First Name:	Last Name:
Student-No:	Section:
	Grade:

The remainder of this page has been left blank for your workings.

VERSIOND

This page has been left blank for your workings.

VERSIOND

Indefinite Integrals

1. 9 marks Each part is worth 3 marks. Please write your answers in the boxes.

(a) Calculate the indefinite integral $\int \frac{\sin(x)}{\sqrt{\cos(x)}} dx$ for $0 < x < \pi/2$.

Answer:

(b) Calculate the indefinite interrel $\int_{-\infty}^{\infty} \frac{x+1}{x+1} dx$ for $x > 0$		
(b) Calculate the indefinite integral $\int \frac{1}{x^2+3x} dx$ for $x > 0$.	(b) Calculate the indefinite integral $\int \frac{x+1}{x^2+3x} dx$ for x	c > 0.

(c) (A Little Harder): Calculate the indefinite integral $\int x^2 e^{-x}\,dx.$

Answer:

VERSIOND

Definite Integrals

2. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate ∫₀^{π/2} cos³(x) dx.

Answer:			

VERSIOND

(b) Calculate $\int_0^3 \frac{9x^2}{x^2+9} \, dx$.

Answer:			

(c) (A Little Harder): Calculate $\int_1^{e^2} \frac{\ln x}{x^2} dx$. Answer:

VERSIOND

Riemann Sum, FTC, and Volumes

- 3. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
 - (a) Calculate the infinite sum

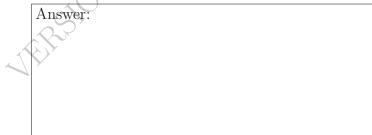
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{3i^2}{n^3} \sqrt{1 + \frac{i^3}{n^3}}$$

by first writing it as a definite integral. Then, evaluate this integral.

Answer:

(b) For $x \ge 0$ define F(x) and g(x) by $F(x) = \int_0^x \cos^2(t) dt$ and $g(x) = xF(x^2)$. Calculate $g'(\sqrt{\pi})$.

Answer:			


(c) Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $x = -y^2$ and $x = -4+y^2$ about the vertical line x = 2. Do not evaluate the integral.

Answer:			

VERSIOND

4. (a) 2 marks Plot the finite area enclosed by $y^2 = x$ and x = 8 - 2y.

(b) 4 marks Write a definite integral with specific limits of integration that determines this area. Do not evaluate the integral.

This page has been left blank for your workings.

VERSIOND

- 5. A solid has as its base the region in the xy-plane between $y = 1 x^2/9$ and the x-axis. The cross-sections of the solid perpendicular to the x-axis are semi-circles with the diameter of the semi-circle in the base.
 - (a) 4 marks Write a definite integral that determines the volume of the solid.

Answer:

			\langle
	(5	
	3		
63			

(b) 2 marks Evaluate the integral to find the volume of the solid.

Answer:

This page has been left blank for your workings.

VERSIOND