| First Name: | Last Name: |
|-------------|------------|
| Student-No: | _ Section: |
|             | Grade:     |

The remainder of this page has been left blank for your workings.

JEPS10NB

This page has been left blank for your workings.

## Indefinite Integrals

- 1. 9 marks Each part is worth 3 marks. Please write your answers in the boxes.
  - (a) Calculate the indefinite integral  $\int \frac{3x}{x+4} dx$ .

Answer:

(b) Calculate the indefinite integral  $\int \arctan(x) dx$ .

Answer:

(c) (A Little Harder): Calculate the indefinite integral  $\int \frac{1}{x\sqrt{x^2-1}} dx$  for x>1.

Answer:

JERS10NB

## Definite Integrals

- 2. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
  - (a) Calculate  $\int_0^{\pi/4} \tan^2(x) dx$

Answer:

(b) Calculate  $\int_{-\pi}^{\pi} (1+x^3) \cos^2(x) dx$ .

Answer:

| (c) (A Little Harder): Calculate $\int_0^\infty e^{-x} \cos(x) dx$ . |         |
|----------------------------------------------------------------------|---------|
|                                                                      | Answer: |
|                                                                      |         |

## Riemann Sum, FTC, and Volumes

- 3. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
  - (a) Calculate the infinite sum

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{8i}{n^2} \sqrt{1 + \frac{4i^2}{n^2}}$$

by first writing it as a definite integral. Then, evaluate this integral.

Answer:



(b) Define F(x) and g(x) by  $F(x) = \int_0^x \cos^2(t) dt$  and  $g(x) = x F(x^2)$ . Calculate  $g'(\sqrt{\pi})$ .

Answer:

(c) Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between  $y = x^2$  and y = 9x about the horizontal line y = -2. **Do not evaluate the integral**.

Answer:

JERS10XB

4. (a) 2 marks Plot the finite area enclosed by  $y^2 = 10 - x$  and  $x = (y - 2)^2$ .

(b) 4 marks Write a definite integral with specific limits of integration that determines this area. **Do not evaluate the integral**.

Answer:

This page has been left blank for your workings.

| 5. | A solid has as its base the region in the $xy$ -plane between $y = 1 - x^2/16$ and the $x$ -axis. The cross-sections of the solid perpendicular to the $x$ -axis are semi-circles with the diameter of the semi-circle in the base. |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (a) 4 marks Write a definite integral that determines the volume of the solid.                                                                                                                                                      |
|    | Answer:                                                                                                                                                                                                                             |
|    |                                                                                                                                                                                                                                     |
|    |                                                                                                                                                                                                                                     |
|    |                                                                                                                                                                                                                                     |
|    |                                                                                                                                                                                                                                     |
|    |                                                                                                                                                                                                                                     |
|    |                                                                                                                                                                                                                                     |
|    |                                                                                                                                                                                                                                     |
|    |                                                                                                                                                                                                                                     |
|    |                                                                                                                                                                                                                                     |
|    |                                                                                                                                                                                                                                     |
|    |                                                                                                                                                                                                                                     |
|    |                                                                                                                                                                                                                                     |
|    |                                                                                                                                                                                                                                     |
|    |                                                                                                                                                                                                                                     |
|    | (b) 2 marks Evaluate the integral to find the volume of the solid.                                                                                                                                                                  |
|    | Answer:                                                                                                                                                                                                                             |
|    |                                                                                                                                                                                                                                     |
|    |                                                                                                                                                                                                                                     |
|    |                                                                                                                                                                                                                                     |

This page has been left blank for your workings.