} d x=-(x+1) e^{-x}-e^{-x}+C
$$

Method II: First, write

$$
\int(x+1) e^{-x} d x=\int x e^{-x} d x+\int e^{-x} d x=\int x e^{-x} d x-e^{-x}
$$

Let $u=e^{-x}$, so that $e^{-x} d x=-d u$ and $\log u=-x$. Then,

$$
\int x e^{-x} d x=\int \log (u) d u=u \log (u)-u+C
$$

Using $u=e^{-x}$ we get $\int x e^{-x} d x=-x e^{-x}-e^{-x}+C$ and hence

$$
\int(x+1) e^{-x} d x=-(x+2) e^{-x}+C .
$$

(c) (A Little Harder): Calculate the indefinite integral $\int \tan ^{5}(x) \sec ^{3}(x) d x$.

$$
\text { Answer: } I=\frac{\sec ^{7}(x)}{7}-\frac{2 \sec ^{5}(x)}{5}+\frac{\sec ^{3}(x)}{3}+C .
$$

## Solution:

Method I: Let $u=\sec x$, so that $d u=\tan (x) \sec (x) d x$. Then, using the identity $\tan ^{2}(x)=\sec ^{2}(x)-1=u^{2}-1$,

$$
I=\int\left(u^{2}-1\right)^{2} u^{2} d u=\int\left(u^{6}-2 u^{4}+u^{2}\right) d u=\frac{u^{7}}{7}-\frac{2 u^{5}}{5}+\frac{u^{3}}{3}+C .
$$

Using $u=\sec (x)$ we get $I=\frac{\sec ^{7}(x)}{7}-\frac{2 \sec ^{5}(x)}{5}+\frac{\sec ^{3}(x)}{3}+C$.
Method II: First note that

$$
I=\int \frac{\sin ^{5}(x)}{\cos ^{8}(x)} d x
$$

Let $u=\cos x$, so that $d u=-\sin (x) d x$. Then, using the identity $\sin ^{2}(x)=$ $1-\cos ^{2}(x)=1-u^{2}$,

$$
I=-\int \frac{\left(1-u^{2}\right)^{2}}{u^{8}} d u=-\int\left(\frac{1}{u^{8}}-\frac{2}{u^{6}}+\frac{1}{u^{4}}\right) d u=\frac{1}{7 u^{7}}-\frac{2}{5 u^{5}}+\frac{1}{3 u^{3}}+C .
$$

Using $\frac{1}{u}=\sec (x)$ we get $I=\frac{\sec ^{7}(x)}{7}-\frac{2 \sec ^{5}(x)}{5}+\frac{\sec ^{3}(x)}{3}+C$.
Method III: Let $u=\sec ^{2}(x)$, so that $\sec ^{2}(x) \tan (x) d x=\frac{1}{2} d u$. We assume that $\sec (x)>0$ so that $\sqrt{u}=\sec (x)$. The case of $\sec (x)<0$ follows by plugging $\sqrt{u}=-\sec (x)$. Then, using the identity $\tan ^{2}(x)=\sec ^{2}(x)-1=u-1$, we get $I=\frac{1}{2} \int(u-1)^{2} \sqrt{u} d u=\frac{1}{2} \int\left(u^{5 / 2}-2 u^{3 / 2}+u^{1 / 2}\right) d u=\frac{u^{7 / 2}}{7}-\frac{2 u^{5 / 2}}{5}+\frac{u^{3 / 2}}{3}+C$.

Using $\sqrt{u}=\sec (x)$ we get $I=\frac{\sec ^{7}(x)}{7}-\frac{2 \sec ^{5}(x)}{5}+\frac{\sec ^{3}(x)}{3}+C$.

## Definite Integrals

2. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate $I=\int_{0}^{\pi / 8} \sin ^{2}(2 x) d x$.

Answer: $I=\frac{\pi}{16}-\frac{1}{8}$.
Solution: Use $\sin ^{2}(x)=\frac{1-\cos (2 x)}{2}$ to get

$$
I=\int_{0}^{\pi / 8} \frac{1-\cos (4 x)}{2} d x=\left[\frac{x}{2}-\left.\frac{\sin (4 x)}{8}\right|_{x=0} ^{\pi / 8}=\frac{\pi}{16}-\frac{1}{8} .\right.
$$

(b) Calculate $I=\int_{1}^{e} x^{2} \ln x d x$.

Answer: $I=\frac{2 e^{3}}{9}+\frac{1}{9}$.
Solution: Let $u=\ln x$ and $d v / d x=x^{2}$. We calculate $d u / d x=\frac{1}{x}$ and $v=\frac{x^{3}}{3}$, so that one step of integration by parts gives

$$
I=\left.\frac{x^{3}}{3} \ln x\right|_{x=1} ^{e}-\int_{1}^{e} \frac{x^{2}}{3} d x=\frac{e^{3}}{9}-\left.\frac{x^{3}}{9}\right|_{x=1} ^{e}=\frac{e^{3}}{3}-\frac{e^{3}}{9}+\frac{1}{9}=\frac{2 e^{3}}{9}+\frac{1}{9} .
$$

(c) (A Little Harder): Calculate $I=\int_{0}^{\infty} e^{-x} \sin (x) d x$.

$$
\text { Answer: } I=\frac{1}{2} \text {. }
$$

Solution: We first recall that

$$
I=\int_{0}^{\infty} e^{-x} \sin (x) d x=\lim _{L \rightarrow \infty} \int_{0}^{L} e^{-x} \sin (x) d x
$$

We compute the indefinite integral $\int e^{-x} \sin (x) d x$. Let $u=\sin (x)$ and $d v / d x=$ $e^{-x}$. We calculate $d u / d x=\cos (x)$ and $v=-e^{-x}$, so that one step of integration by parts gives

$$
\int e^{-x} \sin (x) d x=-e^{-x} \sin (x)+\int e^{-x} \cos (x) d x
$$

Let $u=\cos (x)$ and $d v / d x=e^{-x}$. We calculate $d u / d x=-\sin (x)$ and $v=-e^{-x}$, so that another step of integration by parts gives

$$
\int e^{-x} \sin (x) d x=-e^{-x} \sin (x)-e^{-x} \cos (x)-\int e^{-x} \sin (x) d x
$$

Moving $\int e^{-x} \sin (x) d x$ to the left-hand-side and dividing by 2 yields

$$
\int e^{-x} \sin (x) d x=\frac{-e^{-x}}{2}(\sin (x)+\cos (x)) .
$$

It follows that

$$
I=\left.\lim _{L \rightarrow \infty}\left[\frac{-e^{-x}}{2}(\sin (x)+\cos (x))\right]\right|_{x=0} ^{L}=\lim _{L \rightarrow \infty}\left[\frac{1}{2}-\frac{e^{-L}(\sin (L)+\cos (L)}{2}\right]=\frac{1}{2} .
$$

## Riemann Sum, FTC, and Volumes

3. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the infinite sum

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{8 i}{n^{2}} e^{-4 i^{2} / n^{2}}
$$

by first writing it as a definite integral. Then, evaluate this integral.
Answer: $1-e^{-4}$
Solution: We identify $a=0, b=1, \Delta x=1 / n, x_{i}=i / n$, and $f\left(x_{i}\right)=8 x_{i} e^{-4 x_{i}^{2}}$. This yields

$$
S \equiv \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{8 i}{n^{2}} e^{-4 i^{2} / n^{2}}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}(\Delta x) f\left(x_{i}\right)=\int_{0}^{1} 8 x e^{-4 x^{2}} d x .
$$

To calculate the integral we let $u=4 x^{2}$, which yields

$$
S=-\left.e^{-4 x^{2}}\right|_{x=0} ^{1}=1-e^{-4} .
$$

(b) For $x>0$ define $F(x)=\int_{1}^{x} t^{-1 / 2} d t$ and $g(x)=\sqrt{F\left(x^{2}\right)}$. Calculate $g^{\prime}(2)$.

Answer: $g^{\prime}(2)=\frac{1}{\sqrt{2}}$.
Solution: We use the product rule to get $g^{\prime}(x)=\frac{1}{2 \sqrt{F\left(x^{2}\right)}} F^{\prime}\left(x^{2}\right) 2 x$. Now, by FTC I, we get $F^{\prime}\left(x^{2}\right)=\left(x^{2}\right)^{-1 / 2}=\frac{1}{x}$. This yields,

$$
\begin{equation*}
g^{\prime}(x)=\frac{1}{\sqrt{F\left(x^{2}\right)}} \tag{1}
\end{equation*}
$$

Now, let $x=2$ and calculate that

$$
F(4)=\int_{1}^{4} t^{-1 / 2} d t=\left[\left.2 \sqrt{t}\right|_{t=1} ^{4}=4-2=2\right.
$$

Therefore, from (1), we get

$$
g^{\prime}(2)=\frac{1}{\sqrt{F(4)}}=\frac{1}{\sqrt{2}}
$$

(c) Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $x=(y-2)^{2}$ and $x=2-(y-2)^{2}$ about the vertical line $x=-2$. Do not evaluate the integral.

$$
\text { Answer: } V=12 \pi \int_{1}^{3}\left[1-(y-2)^{2}\right] d y
$$

## Solution:



The two curves intersect when $(y-2)^{2}=2-(y-2)^{2}$, which yields $(y-2)^{2}=1$ so that $y-2= \pm 1$. This gives $y=1$ and $y=3$ for both $x=1$. The intersection points are in the first quadrant. Define $x_{R}=2-(y-2)^{2}$ (right blue curve) and $x_{L}=(y-2)^{2}$ (left red curve). Then, at each $y$ in $[1,3]$, we have that $\left(x_{R}+2\right)$ and $\left(x_{L}+2\right)$ are the distances of the two curves from the axis of rotation $x=-2$ shown by the orange curve. This yields

$$
\begin{aligned}
V & =\pi \int_{1}^{3}\left[\left(x_{R}+2\right)^{2}-\left(x_{L}+2\right)^{2}\right] d y \\
& =\pi \int_{1}^{3}\left[\left(4-(y-2)^{2}\right)^{2}-\left((y-2)^{2}+2\right)^{2}\right] d y \\
& =12 \pi \int_{1}^{3}\left[1-(y-2)^{2}\right] d y
\end{aligned}
$$

4. (a) 2 marks Plot the finite area enclosed by $y^{2}=4-x$ and $x=3 y-6$.

## Solution:

The area is the region enclosed by the two curves in the plot:

(b) 4 marks Write a definite integral with spécific limits of integration that determines this area. Do not evaluate the integral.

Answer: $\int_{-5}^{2}\left[\left(4-y^{2}\right)-(3 y-6)\right] d y$.
Solution: To find the intersection points we set $y^{2}=4-x=4-(3 y-6)$. This yields, $y^{2}+3 y-10=(y-2)(y+5)=0$, which gives $y=-5$ and $y=2$. We label $x_{T}=4-y^{2}$ (red curve) and $x_{B}=3 y-6$ (blue curve), and observe that $x_{T}>x_{B}$ on $-5<y<2$. The area is best calculated as an integral in $y$, so that

$$
A=\int_{-5}^{2}\left(x_{T}-x_{B}\right) d y=\int_{-5}^{2}\left[\left(4-y^{2}\right)-(3 y-6)\right] d y .
$$

Alternatively, the area can be calculated as an integral in $x$, so that

$$
A=\int_{-20}^{0}\left(\frac{x+6}{3}-\sqrt{4-x}\right) d x+\int_{0}^{4} 2 \sqrt{4-x} d x
$$

5. A solid has as its base the region in the $x y$-plane between $y=1-x^{2} / 36$ and the $x$-axis. The cross-sections of the solid perpendicular to the $x$-axis are squares.
(a) 4 marks Write a definite integral that determines the volume of the solid.

Solution: The intersection points with the $x$-axis are $x= \pm 6$. This gives, $V=\int_{-6}^{6} A(x) d x$ as the volume, where $A(x)$ is the cross-sectional area of the solid at position $x$. This cross-section is a square that has area $A(x)=[y(x)]^{2}$. Here we have used the fact that the area of a square with side of length $b$ is $b^{2}$. This gives,

$$
V=\int_{-6}^{6}[y(x)]^{2} d x=\int_{-6}^{6}\left[1-\frac{x^{2}}{36}\right]^{2} d x
$$

(b) 2 marks Evaluate the integral to find the volume of the solid.

Answer: 32/5
Solution: Since the integrand is even, we write $V=2 \int_{0}^{6}\left[1-\frac{x^{2}}{36}\right]^{2} d x$. Now put $x=6 u$, so that $d x=6 d u$, and so

$$
V=12 \int_{0}^{1}\left(1-u^{2}\right)^{2} d u=12 \int_{0}^{1}\left(1-2 u^{2}+u^{4}\right) d u=12\left(1-\frac{2}{3}+\frac{1}{5}\right)=\frac{32}{5} .
$$

