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1 Introduction

Let E be a (modular!) elliptic curve over Q, of conductor N . Let K denote an imaginary quadratic

field of discriminant D, with (N ,D) = 1. If p is a prime, then there exists a unique Zp-extension

K∞/K such that Gal(K/Q) acts nontrivially on Gal(K∞/K ). The field K∞ is called the anticy-

clotomic Zp-extension of K . Let E(K∞ ) denote the Mordell-Weil group of E over K∞. Then a fun-

damental conjecture of Mazur [Maz] predicts that the size of E(K∞ ) is controlled by the prime

factorization of N in K . Equivalently, Mazur’s conjecture relates the size of the Mordell-Weil group

to the sign in the functional equation of certain L-series. The conjecture was verified by Greenberg,

Rohrlich, and Rubin, in what Mazur calls the exceptional case, when E has complex multiplication by

K . More generally, they settled the conjecture for certain abelian varieties with complex multiplica-

tion. For a discussion of this CM case, we refer the reader to [Gre], [Roh], and [Rub].

Our goal in this paper is to treat the generic case, which occurs either when E has no CM, or when

the field of complex multiplications is distinct from K . Under certain conditions on E and K , Mazur’s

conjecture predicts that the group E(K∞ ) is finitely generated; our main result asserts that this is in

fact the case, at least when p is an ordinary prime for E, or when the class number of K is prime to p.

The main new ingredient we introduce is that of equidistribution, following ideas used by Ferrero

and Washington to study the cyclotomicµ-invariant. More precisely, we show that the Heegner points

associated to definite quaternion algebras are uniformly distributed on the components of a certain

curve X , and that the elements of a certain Galois group act independently, in a suitable sense. This,

combined with a special value formula due to Gross, allows us to conclude that the special values of

anticyclotomic L-functions are almost always nonzero, so that the statement about the Mordell-Weil

groups follows from the machinery of Euler systems as developed by Bertolini and Darmon [BD].
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We caution the reader that the Heegner points considered here are not Heegner points in the classical

sense. In particular, they do not give rise to a family of points on the Jacobian of a modular curve.

The points we consider are sometimes referred to as Gross points, or special points (see [Gro], or

[BD]).

To state the results more precisely, we need to introduce some notation. Let g denote a cuspidal

newform of weight 2 on the group Ŵ0(N ). Write the Fourier expansion of g as g (z ) = ∑

anqn , so

an = an (g ) is the eigenvalue of the Hecke operator Tn . Let χ denote any finite-order Hecke character

of K , of conductor f. Then, for each place v of K , there exists an Euler factor Lv (g , χ, s). If v is finite

and v ∤ N · Norm(f), then we have the well-known formula

Lv (g , χ, s) =
(

1 − avχv (πv )N v
−s + χ2

v (πv )N v
1−2s

)−1
,

where N v is the norm of v, and χv (πv ) denotes the local component of χ at v, evaluated on a v-adic

uniformizer πv . If v has residue characteristic q, and q is unramified in K , then the number av is

either aq or a2
q − 2q, depending on whether v is split or inert. If g has rational Fourier coefficients,

corresponding to an elliptic curve, then av − N v − 1 is simply the number of rational points of E

over the residue field of K at v.

There is a similar but more complicated definition for the Euler factor at the remaining primes of

K . At the infinite place of K , we have L∞ (g , χ, s) = (2π)−2sŴ(s)2 . Then the L-series of g is defined

by L(g , χ, s) = ∏

v Lv (g , χ, s). It is well-known that L(g , χ, s) extends to an analytic function of

s ∈ C, and that it satisfies the functional equation

L(g , χ, s) = e · As−1 · L(g , χ−1 , 2 − s), (1)

for suitable constants e = e(χ) and A = A(χ).

Recall that the character χ is called anticyclotomic if its conjugate under the action of Gal(K/Q) is

equal to its inverse. It is well-known that any such χ factors through Gal (Kf/K ), where Kf is a suitable

ring-class field with conductor f. In this case, it is possible to determine the sign e(χ) in the functional

equation explicitly. Let χ0 denote the trivial character of K , and let e0 denote the corresponding sign

in (1). Then one knows that

• e0 = −χD (N ), where χD is the quadratic Dirichlet character of K , and

• If χ is an anticyclotomic Hecke character of conductor prime to N , then e(χ) = e0.

It follows from the formulae above that if the conductor of χ is prime to N , then e(χ) = e0 is

independent of χ. We will say that we are in the definite case if e0 = +1, and that we are in the
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indefinite case if not. For example, we are in the indefinite case if all primes dividing N are split in

K ; this is the classical Heegner hypothesis. If N is squarefree, then we are in the definite case if and

only if the number of prime factors of N that stay inert is odd. Note that it follows trivially that

L(g , χ, 1) = 0 for all χ, if we are in the indefinite case.

Now assume that χ is primitive of conductor f, with f prime to DN , and let ρ(g , χ) denote the or-

der of vanishing of L(g , χ, s) at s = 1. The essence of Mazur’s conjecture is that the number ρ(g , χ)

is ‘generically’ determined by the sign e0. To state this more precisely, we let p denote a prime with

p ∤ N D. For each integer n ≥ 0, we let Hn denote the ring class field of K with conductor pn . We

put H∞ = ∪Hn , and consider the behavior of ρ(g , χ) as χ varies over finite-order characters of

G∞ = Gal(H∞/K ). Then we have

Conjecture 1.1 (Mazur) Suppose that we are in the definite case. Then L(g , χ, 1) 6= 0 for all but

finitely many χ of conductor pn . If we are in the indefinite case, then L ′ (g , χ, 1) 6= 0 for all but finitely

many χ.

The Birch and Swinnerton-Dyer conjectures allow us to reformulate this in terms of Mordell-Weil

groups. Thus, let E denote the abelian variety quotient of J0(N ) associated to g by Shimura. If g has

rational Fourier coefficients, then E is an elliptic curve as above. For a primitive character of conductor

f, we let E(Kf )
χ = eχE(Kf ) ⊂ E(Kf ) ⊗ Z[χ] denote the χ-isotypic part of the Mordell-Weil group

of E over Kf, where eχ = ∑

χ(σ)σ ∈ Z[χ][Gal(Kf/K )]. We will write r (g , χ) for the dimension

of E(Kf )
χ ⊗ C. Then the conjecture of Birch and Swinnerton-Dyer predicts that ρ(g , χ) = r (g , χ).

Letting χ vary over the anticyclotomic characters of p-power conductor as before, we are led therefore

to the second part of Mazur’s conjecture:

Conjecture 1.2 Suppose that we are in the definite case. Then E(Kf )
χ is finite for almost all χ, and

E(H∞ ) is finitely generated. If we are in the indefinite case, then E(Kf )
χ has rank 1, for all but finitely

many χ.

It is now known, thanks to fundamental work of Bertolini and Darmon (see [BD], Corollary

D) that Conjecture 1.1 implies Conjecture 1.2, at least in the definite case. Indeed, we have

Theorem 1.3 (Bertolini–Darmon) Suppose that p is an odd prime. If L(g , χ, 1) 6= 0, then E(Kf )
χ

is finite. The torsion subgroup of E(Hn ) is bounded as n → ∞.

Note that the notation here is slightly different from that appearing in Bertolini-Darmon. We are

considering automorphic forms g that are unramified at p, while Bertolini and Darmon look at forms

that are special at p. A translation between the two is given in the definitions immediately preceding
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Corollary D of [BD], and the discussion immediately following. Our p is one of the auxiliary primes

ℓi , while p in Bertolini-Darmon denotes a prime where g is special, and which is inert in K .

In the indefinite case, the analogous implication would follow from [BD], modulo a suitable

generalization of the Gross-Zagier formula. (For the latter, see the recent work of Zhang [Zha].)

One should note as well that Mazur’s original conjecture about the Mordell-Weil ranks referred only

to the case where p is an ordinary prime for g . However, given the sign of the functional equations,

and the work of Bertolini and Darmon, the present formulation seems to be reasonable.

To state our main result, we will write hK for the class number of K . We factor

N = N + · N −,

where (N +,N − ) = 1 and N − is divisible only by primes that are inert in K.

Theorem 1.4 Suppose that g is a newform on Ŵ0 (N ), and that K = Q(
√

−D ) is an imaginary

quadratic field. If the assumptions above hold for N ,D, and p, then,

• If p is an ordinary prime for g , then L(g , χ, 1) 6= 0 for all but finitely many χ of p-power con-

ductor, and the Mordell-Weil group E(H∞ ) is finitely generated.

• If p is a supersingular prime, then the same conclusion holds provided that the class number of K

is prime to p.

• More generally, suppose that p is a supersingular prime and the class number hK is divisible by

p. Then, if χt is a tamely ramified character of order prime to p, we have L(g , χt χw , 1) 6= 0

for all but finitely many characters χw of Gal(K∞/K ), and the χ-isotypic part of E(K∞ (χt )) is

finitely generated.

As we have already remarked, the statements about the Mordell-Weil group follow from the non-

vanishing of the appropriate L-values.

We note here that there are situations where e(χ) = 1 even though our assumptions do not hold.

For instance, it may happen that e(χ) = 1 when p is a prime where g is special. For example, if we

factor N = N + · N − into a split and inert part as above, then if N − is squarefree, has an even number

of factors, and p is a prime dividing N −, we will have e(χ) = 1 for χ of conductor pn , n ≥ 1. The

arguments of this paper may be generalized to this case in a straightforward manner, although the

details and explicit formulae are unavoidably different.

Furthermore, we point out that we have made some restrictions in our results when p is a super-

singular prime, and the class number of K is divisible by p. These restrictions can be lifted at the cost

of some unpleasant technical complications.
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We will clear up the above points in a separate work, in order to keep the present exposition sim-

ple.

Finally, it may also happen that the sign e(χ) = 1 when N − is not squarefree. We have chosen

to avoid this case because it is not clear to us exactly what sort of Gross formula should hold in this

situation. It seems possible that one could use the recent results of Zhang [Zha] to clarify this case,

and we hope to consider this in the future.

Sketch of the proof

The principal ingredient in the proof of the theorem is the study of Heegner points on definite quater-

nion algebras, or, more precisely, the distribution of these points on the components of a certain curve

X . These curves X were introduced and studied by Gross [Gro]. As we have already remarked, we

will show that the Heegner points are uniformly distributed on the various components of X , and

that the elements of a certain Galois group act independently (in a sense that we will make precise

shortly). One deduces the nonvanishing of L(g , χ, 1) from this by invoking Gross’ special value for-

mula, which states that L(g , χ, 1) is essentially the height of a twisted Heegner point.

To elaborate on these ideas, let B denote the definite quaternion algebra over Q which is ramified

at the primes dividing N −. This makes sense because we have assumed that N − is square-free and

divisible by an odd number of primes. Then Gross has associated to B a certain curve X . We refer the

reader to §2 of the text for the precise definition. Here we merely recall that X is disconnected, being

the union of genus zero curves Yi defined over Q, with one component for each conjugacy class of

oriented Eichler orders of level N +.

In this framework, a Heegner point P of conductor pn is a pair ( f, R), where R ⊂ B is an Eichler

order of level N +, and f : K → B is an embedding satisfying f −1(R) = On , where On is the order

of K with conductor pn . We agree to identify pairs ( f, R) and ( f ′, R ′ ) if they are conjugate by an

element of B×. In practice, one has to enlarge this definition to include orientations on On and R, but

we will not concern ourselves with this detail here. The salient point is that P = ( f, R) determines a

conjugacy class [R] of Eichler orders of level N +. It can be shown that such a pair ( f, R) determines

a geometric point on the curve X which lies on the component corresponding to the class of R.

Write Xn for the set of Heegner points of conductor pn . It turns out that there is a natural action of

the Picard group Pic(On ) on the set Xn . Once one rigidifies the situation by imposing orientations,

it becomes apparent that Xn is a homogenous space for Pic(On ), and that the group action is free

and transitive. In particular, there are en Heegner points of conductor pn , where en is the order of

Pic(On ). To simplify matters, we shall assume for the purposes of this introduction that K has class

number one. Then it is well-known that en = cpn−1, for some simple constant c . On the other hand,
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one knows also that there are only finitely many conjugacy classes of Eichler orders, and so it is natural

to ask for the distribution of the elements of Xn in this finite set. If we write Cl(B ) = Cl(B,N + ) for

the set of conjugacy classes of oriented orders of level N +, then our first result is a determination of

the limiting distribution in Cl(B ) of the sets Xn . To state a precise formula, let us fix representatives

Ri for the conjugacy classes of oriented Eichler orders. For each class [Ri ], we define a weight wi by

setting wi equal to the order of R×
i . Then we define a mass number h by putting h = ∑

1/wi , where

the sum is taken over all the classes [Ri ]. Letµi (n) denote the number of Heegner points P = ( f, R)

of conductor pn such that R ∈ [Ri ], and recall that en is the number of points of level pn . Then our

equidistribution result is the following

Theorem 1.5 We have lim
n→∞

µi (n)

en
= 1

wi h
= 1/wi
∑

1/w j
.

The proof of this theorem is fairly straightforward. Using strong approximation, one identifies the

Heegner points with vertices on a certain tree T (the tree of PGL2 (Qp )), while Cl(B ) is identified

with the vertices of a finite quotient graph G. The Heegner points of conductor pn are those which

are reached by a certain kind of walk of length n on G, and the theorem above then boils down to a

standard sort of problem in the theory of random walks on graphs.

The independence of the Galois action is much more subtle, however. Since the bare statement

may seem somewhat unmotivated, we will start by discussing Gross’ special value formula, to show

exactly what is needed.

Let Cl(B ) denote the set of conjugacy classes of Eichler orders of level N +, as above. As we have

remarked, the set Cl(B ) is identified with the vertex set of a certain finite graph G. Associated to

this graph and the modular form g is a certain canonical function ψ = ψg : G → R, defined via the

Jacquet-Langlands correspondence as follows. Let πp denote the local representation of PGL2 (Qp )

associated to g . Then πp is an unramified principal series representation. The tree T is isomorphic

to G̃/K̃ , where G̃ = B×
p /Q×

p = PGL2 (Qp ) and K̃ = PGL2 (Zp ) is a maximal compact subgroup.

Then we put Ŵ = R[1/p]× , where R is any Eichler of order of level N +. The representation πp

occurs in L2 (Ŵ\G̃ ); the graph G is identified with Ŵ\G̃/K̃ ; and the function ψ is the unique K̃ -fixed

vector in L2 (Ŵ\G̃ ) which generates the representation πp . In particular, ψ is an eigenvector for the

Hecke operator Tp . We may view ψ as a function on the Heegner points P = ( f, R) by defining

ψ(P ) = ψ([R]). Then, if χ is a primitive character of conductor pn , Gross’ formula states that

L(g , χ, 1)

�g
= 1

pn

∑

P∈Xn

∑

σ∈Gn

χ(σ)ψ(Pσ )ψ(P ), (2)

for a suitable period �g ∈ R. Here Gn
∼= Pic(On ) = Gal(Hn/K ), and Pσ denotes the conjugate

point of P under the action of σ ∈ Gn . We refer the reader to §2 below for alternative formulations of
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this identity.

We want to study the behavior of the L-value above for χ of conductor pn , as n → ∞. Then, since

K has class number 1, the order en of Gn satisfies en = cpn−1, where c = (p ± 1)/u, and u is the

order of O×
K . Also, Gn = G1 ×1n , where G1 has order c , and1n is cyclic of order pn−1. In particular,

G1 has order prime to p. We may then write χ = χtχw, where χt is a tamely ramified character of

G1 , and χw is a ‘wild’ character of 1n . Let the tame character χt be fixed. According to well-known

algebraicity results of Shimura, we will have L(g , χ, 1) 6= 0 for all χ = χtχw of conductor pn , as

soon as one of the L(g , χ, 1) 6= 0. This is because the algebraic parts of the L(g , χ, 1) are conjugate

under the action of Gal(Q/Q), if χt is fixed and χw varies over wild characters of conductor pn .

Thus, following Rohrlich, we are led to consider the average

1

pn−1

∑

χw

L(g , χ, 1)/�g ,

where we consider the tame part as fixed.

One can then insert the formula (2) and simplify the resulting expression, with the aim of evalu-

ating the limit as n → ∞. The exact formulae are complicated, owing to the fact that the primitive

characters of conductor pn are not a complete orthonormal set, but the general shape of the problem

one encounters may be seen by considering just one of the terms that arises, namely

1

pn−1

∑

τ∈G1

∑

P∈Xn

χt (τ )ψ(P )ψ(P
τ ) (3)

where the function ψ is as above. Observe here that the first sum is taken over τ ∈ G1, rather than

over Gn . This comes from the fact that we are averaging over the wild characters χw of1n . The point

we would like to emphasize is that we need only consider the action of the fixed group G1 rather than

the whole group Gn . This turns out to be extremely useful.

Let us now examine the expression (3) in more detail, considering together the terms for which τ

is fixed. There is a distinguished term, corresponding to τ = 1, which looks like

1

pn−1

∑

P∈Xn

ψ(P )2 .

In view of Theorem 1.5, this is rather easy to evaluate. One finds quickly that the limit is proportional

to the quantity |ψ|2 defined by

|ψ|2 = 1

h

∑

ψ([Ri ])2/wi .
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In particular, this term is nonzero in the limit (since ψ is nonzero). It remains therefore to calculate

the limits for τ 6= 1. In this case, one has to consider

χt (τ )

pn−1

∑

P∈Xn

ψ(P )ψ(Pτ ), (4)

and one would like to find the limit as n → ∞. One can try to apply the same ideas as were used

for the case where τ = 1, but there is an evident problem: if one writes R and Rτ = R(Pτ ) for the

Eichler orders coming from P and Pτ , one does not know, a priori, how to determine which pairs of

conjugacy classes [R], [Rτ ] of Eichler orders are obtained in this way, still less what the asymptotic

frequency is. Note that the group Pic(On ) does not act on Cl(B ), and that Rτ is not determined in

any obvious way by R. One would therefore like to say that all pairs C1,C2 of classes are obtained in

this way, and with some predictable frequency. A different way of putting this is to ask whether there

are any relations between the classes of R and Rτ .

It turns out that one can explicitly determine all such relations: they arise exclusively from ele-

ments τ ∈ G0 ⊂ G1, where G0 is a certain subgroup of G1 coming from genus theory. We will not

discuss the general case here, but to explain this phenomenon in the simplest case, recall that we are

assuming in this introduction that K = Q(
√

−D ) has class number 1. This implies that D is a prime.

Let D = (
√

−D ) denote the unique ideal of OK above D. Then D is principal in OK , and defines the

trivial element in the ideal class group Pic(OK ). However, D ∩ On is not principal in the order On

of conductor pn , as soon as n becomes sufficiently large. Thus τ = Frob(D) is a nontrivial element

of Gal(H∞/K ). But D2 = (D) is principal, and generated by a rational integer, so that Frob(D)2

is trivial in Gal(H∞/K ). It follows that τ = Frob(D) is an element of finite order in Gal(H∞/K ),

and since G1 is defined to be the torsion subgroup of Gal(H∞/K ), we find that τ ∈ G1 .

For this particular τ = Frob(D), it turns out that there are indeed relations between the classes

of the points P and Pτ . We can compute the relations explicitly; they turn out to be given by the

Hecke correspondence TD . One can therefore compute the limit of (4), and it turns out that this is

proportional to

lim
n→∞χt (Frob(D)) · aD

d + 1
· 1

pn−1
·
∑

P∈Xn

ψ(P )2 = χt (Frob(D)) · aD

D + 1
· |ψ|2 ,

where aD is the D-th Fourier coefficient of our newform g , and D + 1 is the degree of TD (recall that

D is prime). Putting together the contributions from τ = 1 and τ = Frob(D), we get a quantity

which is proportional to
(

1 + χt (Frob(D)) · aD

D + 1

)

· |ψ|2 ,

which is nonzero because χt (Frob(D)) = ±1, and aD < d + 1 by the Weil bounds.





It remains to consider the remaining τ ∈ G1 . It is here that we invoke deep theorems of Ratner

[Rat] on closures of unipotent flows on p-adic Lie groups, which imply that no relations exist be-

tween the classes of P and Pτ , unless τ ∈ G0 = {1, Frob(D)}. One concludes from Ratner’s theorems

that if τ /∈ G0 , then all possible pairs C1,C2 of classes occur with the appropriate frequency, so that

the limit in (4) is proportional to (
∑

ψ([Ri ])/wi )
2. But the latter is zero, as follows easily from the

fact that the function ψ is cuspidal. Thus we find that the Galois average is nonzero, for all n ≫ 0.

We now want to explain in more detail our use of Ratner’s theorem. Ratner’s result, in its original

form, is an extremely general statement about the nature of unipotent flows in Lie groups, which

applies in fact to arbitrary products of real and p-adic groups (for possibly different p’s), but we will

not discuss these generalities here. The p-adic versions of the results are stated below, as Theorems

4.6 and 4.13, and we refer the reader to the discussion there for details. In this introduction, we will

concentrate on the following entirely concrete consequence:

Proposition 1.6 Let G = SL2 (Qp )/± 1, and let Ŵ and Ŵ′ denote discrete and cocompact subgroups.

Then, if Ŵ and Ŵ′ are not commensurable, the product Ŵ · Ŵ′ = {γ · γ ′ |γ ∈ Ŵ, γ ′ ∈ Ŵ′} is dense in G.

I am indebted to Dani and Raghunathan for showing me how to deduce this from Ratner’s general

theorem. It may be that the statement above admits a more elementary explanation, but we have not

succeeded in finding any simple argument.

In any event, this proposition is used as follows. As we have already remarked, the function ψ

factors through a certain quotient graph G = Ŵ\T of the tree T . Each Heegner point P is identified

with a vertex v on T , and the class of the corresponding Eichler order R is computed as the image

of v in G. It turns out that if τ ∈ G1 and Pτ = ( f τ , Rτ ), then the order Rτ is determined as the

image of v in the quotient G ′ = Ŵ′\T , for some suitable conjugate subgroup Ŵ′ = Ŵτ . Under the

assumption that τ is not in the genus subgroup G0 , we are able to verify that the groups Ŵ and Ŵ′

are not commensurable. The proposition above then implies that ŴŴ′ is a dense subset of G, and it

is therefore easy to find a vertex v ∈ T whose image in G × G ′ is any desired pair of vertices. We

would like to point out here that, in practice, one needs to know not only that one can achieve any

pair of vertices, but also that any such pair occurs with some predictable frequency. This kind of

equidistribution is also a consequence of Ratner’s theorems.

Proposition 1.6 above may be viewed as a non-abelian and p-adic version of the classical fact that

multiples of an irrational number are everywhere dense on the torus. Indeed, the real number α is

irrational if and only if the lattices Z and αZ are not commensurable in R. Equivalently, if Z and αZ

are not commensurable, then the sum Z + αZ is dense in the reals.

The reader who is familiar with the work of Ferrero and Washington on the cyclotomicµ-invariant
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will doubtlessly have noticed parallels with the arguments sketched above. Namely, Ferrero and Wash-

ington are concerned with the distribution of the p-adic digits of the (p − 1)-st roots of unity, and a

key role is played in this by the fact that roots of unity, being irrational, generate uniformly distributed

subgroups of the circle. Note also that the (p − 1)-st roots of unity correspond, in the cyclotomic the-

ory, to the tame Galois group G1 . In retrospect this analogy is not surprising – in fact, it was the effort

to generalize the methods of Ferrero and Washington to the anticyclotomic situation that was the

motivation for the present work.

There are some evident extensions of the ideas introduced in this paper which we would like to

mention. First, one might ask whether the analogy with Ferrero-Washington can be extended to yield

information about the µ-invariant and special values modulo ℓ. This would then return information

about the Tate-Shafarevich group of the abelian varieties. This question has been resolved, and will

be presented in a forthcoming work [Vat].

Secondly, it is natural to investigate whether any of our methods can be extended to the indefinite

situation, where the sign in the functional equation is −1. While algebra and combinatorics seem

to be inadequate tools for studying indefinite quaternion algebras, we may still obtain information

about classical Heegner points and derivatives of L-functions by using the ‘sign-change’ phenomenon

that was discovered and exploited by Bertolini and Darmon. Namely, one can use congruences mod-

ulo ℓ (the Jochnowitz congruences of [BD]) to transfer information from the definite case to the

indefinite one. Again, we refer the reader to [Vat] for a detailed discussion.

In conclusion, we would also like to make some comments about the special value formula that we

use. The only published reference for this is the original paper of Gross [Gro], where the case of an

unramified character of a field with prime discriminant was treated. This formula was subsequently

generalized to a certain extent in the thesis of Daghigh [Dag], but that work has not yet appeared in

print. The formula itself has been extensively quoted, however, and in this paper we will simply repro-

duce the version given by Bertolini and Darmon in the important paper [BD]. However, this gap

in the literature seems now to have been amply filled: very general Gross and Gross-Zagier formulae,

valid for automorphic forms over totally real fields, have recently been announced by Zhang [Zha].
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who patiently explained the basic facts about graphs. Part of this research was conducted at the Tata

Institute of Fundamental Research in December , and I would like to thank the faculty and staff

of the Institute for their hospitality and support.

Particular thanks are due to C. Cornut, for his careful examination of a preliminary version of the





manuscript, and for pointing out some errors in an early version of this work. I also owe to Cornut

the idea of using degeneracy maps and Hecke operators to control the action of the genus subgroup.

(See [Cor] for a discussion in a somewhat different context.)

I am grateful to an anonymous referee for a number of improvements to the exposition of this

work.

Finally, I would like to thank the organizers (G. Harder and N. Schappacher) and participants

(especially Nimish Shah) of a workshop on ergodic theory and Heegner points, held at Oberwolfach

in April .

2 Heegner points on definite quaternion algebras

In this section we briefly recall the definition and basic properties of the special points introduced by

Gross. For details, we refer the reader to Gross’ original article [Gro] and to the papers of Bertolini-

Darmon, especially [BD], §2.

Anticyclotomic fields

Let K denote an imaginary quadratic field, and p an odd prime that is unramified in K . As in the

introduction, we will write Hn for the ring class field of conductor pn , and H∞ for the compositum of

all the Hn . Then we have

G∞ = Gal(H∞/K ) = G1 × 1∞

where1∞ ∼= Zp and G1 is finite. If the class number of K is prime to p then we have G1
∼= Gal(H1/K ).

But if the class number of K is divisible by p, then G1 is harder to describe. In any case, let F denote

the fixed field of 1∞, and let Fn denote the fixed field of the unique subgroup of 1∞ of index pn−1.

We will write Gn = Gal(Fn/K ), so that Gn = G1 × 1n , where 1n is cyclic of order pn−1. The field

F/K is a tamely ramified extension, and we will refer to G1 as the tame subgroup. Note that the groups

Pic(On ) and Gn will not in general be isomorphic, because the Zp-extension may have some unram-

ified part. In particular, faithful characters of Gn may not be primitive of conductor pn . What is true

in general is that there exists a non-negative integer δ such that Gn+δ = Pic(On ) for all n sufficiently

large. This fact will cause some minor notational complications in the sequel, and the reader may wish

simply to assume that the class number of K is prime to p, to avoid unrewarding distraction. In this

paper, we will deal with characters of Gn , rather than primitive characters of conductor pn .
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Quaternion algebras

2.1 Let B denote the definite quaternion algebra of discriminant N −. Let R ⊂ B denote an Eichler

order of level N +. Then an orientation on the order R is a choice of homomorphisms oℓ : R ⊗ Fℓ →
kℓ for each prime ℓ dividing N , where kℓ = Fℓ if ℓ|N + and kℓ = Fℓ2 if ℓ|N −. (See [BD], Sec. 1.1).

The data of R together with the homomorphisms oℓ is called an oriented Eichler order. If b ∈ B×,

then R ′ = bRb−1 is an Eichler order of level N +, and we equip R ′ with the orientation induced from

R. Then a conjugacy class of oriented Eichler orders in B is an ordinary conjugacy class of Eichler

orders, equipped with compatible orientations in this manner. Each ordinary conjugacy class gives

rise to several oriented classes, according to the various possible orientations. Thus let [R] denote the

conjugacy class of oriented Eichler orders of level N + in B represented by R, and write Cl(B ) for the

set of all such classes [R]. We will write hB for the cardinality of Cl(B ). We will sometimes call the

integer hB the class number of B. It is equal to the number of left ideal classes of R in B. Note however

that hB and Cl(B ) both depend on N +.

It will be useful in the sequel to have an adelic description of the set Cl(B ). To this end, let Ẑ

denote the profinite completion of Z, and, for an algebra A, write Â for the adelization A ⊗ Ẑ. Then

there is an isomorphism of sets

Cl(B ) = B×\B̂×/R̂× . (5)

It follows from strong approximation in B̂ that the set Cl(B ) is finite (see [Vig], pp –).

The curves associated to definite quaternion algebras

In this section we follow [Gro] and [BD].

2.2 Let P denote the conic curve defined over Q by

P(A) = {x ∈ B ⊗ A| x 6= 0,Norm(x ) = Tr(x ) = 0} /A×,

for all Q-algebras A. Then B× acts on P by conjugation, and we have Aut(P) = B× as algebraic

groups over Q. The curve X associated to B is then defined by

X = B×\(P × B̂/R̂ ).

Let g1, g2, . . . , gr denote representatives of the double coset space Cl(B ) = B×\B̂×/R̂× . Then

the groups Ŵi = gi R̂g −1
i ∩ B× are finite subgroups of B×. The curves Yi = Ŵi \P are curves of genus

zero, defined over Q, and the curve X is given by

X = ∪r
i=1Yi .
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The set P(K ) of K -rational points on P is identified with Hom(K , B ). Thus a K -rational point of X

consists of a pair ( f, [R]) where f ∈ Hom(K , B ), and [R] is a class in Cl(B ). Finally, let M denote

the Picard group Pic(X ). Since each component of X has genus zero, it is clear that M is the free

Z-module with basis e1, e2, . . . , er indexed by the set Cl(B ). Let wi denote the order of the group

Ŵi , for each i . Then we define a positive-definite inner product on M by specifying that

〈ei , e j 〉 = wi δi j .

2.3 The module M defined above is equipped with an action of Hecke operators, as we now describe.

Since Q× ⊂ B× acts trivially on P, and since Q̂ = Q · Ẑ, because Q has class number 1, the curve X

can be written as

X = B×\(P × Q̂×\B̂×/R̂× ).

Note that Q̂×\B̂×/R̂× breaks up as a product of local spaces Q×
ℓ \B×

ℓ /R×
ℓ , where Rℓ = R ⊗ Zℓ, for

each prime ℓ. When ℓ does not divide N , one finds that

Tℓ = Q×
ℓ \B×

ℓ /R×
ℓ = PGL2 (Qℓ )/PGL2 (Zℓ ) (6)

is an ℓ + 1-regular tree whose vertices correspond to the homothety classes of lattices in Q2
ℓ (the

Bruhat-Tits tree of PGL2 (Qℓ )). Equivalently, the vertices of Tℓ correspond to the distinct maximal

compact subgroups of PGL2 (Qℓ ). Two vertices v1, v2 of Tℓ are connected by an edge if the cor-

responding homethety classes contain lattices L1 and L2 such that L1 ⊂ L2, and L2/L1 is cyclic of

order ℓ. Given a vertex x ∈ PGL2 (Qℓ )/PGL2 (Zℓ ), the ℓ + 1 neighbors may be written as η1 ·
x, . . . , ηℓ−1 · x, ηℓ · x, where the ηi and ηℓ are given by the formulae

ηi =




1 i

0 ℓ



 , 1 ≤ i ≤ ℓ − 1, and ηℓ =




ℓ 0

0 1



 . (7)

Then the correspondence Tℓ is defined by

Tℓ(x ) =
ℓ
∑

i=0

ηi · x .

Another way of describing the Hecke operator is to consider the double coset UηℓU , where U =
R×
ℓ

∼= GL2 (Zℓ ); then the matrices ηi above satisfy UηℓU = ∪ηiU .

The correspondence extends to the product tree Q̂×\B̂×/R̂×, and hence to the curve X . One

obtains therefore an associated endomorphism, also denoted Tℓ , of the module M = Pic(X ). When

ℓ divides N = N + · N −, one can define an involution W ±
ℓ whose definition depends on whether ℓ
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divides N + or N −. For the exact definition, we refer the reader to [BD], §1.5. In any case, we let

T denote the subalgebra (Hecke algebra) of EndZ(M ) generated by the operators Tℓ (for ℓ ∤ N ) and

W ±
q (for q|N ).

2.4 Now if g is any newform on Ŵ0(N ), the Jacquet-Langlands correspondence gives rise to a ho-

momorphism ψ = ψg : T → R such that ψ(Tℓ ) = aℓ = aℓ(g ) for (ℓ,N ) = 1, and ψ(W ±
q ) = aq .

According to a well-known theorem of Shimura, the numbers aℓ are all real. Let

Mg = M ⊗T R,

where the tensor product is taken with respect to the map ψg : T → R introduced above. One

knows that Mg is a R-vector space of dimension one. Fix an identification Mg
∼= R, or, equiva-

lently, a generator v ∈ Mg . Then we may view ψ as an R-valued function (also denoted by ψ) on

M as follows. For each m ∈ M , we define ψ(m ) to be the image of m ⊗ 1 under the composite

m ⊗ 1 ∈ M ⊗T R = Mg
∼= R, where the latter isomorphism is induced by our fixed choice of a gen-

erator of Mg . Since M is the free module on the set Pic(X ) = Cl(B ), we may apply ψ to the basis

elements [R] ∈ M to obtain a functionψ : Cl(B ) → R. Choice of a different generator v of Mg in the

definition has the effect of scaling ψ by a nonzero constant. We will regard the identification Mg
∼= R

and the function ψ as fixed once and for all.

For a given Eichler order Ri , we let wi denote the order of R×
i . Let ei denote the corresponding

component in Pic(X ), and let e0 denote the vector

e0 =
∑

[Ri ]∈Cl(B )

1

wi
ei ∈ Pic(X ) ⊗ Q.

Then the lemma below states that the function ψ is cuspidal, while the vector e0 is Eisenstein.

Lemma 2.5 With notations as above, we have

•
∑

[Ri ]∈Cl(B )ψ([Ri ])/wi = 0, and

• the vector e0 is an eigenvector for the Hecke operators. The eigenvalue of Tℓ is ℓ+ 1, for any ℓ ∤ N .

We will give the proof of this lemma in §3.11.

Heegner Points

2.6 Let O denote any order of K . An orientation on O is a choice of homomorphisms Oℓ → kℓ

for each prime ℓ|N , where kℓ is as in section 2.1. Fixing an orientation on the maximal order OK

induces orientations on the orders On of conductor pn , for every n ≥ 1. Then a Heegner point P of
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conductor pn consists of a pair P = ( f, R), where f : K → R is an oriented embedding such that

f (K ) ∩ R = f (On ), where On is the order of K with conductor pn , taken up to conjugation in B×.

(An embedding f (O) ⊂ R is said to be oriented if the orientations on R and O are compatible in

the obvious manner.) We will write Xn for the set of Heegner points of level pn . It is clear from the

definition of the curve X that a Heegner point is a K -rational point on X (but we will not need this).

Given a point P = ( f, R) ∈ Xn , the embedding f induces a map K̂ → B̂, whence an action of

Pic(On ) ∼= K ×\K̂ ×/Ô×
n on the set Xn . Explicitly, given an idele σ ∈ K ×\K̂ ×/Ô×

n , we define the

point Pσ = ( f, Rσ ) by letting

Rσ = B ∩ f (σ )R̂ f (σ )−1. (8)

It is easily seen that Pσ is a well-defined Heegner point of conductor pn . Furthermore, the group

Pic(On ) acts simply and transitively on Xn (see [Gro], page , and [BD], Lemma 2.5 ). Thus

there are en Heegner points of level pn , where en is the order of the group Pic(On ). Note, however,

that since the Heegner points are all rational over K , the action of Pic(On ) so defined is not the usual

Galois action on geometric points.

2.7 More generally, if we are given a Heegner point P = ( f, R) of conductor pn and an idele σ ∈ B̂,

we can form R ′ = B ∩ σ R̂σ−1 as above. Then the pair ( f, R ′ ) gives a Heegner point of some level

and orientation. Applying this with suitably chosen σ as above leads to a description of the Hecke

correspondence Tp and of its relationship with the Galois action. Thus, let σ denote one of the p + 1

elements

ηi =




1 i

0 p



 , 1 ≤ i ≤ p − 1, and ηp =




p 0

0 1



 , (9)

as before, where we view each matrix ηi , η∞ as an element of B̂ with component one away from p

and with p-component specified as above. Here Bp = B ⊗ Qp
∼= M2(Qp ), and Rp = R ⊗ Zp is

conjugate to the order M2(Zp ). Let P1, P2 , . . . , Pp+1 denote the p + 1 Heegner points obtained

from the prescription above. Then Tp (P ) is given by the formal sum

Tp (P ) = P1 + P2 + . . . Pp+1.

If P has conductor pn with n ≥ 1, then it can be shown that precisely one of the points P1 , . . . , Pp+1

has conductor pn−1, while the p others have conductor pn+1. We will refer to the points P1, . . . , Pp+1

as the neighbors of P. The unique point P̌ of conductor pn−1 is called the predecessor of P.

As for the remaining p points of conductor pn+1, it can be shown that they are all conjugate under

the action of the group Sn+1 = ker(Gn+1 → Gn ), so that we have the formal relationship

∑

σ∈Sn

Pσ∗ = Tp (P ) − P̌, (10)
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where P∗ is any of the neighbors of P with conductor pn+1. For proofs of all these assertions in a

general context, we refer the reader to §2 of [BD].

Each Heegner point P = ( f, R) will determine an element [R] ∈ Cl(B ). As we have remarked

in the introduction, our main task in this paper is to study the distribution of the classes [R] in Cl(B )

as P varies over the Heegner points of level pn . To this end, we introduce the following convention:

given a function ψ with domain Cl(B ), we will view ψ as a function on Heegner points by defining

ψ(P ) = ψ([R]), where [R] is determined by P as above.

Heights and special values

2.8 Let χ be an anticyclotomic character of K , of conductor pn . Then Gross has given a formula,

in terms of the height pairing on the Heegner points, for the special value L(g , χ, 1) which we now

proceed to recall.

Class field theory allows us to view χ as a function on integral ideals a ⊂ OK . Let

2χ =
∑

a

χ(a)qNa =
∑

an (χ)q
n

denote the theta series associated to χ. Then 2χ is a modular form on Ŵ0(Cχ ), where Cχ = Dp2n .

One has the fundamental identity

L(g , χ, s) = ζ(2s − 2)
∑

(n,N Cχ)=1

an ( f )an (χ)n
−s = D(g , 2χ , s),

where g = ∑

an (g )q
n is a newform on Ŵ0(N ), and D(g , 2χ, s) is the normalized Rankin-Selberg

convolution of g and 2.

With these notations, the Rankin-Selberg method and the Eichler trace formula lead to the main

identity introduced by Gross (and subsequently generalized by Daghigh and then Zhang see [Gro],

[Dag], and [Zha]) which states that, if P is any Heegner point of conductor pn = Conductor (χ),

then
∣

∣

∣

∣

∣

∣

∑

σ∈Pic(On )

χ(σ)ψ(Pσ )

∣

∣

∣

∣

∣

∣

2

= D(g , 2χ , 1)

(g , g )
· C

1/2
χ

Cg
= L(g , χ, 1)

(g , g )
· C

1/2
χ

Cg
∈ Q, (11)

where Cχ is the level of 2χ, the real number (g , g ) is the Petersson inner product, and ψ is the

function defined above. The quantity Cg is an explicit fudge factor, depending on the identification

Mg
∼= R fixed in the definition of ψ. For our purposes, it will be enough to know that Cg is non-zero,

and independent of χ.

The identity above implies that the left-hand-side of (11) is independent of the chosen point P.

This may also be seen directly: if Q is another Heegner point of conductor pn , then Q = Pτ for some
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τ ∈ Pic(On ), so that

∑

σ∈Pic(On )

χ(σ)ψ(Qσ ) =
∑

σ∈Pic(On )

χ(σ)ψ(Pτσ ) = χ−1(τ )
∑

σ∈Pic(On )

χ(σ)ψ(Pσ ),

and χ−1(τ ) has absolute value 1.

Observe also that if χ is primitive of conductor pn , then Cχ = Dp2n and
√

Cχ =
√

Dpn . Then

let � = Cg (g , g )/D1/2, and define

Lal(g , χ, 1) = L(g , χ, 1)

�
. (12)

Recall our notations from §2, especially the definition of the groups Gn and the relationship with

Pic(On ). It will be useful to change notation here, and write Xn for the set Xn−δ, so that Xn becomes

a homogeneous space for Gn rather than Pic(On ). The elements of Xn are therefore Heegner points

of level pn−δ. We use this convention in the following simple reformulation of (11), which will be

useful in the sequel.

Lemma 2.9 Let χ denote a primitive character of Gn . Then we have

Lal(g , χ, 1) = 1

pn−δ
∑

P∈Xn

∑

σ∈Gn

χ(σ)ψ(Pσ )ψ(P ). (13)

Proof. This follows easily from expanding out the left-hand side of (11) and using the transitivity of

the Galois action on Xn . �

2.10 Recall further that Gn = G1 × 1n , where 1n is cyclic of order pn−1. Given a character χ of

Gn , we may decompose χ = χt · χw, where χt is a ‘tame’ character of G1, and χw is a character

of 1n . (This notation is taken from Luo and Ramakrishnan, [LR].) The character χ is faithful

on 1n if and only if the ‘wild’ part χw has order pn−1. Equivalently, χ is faithful if and only if χw

is nontrivial on the subgroup Sn ⊂ 1n consisting of elements of order p. It is clear that there are

φ(pn−1 ) = (p − 1)pn−2 such characters χw.

We are interested in studying the values L(g , χ, 1) as χ = χtχw varies over the characters of Gn .

It will be convenient in the sequel to group together all characters with a fixed tame component χt .

From now on, we consider a fixed characterχt of G1, and, following the example of Rohrlich [Roh],

we introduce the average

Lav
n ( f, χt , 1) = 1

pn−2−δ
∑

χw∈Yn

Lal(g , χ, 1), (14)

where the sum is taken over the set Yn of faithful characters χw of the group 1n . Thus χ is a prim-

itive character of conductor pn−δ. If χt has order prime to p, then the fields Q(χt ) and Q(χw ) are
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linearly disjoint, and it is clear that all the characters χtχw with fixed χt are conjugate under the ac-

tion of Gal(Q/Q). In view of this Galois conjugacy, it follows from well-known algebraicity results

of Shimura that if L(g , χ, 1) for some χ = χtχ
′
w , with χ′

w ∈ Yn , then in fact L(g , χt χw, 1) 6= 0 for

all χw ∈ Yn .

We may now state our main result, which directly implies the theorem of the introduction.

Theorem 2.11 Let the hypotheses on N , D, and p be as in Theorem 1.4. Let χt be any character of G1.

Then:

• lim
n→∞ Lav

n (g , χt , 1) exists and is nonzero.

• For all n ≫ 0, we there exists a character χw ∈ Yn such that L(g , χt χw, 1) 6= 0.

• If the order of χt is prime to p, or if p is an ordinary prime for f , then L(g , χt χw , 1) 6= 0 for all

χw in Yn , as soon as n is sufficiently large.

It is clear that the first statement implies the second. In view of the preceding remarks, the second

implies the third if χt has order prime to p. To complete the proof of Theorem 1.4, it suffices therefore

to show how to eliminate the hypothesis on the order of χt if p is an ordinary prime. But this is

easily achieved with the help of p-adic L-functions. As is well-known (see [BD], for example) there

exists a p-adic L-function in the ordinary case that interpolates the values L(g , χt χw, 1), for fixed

χt . Furthermore, the p-adic L-function is represented by an Iwasawa function in O[χt ][[1∞]]. But

a nonzero Iwasawa function has only finitely many zeroes, so that the third statement follows from the

second.

It suffices therefore to verify the first assertion above. The proof will occupy the remainder of this

paper.

Our first task is to transform the statement about Lav
n into one about Heegner points, by utilizing

Lemma 2.9. We begin with a simple observation. Recall that the subgroup Sn ⊂ 1n was defined to

be the subgroup of elements of order p. Write σ0 for the identity element of1n .

Lemma 2.12 Suppose that n ≥ 3. Let sn denote the function on1n defined by sn (σ ) =∑

χw∈Yn
χw (σ ).

Then the following identity holds in the group algebra Q[1n ]:

∑

σ∈1n

sn (σ ) · σ = pn−1 · σ0 − pn−2
∑

σ∈Sn

σ (15)

Proof. Let ζr denote a primitive pr -th root of unity, for each r ≥ 1. Consider an element σ ∈ 1n of

order pt . Then it is clear that sn (σ ) = ∑

χw (σ ) = Tr(ζt ), if the trace is taken from Q(ζn−1 ) to Q.
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But it is well-known that the trace of ζt from Q(ζt ) to Q is zero, if t ≥ 2. Transitivity of the trace now

implies that sn (σ ) = 0 if σ has order pt , with t ≥ 2.

It remains therefore to calculate sn (σ0 ) and sn (σ ), where σ 6= σ0 lies in Sn . Obviously, sn (σ0 ) =
(p − 1)pn−2 = pn−1 − pn−2, since there are (p − 1)pn−2 characters χw . On the other hand, one

knows that if ζ = ζ1 is a primitive p-th root of unity, then Tr(ζ) = −1, if the trace is taken from

Q(ζ) to Q. Since Q(ζn−1 ) has degree pn−2 over Q(ζ), we find that sn (σ ) = −pn−2, if σ has order

p, and σ 6= σ0. The lemma evidently follows. �

2.13 Now, combining Lemma 2.9 and equation (14) we find that

p2n−2−2δLav
n (g , χt , 1) =

∑

χw∈Yn

∑

P∈Xn

∑

σ∈Gn

χ(σ)ψ(Pσ )ψ(P ).

Applying Lemma 2.12 to the sum on χw, this becomes

p2n−2−2δLav
n (g , χt , 1) = pn−1

∑

P∈Xn

∑

τ∈G1

χt (τ )ψ(P
τ )ψ(P )− pn−2

∑

P∈Xn

∑

τ∈G1

∑

σ∈Sn

χt (τ )ψ(P
στ )ψ(P ),

(16)

and

Lav
n (g , χt , 1) = 1

pn−1−2δ

∑

P∈Xn

∑

τ∈G1

χt (τ )ψ(P
τ )ψ(P )− 1

pn−2δ

∑

P∈Xn

∑

τ∈G1

∑

σ∈Sn

χt (τ )ψ(P
στ )ψ(P ).

(17)

We can simplify the second term in the expression above. Indeed, the formulae for the Hecke oper-

ators given in §2.7 imply that
∑

σ∈Sn
ψ(Pστ ) = apψ(Q

τ ) − ψ(Q̌τ ), where Q ∈ Xn−1 is the prede-

cessor of P, and Q̌ is the predecessor of Q. Thus we get
∑

P∈Xn

∑

τ∈G1

∑

σ∈Sn

χt (τ )ψ(P
στ )ψ(P ) =

∑

P∈Xn

∑

τ∈G1

χt (τ )
(

apψ(Q
τ ) − ψ(Q̌τ )

)

ψ(P )

=
∑

Q∈Xn−1

∑

τ∈G1

χt (τ )
(

apψ(Q
τ ) − ψ(Q̌τ )

)(

apψ(Q ) − ψ(Q̌ )
)

,

(18)

where the second equality comes from the facts that, for σ ∈ Sn , all points Pσ give rise to the same

points Q and Q̌, and that this association gives a bijection between distinct points Q ∈ Xn−1 and the

Sn-orbits in Xn .

We end this section by stating the proposition upon which the proof of Theorem 2.11 depends.

Recall the mass number h of the introduction, defined by putting

h =
∑

[R]∈Cl(B )

1/wR ,
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where wR is the order of R× . Then define the real number |ψ| by

|ψ|2 = 1

h

∑

ψ([R])2/wR = 1

h

∑

|ψ([R])|2/wR .

For each prime q|D = disc(K), we let q denote the unique (ramified) prime of OK above q. Then

q2 = (q ). Since q is a rational integer prime to p, the ideal (q ) represents the trivial class in Pic(On ),

for all n. On the other hand, q gives a nontrivial class in in Pic(On ), as soon as n is sufficiently large.

This is obvious if D is not prime, since q is not even principal in that case. If D is prime, then one need

simply observe that On contains no element of norm D, for n ≫ 0. Let Frob(q) denote the Frobenius

of q in Gal(H∞/K ); then it follows that Frob(q) is an element of order two in G1. We put

ED =
∏

q |D

(

1 + χt (Frob(q))
aq

q + 1

)

.

Note that ED is nonzero, since χt (Frob(q)) = ±1, and |aq | ≤ 2
√

q by the Ramanujan bounds.

Finally, put Ep =
(

a2
p

(

p−1

p+1

)

+ 1
)

, and let the order en of Gn satisfy en = c · pn−δ−1.

Proposition 2.14 Let the assumptions be as in Theorem 1.4. Then the following limit formulae hold:

. lim
n→∞

1

cpn−δ−1

∑

P∈Xn

∑

τ∈G1

χt (τ )ψ(P
τ )ψ(P ) = ED · |ψ|2 , and

. lim
n→∞

1

cpn−δ−2

∑

Q∈Xn−1

∑

τ∈G1

χt (τ )
(

apψ(Q
τ ) − ψ(Q̌τ )

)(

apψ(Q ) − ψ(Q̌ )
)

= Ep · ED · |ψ|2 .

Inserting the limits above into equation (17), and applying the Ramanujan bound, we conclude

that Lav
n (g , χt , 1) is nonzero for all n sufficiently large.

3 Discrete groups and graphs

We have reduced the proof of Theorem 2.11 to that of Proposition 2.14. In this section, we will develop

a picture of the Heegner points which will enable us to reformulate Proposition 2.14 in terms of graph

theory and trees. The material in this section is perforce somewhat descriptive; it may help the reader

to look directly at the picture in §3.2.

Normal Forms

3.1 Our immediate object is to give a concrete answer to the following basic problem. Suppose we

are given a Heegner point P = ( f, R) of conductor pn , and a conjugate point Pσ = ( f σ , Rσ ), for

σ ∈ Gn . Then R and Rσ determine conjugacy classes of oriented Eichler orders, and we would like to
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give some simple prescription for determining the class of Rσ from the data of R and f and σ. The key

turns out to be the notion of normal forms of Eichler orders, as in the work of Bertolini and Darmon

(see [BD], Sec. 2).

To explain this notion, we fix an oriented Eichler order R of level N +. This choice determines

local orders Rℓ, for each prime ℓ (including ℓ = p). If R ′ is another Eichler order, one says that R ′

is in normal form if R ′
ℓ = Rℓ for all primes ℓ 6= p. Here we require that, if ℓ divides N , then the

orientations on Rℓ and R ′
ℓ be equal. Note that we do not impose any condition on R ′

p . In fact, it is

clear from this definition that if R ′ is an Eichler order in normal form, then it is completely determined

by the local order R ′
p . Implicit in this definition is the choice of a fixed order R; we will simply regard

a choice of R as settled.

Now let T = Tp denote the Bruhat-Tits tree of Bp. Thus T is a p + 1 regular tree, such that the

vertices of T correspond to the maximal orders of Bp, while the oriented edges correspond to oriented

Eichler orders of level p. Thus, if R ′ is in normal form, we may identify R ′ with a vertex v on the tree.

We will see below that the set Cl(B ) may be identified with a certain finite quotient graph G ′ of T .

Each vertex of G ′ will correspond to an element of Cl(B ). If v is the image of v in G ′, the class [R ′]

is determined as the class corresponding to v . Given Heegner points P and Pσ as above, we are led

therefore to put the orders R and Rσ in normal form. We will see that, from this viewpoint, the action

of the Galois group takes on a rather simple aspect.

Action of the local Galois group

3.2 Fix one of the hK Heegner points P = ( f, R) of level 1, so that f is an embedding K → B with

f (K ) ∩ R = f (OK ). This choice of R determines local orders Rℓ = R ⊗ Zℓ ⊂ Bℓ, for each prime ℓ.

In particular, we obtain a maximal order Rp ⊂ Bp. The order Rp determines a vertex v0 on T . It will

be convenient to regard v0 as determining an origin of the tree. This choice of origin also gives rise to

an orientation on T , if we say that a vertex v is even or odd according to whether the distance from v

to v0 is even or odd, and require that a positively oriented edge always go from an even vertex to an

odd one.

Now let v be any other vertex on T , corresponding to the order R ′
p ⊂ Bp . Then define R̂ ′ =

R ′
p ×∏ℓ 6=p Rℓ, and let R ′ = B ∩ R̂ ′. The pair P ′ = ( f, R ′ ) determines a Heegner point of conductor

pn , for some n. The conductor pn of P ′ is closely related to the distance between v and v0 on the tree

T . The precise relationship depends on K and p, as follows.

Recall that G1 denotes the tame subgroup of Gal(H∞/K ). Let 10 ⊂ G1 denote the image of

(tame) inertia. Thus 10 has order (p ± 1)/u ), where the sign is ± depending on whether p is split

or not, and the integer u is equal to one half the order of O×
K . We simply write δ0 to denote the order
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Figure 1: the tree when p = 3

of 10. Note that the tree T has degree p + 1, independently of p and K . In particular, the origin

v0 has p + 1 neighbours. One can check that of these p + 1 neighbors, either p − 1 or p + 1 give

rise to Heegner points of level p, depending on whether p is split or not. Let v denote a neighbor

of v0 such that v has level p; we will call v a good neighbor. If K is not Q(
√

−1) or Q(
√

−3), so

that u = 1, then the Heegner points corresponding to good neighbors of v0 are distinct modulo B×.

If K = Q(
√

−1) or K = Q(
√

−3), then there is a small complication, arising from the presence

of nontrivial units in OK , that must be taken into account. In these cases, each of the p ± 1 good

neighbors of v0 is equivalent to u others, and we fix, once and for all, a choice of representatives for

the classes modulo B×. It is clear that such a set of representatives has cardinality (p ± 1)/u. In order

to keep the notation uniform, we will change terminology slightly and say that v is a good neighbor if

it is in the fixed set of representatives modulo B×. Thus, in every case, the origin v0 has precisely δ0

good neighbors. Each good neighbor v determines an oriented edge from v0 to v, which we will call

a good direction.

With this in mind, consider a vertex v = vn at distance n from the origin. There is a unique path

v0, v1 , . . . , vn leading from v0 to vn . We call vn a good vertex if the walk from v0 to v exits v0 in a

good direction. Equivalently, v is good if the vertex v1 encountered at the first step of the walk is a

good neighbor. Figure 1 above, drawn when p = 3 and δ0 = 2, may help the reader to visualize the

situation. The good directions are marked by arrows.

It can be shown that if v is a good vertex, then the Heegner point determined by v has conductor

pn . It is clear that there are δ0 × pn−1 good vertices at distance n. Indeed, each such vertex is uniquely

determined by the walk v0, v1 , . . . vn , and there are δ0 choices for v1 , followed by p choices for each

subsequent v s . Write V ′
n for the set of good vertices at distance n − δ and X ′

n for the set of Heegner

points so determined. Thus, if v ∈ V ′
n , then the corresponding P ∈ X ′

n is determined by the pair

( f, R ′ ), where R ′
ℓ = Rℓ for ℓ 6= p, and R ′

p is the order corresponding to v. Here the map f : K → B
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and the local orders Rp and Rℓ are determined by the Heegner point P = ( f, R) corresponding to

the origin v0 , as fixed at the outset. In particular, the map f is independent of v.

3.3 We now consider the action of the local Galois group on the good Heegner points defined above.

Thus write U = U (Kp ) for the local units in OK ⊗ Zp . Then f (U ) ⊂ R×
p . Furthermore, class field

theory gives a homomorphism U → Gn whose image is the inertia group In . Using the description

of the Galois action from §2.6, one sees then that the group In acts on the Heegner points P ′ ∈ X ′
n

according to the following prescription. Given σ ∈ In , one selects a local idele σ̃ ∈ U (Kp ) such that

the Artin symbol of σ̃ in In coincides with σ. Here we view σ̃ as an idele by giving it component one

away from p. Now suppose that P ′ = ( f, R ′ ) as above, where the local order R ′
p corresponds to the

vertex v ∈ T . Then P
′σ = ( f, R

′σ ), where R
′σ is determined by R̂

′σ = f (σ̃ )R ′ f (σ̃−1 ). Since the

idele σ̃ is trivial away from p, one has simply to compute f (σ̃ )R ′
p f (σ̃−1 ). But it is easy to see that, in

terms of the tree T , the order f (σ̃ )R ′
p f (σ̃ )−1 corresponds to the vertex f (σ̃ )v.

Thus, if we view the Heegner points P ∈ X ′
n as vertices on the tree, the action of In is by transla-

tions. This will be of the utmost importance in what follows. Note also that the inertia subgroup In

admits a canonical decomposition In = 10 ×1′
n , where10 is the maximal subgroup of order prime

to p and 1′
n ⊂ 1n has index pδ. Equivalently, 10 is the image under the Artin map of the roots of

unity in U (Kp ). Thus, if σ ∈ 10, then we can choose the corresponding idele σ̃ independently of n.

This fact will also be important later.

The following proposition summarizes the basic facts about the good Heegner points and the

local Galois action.

Proposition 3.4 There are δ0 × pn−1−δ good vertices at distance n − δ from v0, each corresponding

to a distinct Heegner point P ∈ X ′
n . If a vertex v is good, and corresponds to the Heegner point P ′ , then

the vertex vσ corresponding to the conjugate point P
′σ is vσ = f (σ̃ )v. The set X ′

n of good vertices is a

simple homogeneous space for the action of the group In .

Proof. Clear, in light of the preceding remarks. The fact that In acts simply transitively on X ′
n comes

from the fact that Gn acts simply transitively on Xn . �

Action of the ideal class group

3.5 The preceding discussion gives a complete description of the action of Gn if the class group of

K is trivial, since Gn = In in this case. In order to treat the case of nontrivial class group, we need

to enlarge the picture to include the hK distinct choices of base point P of conductor 1. Roughly
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speaking, one obtains several copies of the above picture, one for each of the hK possible points of

conductor 1, which are related by the action of the class group Cl(K ) of K .

Instead of working with Cl(K ) directly, it is actually more convenient to work with the group G1 .

So let τ ∈ G1, and fix an idele τ̃ of K whose Artin symbol in Gal(H∞/K ) is equal to τ. Write

τ̃ = (tℓ )ℓ 6=p × tp,

where t∗ denotes the local component at the place ∗. If v is any vertex, we get a Heegner point P ′ =
( f, R ′ ) as before, by putting R̂ ′ = R ′

p × ∏

ℓ 6=p Rℓ, where R ′
p is the local order corresponding to v.

Then the conjugate point P
′τ is given by the pair P

′ τ = ( f, S), where Ŝ = f (τ̃ )R̂ ′ f (τ̃ )−1. In order to

put the order S into normal form, we select b ∈ B× such that bℓSℓb−1
ℓ = Rℓ, for each ℓ 6= p. Such a

b exists by strong approximation in B̂, since the local orders Bℓ and Sℓ are conjugate in Bℓ. Note that

the element b depends only on τ: it is enough to choose b such that bℓtℓ ∈ Q×
ℓ R×

ℓ , for ℓ 6= p. Then

the point P
′τ is represented by the pair

P
′τ = ( f ′, S ′ ) (19)

where f ′ and S ′ are deduced from f and S via conjugation by the element b ∈ B×. The order S ′ is in

normal form by definition.

Recall that the point P ′ was given by the pair ( f, R ′ ), where R ′ was in normal form, corresponding

to the vertex v of the tree T . It follows from the definition of S ′ that the vertex corresponding to S ′
p

is vτ = τpv, where τp = bp f (tp ), and bp and tp are the local components in Bp of the elements b

and τ̃ respectively. Thus we find once again that the action of the Galois group on the Heegner points

reduces simply to a translation. But the element τp does not in general fix the origin v0, as occurred

in the case of the local Galois action. Furthermore, the embedding f has changed to f ′ (although this

will not play an important role in the sequel).

For each τ ∈ G1 , we obtain a vertex vτ0 = τpv0, and a collection of vertices V
′τ
n = τpV

′
n at distance

n − δ from vτ0. We write X
′τ
n for the set of Heegner points of conductor pn−δ of the form P

′τ , for

P ′ ∈ X ′
n . Then it is clear that the points P

′τ ∈ X
′τ
n are represented by pairs ( f ′, S ′ ) as above, where

where S ′ is in normal form, corresponding to the vertex v ′ ∈ V
′τ
n , and the embedding f ′ depends

only on τ, and is deduced from f by conjugation by the element b = bτ ∈ B×.

We summarize this discussion as

Proposition 3.6 Let P = ( f, R) denote a fixed Heegner point of level 1. Let τ ∈ G1, and fix an idele

τ̃ ∈ K̂ whose Artin symbol in Gal(H∞/K ) = G1 × 1∞ is equal to τ. Let P ′ = ( f, R ′ ) denote a good

Heegner point in X
′
n , corresponding to the vertex v at distance n − δ. Then:
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. The conjugate point P
′τ may be represented by a pair ( f ′, S ′ ), where the order S ′ is in normal

form, and S ′
p corresponds to the vertex vτ = τpv, for some fixed τp ∈ Bp which is independent of

n and P ′ .

. The element τp can be written as τp = bp f (tp ), where tp and bp are the local components at p of

τ̃ and some b ∈ B× respectively.

Let G0 ⊂ G1 denote the genus subgroup, namely, the subgroup generated by the elements Frob (q),

where q is the unique prime of OK above q, for each (ramified) rational prime q dividing D =
disc(K ). Then the following innocuous proposition is actually rather important. It states that the

action of τ ∈ G1 is rational if and only if τ ∈ G0 .

Proposition 3.7 Let τp be as in Proposition 3.6. Then τp ∈ Q×
p B× ⊂ B×

p ⇐⇒ τ ∈ G0.

Proof. Suppose that τp ∈ Q×
p B× ⊂ Bp . We want to prove that τ ∈ G0 . We begin with a series of

reductions. Since H∞/K is an anticyclotomic extension, elements of Q×
p are local norms from H∞.

Changing τ̃ if necessary, we may assume that τp ∈ B×. Since τp = bp f (tp ), and bp is clearly a Q-

rational point of Bp, we may even assume that f (tp ) is a Q-rational point. Finally, since f (K ) is a

maximal commutative subalgebra of B, and since f (tp ) commutes with f (K ), we can reduce to the

case that f (tp ) is in the image of K ×.

Thus, recall that tp is the local component of the idele τ̃, where τ̃ corresponds via class field theory

to τ, and suppose that there exists k ∈ K such that the local components of τ̃ and k are equal in K ×
p .

Then τ̃k−1 has local component 1 at p. Furthermore, the Artin symbols of τ̃ and τ̃k−1 are equal.

Now let a denote the fractional ideal of K defined by τ̃k−1. Since τ̃k−1 is trivial at p, the ideal a is

prime to p.

Since the extension H∞/K is unramified away from p, the Artin symbol of a is well-defined in

Gal(H∞/K ). From the definitions, we find that the Artin symbol of a is given by τ ∈ G1 , which is

an element of finite order m. Replacing a by b = am , we see that b = (β) is principal, and has trivial

Artin symbol in Gal(H∞/K ). Scaling β by a suitable rational integer, we may assume that β is even

integral. Note that this does not change the Artin symbol.

Now, according to class field theory, the Artin map induces an isomorphism Pic(On ) ∼= Gn+δ =
Gal(Hn+δ/K ). It follows that, for each n ≥ 1, the ideal (β) has a generator βn which is congruent

to a rational integer modulo pn . Since K is an imaginary quadratic field, the ideal (β) can have only

finitely many generators (there are only finitely many units). Changing the generator β if needed, we

may assume that β is congruent to a rational integer modulo pn for infinitely many n. It follows that β

lies in the closure of Z in K ⊗ Zp . Since β ∈ OK , we conclude that β ∈ Z. Thus we find that am = (β),
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where β ∈ Z. Letting σ denote the nontrivial automorphism of K/Q, we then find that

(

aσ

a

)m

= (aσ )m

am
= (am )σ

am
= βσ

β
= 1.

Thus (aσ/a)m is the unit ideal, and aσ = a by unique factorization. It follows from this that, if a split

prime q divides a, then so does the conjugate qσ . Thus a is divisible by qqσ = (q ), where q is a rational

prime. On the other hand, all inert primes in K are already principal, generated by rational integers.

Thus a = a′ · (b ), where a′ is a product of ramified primes, and (b ) is principal and generated by a

rational integer b ∈ Z. Then (b ) has trivial Artin symbol in Gn for all n. So the Artin symbol of a

coincides with that of a′ , which is a product of ramified primes, as required.

As for the converse, we have already remarked that if q is a prime of OK which is ramified in

K/Q, then τ = Frob(q) is an element of order two in G1 . (See the discussion preceding Proposition

2.14.) By definition, the elements Frob(q) generate G0 , and it suffices to show that τp ∈ B×, for

τ = Frob(q). Thus let π denote a uniformizer of K at a prime q|D, and let π̃ denote the idele of K

with component π at q, and with component 1 elsewhere. Then π̃ corresponds to Frob(q) under the

Artin map. By strong approximation, there exists b ∈ B× such that bf (π̃) ∈ Q×
ℓ R×

ℓ , for all primes

ℓ with ℓ 6= p. It follows that we can take this b in the definition of τp , so that τp = bp f (π̃p ). Since

π̃p = 1 by definition, we have τp = bp ∈ B× ⊂ Bp , as required. �

3.8 We want to make some conventions about the genus subgroup G0, as this will be useful later.

By definition, G0 ⊂ G1 is the subgroup generated by the elements Frob(q), where q runs over the

primes of OK that are ramified over Z. Let r denote the number of such primes. Then it is clear that

G0 has cardinality 2r . Indeed, it is clear that the order of G0 is bounded from above by 2r , since each

Frobenius element is quadratic. On the other hand, it is well-known from genus theory that the image

of G0 in Pic(OK ) has order 2r−1, owing to the unique relation
∏r

i=1 qi = (
√

D ), which represents

the trivial ideal class. Since (
√

D ) is nontrivial in Pic(On ) for n sufficiently large, it follows that the

various Frob(qi ) are independent in G0 ⊂ G1 . Thus, given τ ∈ G0, there exists a unique subset

Iτ ⊂ {q1, q2, . . . , qr } such that

τ =
∏

q∈Iτ

Frob(q).

Conversely, any I ⊂ {q1, q2, . . . , qr } is of the form Iτ for a unique τ = ∏

q∈I Frob(q). For τ ∈ G0

we may therefore define a squarefree integer d = dτ by saying

d = dτ =
∏

q∈Iτ

q.

This notation will be helpful in the final section of this paper.
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Finite quotients of the tree

In this section, we describe how to compute the conjugacy class of an Eichler order in normal form.

The principal ideas come from graph theory, so we need to fix some notation, as in [God].

3.9 A graph G consists of a set V (G ) of vertices of G, and a set E(G ) of edges. Each edge Ee of G

determines an ordered pair (v, w) of vertices of G, called the extremities of Ee. The vertex v is called

the origin of Ee and the vertex w is called its terminus. The edge Ee is said to join v to w. The set E(G )

is equipped with an involution Ee 7→ Ee ′ , with the property that if Ee joins v to w, then Ee ′ joinsw to v. A

loop is an edge whose extremities coincide. A graph has multiple edges if distinct edges have the same

origin and terminus. The degree of a vertex v is the number of edges originating from v. A regular

graph is one which has neither loops nor multiple edges, and such that the degree d = d(v ) of any

vertex v is independent of v. The integer d is called the degree of the graph. The graph G is called

connected if for any pair (v, w) of vertices, there exists a sequence of edges leading from v to w.

Suppose G is a graph on a finite number m of vertices. Then the adjacency matrix A(G ) of of G

is the m × m matrix whose rows and columns are indexed by the vertices of G. The entry of A(G )

in the (v, w)-th position is number of edges from v to w. Then A(G ) is a symmetric matrix. It is

well-known that the eigenvalues of A(G ) are real, and that A(G ) is diagonalizable. If G is regular

and connected, of degree d, then the Frobenius-Perron theorem (see [God]) states that the largest

eigenvalue (in absolute value) of A(G ) is λ = d, and that this eigenvalue occurs with multiplicity one.

The graph G is called bipartite if λ = −d is also an eigenvalue of A(G ). Geometrically, this means

that the vertices of G are divided into two subsets, with every edge going from one subset to the other.

Equivalently, to say that G is not bipartite means that there exists a circuit of odd length starting and

ending at any given vertex (see [CDS], Theorem 3.4).

3.10 Let P = ( f, R) denote the fixed Heegner point of conductor 1 selected above. Let Ŵ′ ⊂ B×

denote the group R[1/p]× . Then it follows from strong approximation in B̂ that

Cl(B ) = B×\B̂×/R̂× = Ŵ′ backslashB×
p /Q×

p R×
p .

Observe that B×
p /Q×

p R×
p

∼= PGL2 (Qp )/PGL2 (Zp ) is the vertex set of the tree T of Bp introduced in

section 3.1. Thus we have identified the set Cl(B ) with the vertices of the quotient graph G ′ = Ŵ′\T .

Note however that G need not be a regular graph, because the group Ŵ′ may have nontrivial elements

of finite order. It will be convenient therefore to replace Ŵ′ with a congruence subgroup Ŵ of finite

index, such that Ŵ is torsion-free.

Thus let M > 4 denote a prime number with (M ,N Dp) = 1. We will assume that M ≡ 3

(mod 4) and that p is a quadratic residue modulo M . Then we let Ŵ(M ) ⊂ R[1/p]× denote the
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subgroup of elements that are congruent to 1 modulo M , where we have fixed an isomorphism RM
∼=

M2(ZM ). We let Ŵ ⊂ G̃ = PGL2 (Qp ) denote the projectivization of Ŵ(M ). Finally, we let Ŵ+ =
Ŵ ∩ PSL2 (Qp ).

It follows from the fact that M > 4 that Ŵ(M ), and so Ŵ and Ŵ+, are torsion-free. Since we

have assumed that M ≡ 3 (mod 4) and that p is a square modulo M , we find that p has odd order

modulo M . By Lemma 7.3.9 of [Lub], this implies that the quotient G = Ŵ(M )\T = Ŵ̃\T is not

bipartite. We will use this fact later. On the other hand, it is clear that Ŵ+\T is indeed bipartite. The

inclusion Ŵ(M ) ⊂ R[1/p]× induces a finite-to-one map

G = Ŵ(M )\T → R[1/p]×\T = Cl(B ).

We would like to view the function ψ : Cl(B ) → R as being defined on G, via the projection above,

and transfer calculations such as those appearing in Proposition 2.14 to the regular graph G. However,

there is a slight complication that arises from the presence of elliptic elements in R[1/p]× , which has

to be navigated before we can proceed further. Thus, for a vertex v ∈ T , we write e = ev to denote the

order of the stabilizer in Ŵ′ .

Lemma 3.11 The integer ev is equal to the order of R×
v , where Rv is the Eichler order in normal form

determined by v. If ψ̃ : G → R is the pullback ofψ to G, then
∑

v∈G ψ̃(v ) =∑

[Ri ]∈Cl(B )ψ(Ri )/wi =
0, where wi is the order of R×

i .

Proof. The first assertion is clear. As for the second, let L2 denote the finite-dimensional space of

functions on the vertices of G, equipped with the inner-product

(φ1 , φ2 ) =
∑

v∈G

φ1(x )φ2(x ).

Define an operator ∇ on L2 by saying

(∇φ)(x ) =
∑

y∼x

φ(y ),

for any φ ∈ L2, where the sum is taken over the neighbors of x. Then ∇ is a symmetric and positive-

definite operator (see for example [Lub], §4.2). By the definition of the Hecke operator Tp , we find

that ψ̃ is an eigenfunction for ∇, with eigenvalue ap = ap (g ). On the other hand, it is clear that the

identity function 1 is also an eigenvector for ∇, with eigenvalue p + 1. Then ap 6= p + 1, since g is a

cuspform. The proposition now follows from the fact that the vectors 1 and ψ̃ are orthogonal.

This argument also completes the proof of Lemma 2.5. Namely, Lemma 2.5 simply states the fact

that the eigenvalue of 1 is p + 1, for any p ∤ N . �
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Random walks on graphs

3.12 We start by studying a general situation. Let G denote an arbitrary connected graph, assumed

regular of degree d. We say that a walk on G has no backtracking if at no stage of the walk does one

traverse an edge, and then immediately go back along the same edge in the opposite direction (see

[Fri], page ). Given vertices x and y of G, we say that

x ∼n y

if there is a length n walk without backtracking that starts at x and ends at y. (The length of a walk is

the number of edges traversed.) It is clear that there are d(d − 1)n−1 walks without backtracking of

length n departing from a given x. We will usually say ‘walk’ instead of ‘walk without backtracking,’

since these are only kinds of walks that we consider in the present work. If G is a tree, then x ∼n y if

and only if x and y are distance n apart.

3.13 Now suppose that G is a finite graph on m vertices. Let a vertex x ∈ G be fixed. Write Wn for

the set of terminal vertices of all walks of length n that start from x, counted with the appropriate

multiplicity. Then the set Wn has cardinality d(d − 1)n−1. The basic principle we will use is that,

in this situation, the set Wn is uniformly distributed among the m vertices of G. Indeed, if µn (y )

denotes the multiplicity of y in Wn , then

µn (y )

d(d − 1)n−1
∼ 1

m
, (20)

as n → ∞. In fact, one has the following result.

Proposition 3.14 Let φ be any complex valued function on G. Then, if G is not bipartite, we have

lim
n→∞

1

d(d − 1)n−1

∑

y∈Wn

φ(y ) = 1

m

∑

x∈G

φ(x ). (21)

Proof. This seems to be well-known amongst the graph-theorists. A proof may be found in [Fri],

Lemma 3.3, and Lemma 3.4. Note that in the special case where φ is the characteristic function of a

vertex, the proposition reduces to the formula (20). �

3.15 We will actually need a slightly more general statement than the one given above. As before, let

a vertex x ∈ G be fixed. Suppose we are given a collection of good neighbors of x, namely, vertices

x1, x2 , . . . , xr of G adjacent to x. Each xi determines an edge emanating from x, which we call a

good direction. We will say that a walk (without backtracking, as always) is good if it exits from x in

a good direction. Let Wn = Wn (x ) denote the set of terminal vertices of the good walks of length n,
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counted with multiplicity. Obviously, there are r (d − 1)n such vertices. Then we have the following

generalization of Proposition 3.14:

Proposition 3.16 Suppose that G is not bipartite. Let φ be any complex valued function on G. Then

lim
n→∞

1

r (d − 1)n

∑

y∈Wn

φ(y ) = 1

m

∑

x∈G

φ(x ). (22)

Proof. We briefly sketch the method of deducing this from the previous proposition. By linearity, it

is enough to consider the case where there is a single good direction from x, going, say, from x to y.

Write Wn (x ) for the set of terminal vertices of good walks of length n from x, as above. For a vertex

a ∈ G, we will write W ′
n (a) to denote the set of terminal vertices of all non-backtracking walks of

length n, starting from a. Thus Wn (x ) ⊂ W ′
n (x ).

Let the function φ be given. Then write Tn (φ) = ∑

v∈Wn (x ) φ(v ), and, for any a ∈ G, define

Sn (a, φ) = ∑

v∈W ′
n (a )

φ(v ). Now let consider any walk of length n that exits x in a good direction.

Such a walk reaches y at the first step, and then proceeds from y as a walk without backtracking. Thus

each good walk of length from x determines a walk of length n − 1 from y. The subset of walks from

y that are obtained in this way is easily described: it is the set of walks that exit y in any direction other

than the one leading back to x. Write Wn−1(y, x ) for the set of terminal vertices of the walks of length

n − 1 from y that simply return to x at the first step, and let Un−1(φ) = ∑

v∈Wn−1 (y,x ) φ(v ). Then

we have

Tn (φ) = Sn−1(y, φ) − Un−1(φ).

But each walk from y that returns to x in turn determines a walk of length n − 2 from x that exits x

in any direction other than the one back (again) to y. Thus we get

Tn (φ) = Sn−1(y, φ) − (Sn−2(x, φ) − Tn−2(φ)) .

It follows that

Tn (φ) = Sn−1(y, φ) − Sn−2(x, φ) + Sn−3(y, φ) · · · ± S1(z , φ) ∓ c0,

where c0 is some constant and z = x or z = y, depending on whether n is odd or even. Thus,

Tn (φ)

(d − 1)n−1
= c0

(d − 1)n−1
+

n−1
∑

j=1

(−1)n−1− j S j (z j , φ)

(d − 1)n−1
,

where z j = x or y according to the parity of j . By Proposition 3.14, the sum on the right converges

absolutely as j → ∞. Letting A denote the quantity 1
m

∑

x∈G φ(x ), we find that

lim
n→∞

Tn (φ)

(d − 1)n−1
= dA

∞
∑

j=1

(−1) j+1

(d − 1) j
= A,
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as required. �

3.17 We can now complete the proof of Theorem 1.5 of the introduction, recalling at the outset the

notations and definitions of the section on normal forms and Galois actions. In particular, we have a

fixed base point P of level 1, giving an origin v0 on the tree. Let X ′
n denote the set of Heegner points

corresponding to the good vertices at distance n − δ. (Recall that δ denotes the nonnegative integer

such that Gn+δ = Pic(On ), for n ≫ 0.) For τ ∈ G1, we get a different origin, and a different set X
′ τ
n

of good vertices at distance n − δ. Then, projecting the set X
′τ
n onto the finite graph G, we find from

Proposition 3.16 that

lim
n→∞

1

pn−1−δ
∑

P∈X
′σ
n

|ψ(P )|2 = δ0

m

∑

x∈G

|ψ(x )|2 .

Here δ0 denotes the order of the (tame) inertia subgroup in G0, as in §3.2. Summing this over all τ,

we get

lim
n→∞

1

pn−δ−1

∑

P∈Xn

|ψ(P )|2 = c

m

∑

x∈G

|ψ(x )|2 = c

h

∑

R∈Cl(B )

ψ(R)2/wR ,

as asserted.

4 The theorems of Ratner

In this section we will introduce the theorems of Ratner, and start collecting the consequences, in

preparation for the proof of our main results in the next section.

Recall that our general aim is to determine the relations between the classes of Heegner points P

and Pτ , for τ ∈ G1 . The following theorem, which we shall deduce from Ratner’s results, states that

[P] and [Pτ ] are independent, as long as τ /∈ G0 . The proof will introduce some of the ingredients

that will be needed later.

Theorem 4.1 Let C1 and C2 be arbitrary conjugacy classes of oriented Eichler orders of level N +, and

let τ be an arbitrary nontrivial element of G1, such that τ /∈ G0 . Then there exists a Heegner point P

of conductor pn such that P = ( f1 , R1 ) and Pτ = ( f2 , R2 ), where the order Ri represents the class Ci .

Furthermore, one can choose the point P so that the integer n given by Cond(P ) = pn has any desired

parity.

Remark 4.2 The idea of the proof is simple. According to the description of the Galois action ob-

tained earlier, it will suffice to find a vertex v ∈ T corresponding to R1, such that the vertex vτ = τpv

corresponds to R2. Note however that we may replace v by γ1v, for γ1 ∈ Ŵ without changing the im-

age in Cl(B ). This has the effect of replacing τpv with τpγ1v. One can then change τpv by translating
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further by γ2 ∈ Ŵ, to get the vertex γ2τpγ1v. Thus we are led to prove that the double coset ŴτpŴ is a

large subset of B×
p . For example, if one knew that ŴτpŴ were dense in B×

p , the theorem would follow

immediately. This is in essence what we will do below.

4.3 It is clear that ŴτpŴ cannot be dense if Ŵ ∩ τpŴτ
−1
p has finite index in each of Ŵ and τpŴτ

−1
p .

Before proceeding to Ratner’s theorem, we therefore recall some simple facts about commensurabil-

ity. Thus, recall that if H1 and H2 are subgroups of the group G, then we say that H1 and H2 are

commensurable if H1 ∩ H2 is of finite index in H1 and H2. Given a subgroup H of G, the commen-

surator of H in G is the set of all x ∈ G such that xH x−1 is commensurable with H . If H1 and H2 are

commensurable, then they have the same commensurator. Applying these notions in our context, we

have

Proposition 4.4 Let Ŵ be the subgroup fixed in (3.10). If α ∈ B×
p is such that Ŵα = αŴα−1 is com-

mensurable with Ŵ, then α ∈ Q×
p B×.

Proof. See [Vig], Corollaire ., page . Note that Ŵ is actually the projectivization of Ŵ(M ) ⊂
R[1/p]× ⊂ B×

p , but since conjugation by Q×
p is trivial, the conjugate Ŵα = αŴα−1 is well-defined

for α ∈ Bp.

4.5 We now want to state the theorems of Ratner that are crucial to our proof of Theorem 4.1. As a

reference for this material, we refer the reader to the introduction of Ratner’s paper [Rat], and also

to Chapter 1 of [Rag] for the basic facts about lattices.

Let G be any p-adic Lie group and let Ŵ be a discrete subgroup. Then Ŵ is called a lattice in G

if Ŵ\G admits a finite G-invariant measure. In particular, if Ŵ is discrete and cocompact, then it is

a lattice in this sense. A subset A ⊂ Ŵ\G is called homogeneous if there is an x ∈ Ŵ\G and a closed

subgroup H ⊂ G such that xH x−1 ∩ Ŵ is a lattice in H , and A = xH . This implies in particular

that A is closed in Ŵ\G. An element u ∈ G is called ad-unipotent if the automorphism Ad(u ) of the

Lie algebra G of G is unipotent. In particular, an element that is unipotent in the usual sense is also

ad-unipotent. Finally, a 1-parameter subgroup of G is an additive homomorphism u : Qp → G. It

is a fact that if G is a p-adic Lie group, then the image of any one-parameter subgroup consists of

ad-unipotent elements. Ratner’s deep result is then the following:

Theorem 4.6 ([Rat95], Theorem 2) Let G and Ŵ be as above. Let U ⊂ G be any subgroup generated

by 1-parameter subgroups. Then, for any x ∈ Ŵ\G, the closure of the orbit xU is homogeneous. Thus

there exists a closed subgroup H of G such that xU = xH in Ŵ\G.

Remark 4.7 In our application it will be important to have U ⊂ H . This is in fact true in general,
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and seems to be well-known to the experts, but since this is not explicitly stated in Ratner’s theorem,

we give an elementary argument to reduce to this situation. Let X ⊂ Ŵ\H denote the closure xU of

xU . Then, by Ratner’s theorem above, X = xH , so that the set X is stable under right translation by

H . On the other hand the dense subset xU ⊂ X is stable under U . Since X is closed, it follows that X

is actually stable under U as well. Thus X is invariant under the subgroup generated algebraically by

U and H . Since X is closed, we see that it is even invariant under the closed subgroup H̃ generated by

U and H . Then xH̃ ⊂ X , and since H ⊂ H̃ , we have X = xH ⊂ xH̃ . It follows that X = xH̃ , and

U ⊂ H̃ . Thus we may replace H by H̃ if necessary to assume that U ⊂ H .

Remark 4.8 We want to make one further observation about the group H appearing in the statement

of Ratner’s theorem. By the foregoing remarks, we may assume that U ⊂ H , and that the orbit of H is

the closed set xU . It follows that H may be taken to be the smallest subgroup of G such that U ⊂ H ,

and that the orbit of H is closed in Ŵ\G. When Ŵ is a cocompact lattice, one knows that the orbit xH

of H is closed in Ŵ\G if and only if Ŵ ∩ xH x−1 is a lattice in xH x−1. (See [Rag], Theorem ..)

Thus, if Ŵ is cocompact, we may characterize H as the smallest subgroup of G which contains U , and

which is such that Ŵ ∩ xH x−1 is a lattice in xH x−1. We will use this frequently below.

The proof of the following corollary was suggested by Dani and Raghunathan.

Corollary 4.9 Let G ⊂ B×
p denote the subgroup of elements with reduced norm 1, and let Ŵ be any

cocompact lattice. Let α ∈ B×
p and set Ŵα = αŴα−1 . Then, if Ŵ and Ŵα are not commensurable, the set

Ŵα · Ŵ is dense in G.

Proof. We apply Ratner’s theorem to the product G∗ = G × G, the lattice Ŵ∗ = Ŵα × Ŵ ⊂ G∗, the

diagonal subgroup1 = {(g , g )}, for g ∈ G, and the point x = 1. Note that1 is indeed ad-unipotent,

for we have1(Qp ) ∼= SL2 (Qp ), which is well-known to be generated by unipotent elements.

According to Ratner’s theorem, the closure of the diagonal in Ŵ∗\G∗ is the image of a closed

subgroup H of G∗, with1 ⊂ H . Furthermore, Ŵ∗ ∩ H is a lattice in H . Since1 ∼= G is the diagonal,

we see that Ŵ∗ ∩ 1 is precisely Ŵα ∩ Ŵ ⊂ G. Under our hypotheses, the groups Ŵ and Ŵα are not

commensurable, so that Ŵα ∩ Ŵ has infinite index in at least one of Ŵα and Ŵ. In particular, Ŵα ∩ Ŵ is

not a lattice subgroup of G. It follows that H contains the diagonal with infinite index. Let (h1, h2 ) ∈
H be such that h1/h2 6= ±1. Then, since H contains the diagonal, we find that H contains an element

y = (h, 1) where h 6= ±1. Let H1 ⊂ H be the set of elements of the form (h, 1). Then H1 is normal

in H . Conjugating by the diagonal, we see that the set {h ∈ G : (h, 1) ∈ H } is an infinite normal

subgroup of G. But G = SL2 (Qp ) has no nontrivial normal subgroups other than ±1. It follows that

H contains G × 1, and since H contains the diagonal, we find that H = G∗ .
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We conclude from this that the orbit of the diagonal 1 is dense in Ŵ∗\G∗ , so that the subset

(γx, γ ′ x ) is dense in G × G. Considering the map (p, q ) 7→ pq−1, of G × G to G, we see that

Ŵα · Ŵ is dense in G, as required. �

Remark 4.10 The proof above shows that the diagonal orbit1 is dense inŴ∗\G∗ , for G ∼= PSL2 (Qp ),

and that the setŴ∗ ·1 is dense in G ×G. For later use, we will need a slight generalization, when PSL2

is replaced by PGL2 . Thus let G̃ denote B×
p /Q×

p = G̃ = PGL2 (Qp ), and let Ŵ̃ and Ŵ̃′ denote cocom-

pact lattices in G̃. As before, we put Ŵ̃∗ = Ŵ̃ × Ŵ̃′ , and G̃∗ = G̃ × G̃. Then we want to determine the

closure of the orbit of the diagonal 1̃ ∼= G̃ in Ŵ̃∗\G̃∗ .

If Ŵ̃ and Ŵ̃′ are commensurable, then 1̃ ∩ Ŵ̃∗ ∼= Ŵ̃ ∩ Ŵ̃′ is a lattice in 1̃, so that the diagonal orbit

is closed. Suppose on the other hand that Ŵ̃ and Ŵ̃′ fail to be commensurable. Let Ŵ and Ŵ′ denote

the intersections of Ŵ̃ and Ŵ̃′ with G = PSL2 . Then Ŵ and Ŵ′ are cocompact lattices in G, which are

not commensurable. Thus if 1 ⊂ 1̃ denotes the diagonal PSL2 , the corollary above shows that the

closure of Ŵ̃∗ ·1 contains PSL2 × PSL2 . Let H̃ ⊂ G̃∗ denote the product group 1̃ · (PSL2 × PSL2 ).

Then clearly 1̃ ⊂ H̃ , and H̃ is contained in the closure of Ŵ∗ · 1̃. Since Ŵ̃∗ ∩ H is obviously a lattice

in H̃ , it follows that the closure of the diagonal orbit coincides with the orbit of H̃ .

4.11 We may now complete the proof of Theorem 4.1. Let G̃ = Bp/Q×
p

∼= PGL2 (Qp ), and let G ∼=
PSL2 (Qp ) ⊂ G̃ denote the image of the elements of norm 1. Let the lattice Ŵ be as in section 3.10,

and let Ŵ+ = Ŵ ∩ G. Let τp denote the element of B×
p giving the action of τ. According to Proposition

3.7, τp is not in Q×
p B×, which implies that Ŵ and τ−1

p Ŵτp are not commensurable. SinceŴ and Ŵ+ are

commensurable, we find that Ŵ+ and Ŵ′
+ = τ−1

p Ŵ+τp = τ−1
p Ŵτp ∩ G are not commensurable either.

Applying the corollary above, we see that the set Ŵ′
+Ŵ+ is dense in G. If v is any vertex on the tree, it

follows that the set of vertices of the form Ŵ+τpŴ+v is either equal to Gv, or to τpGv, depending on

whether the image of τp in G̃ is an element of G or not. In the first case, we get all those vertices that

are at an even distance from v, and in the second case we get the vertices whose distance is odd.

We fix a base point v0 on the tree, as in §3, corresponding to P = ( f, R) of level 1. We want

to find a vertex v such that v and τpv represent Heegner points ( fi , Ri ), where the Ri are as in the

statement of the theorem. Let the finite graph G = Ŵ\T be as in section 3.10. Let (x, y ) ∈ G × G

be any pair of vertices. It then suffices to find a vertex v ∈ T such that the image of (τpv, v ) ∈
(Ŵ × Ŵ) \ (T × T ) = G × G is the given pair (x, y ).

Let (w, v ) denote any lift of (x, y ) to T × T . It follows from our choice of the congruence group

Ŵ(M ) in section 3.10, that the graph G is not bipartite. We may assume therefore that the vertex v

has any desired parity, and further, that the distance from v tow has any desired parity. Choosing the

parities suitably, the above remarks imply that we can find γ, γ ′ ∈ Ŵ+ such that w = γτpγ
′v. Since





τpγ
′v = γ−1w, we find that (τpv

′ , v ′ ) has the required image in G × G, where v ′ = γ ′v. Note here

that γ ′ ∈ Ŵ+ lies in PSL2 , and so does not disturb the parity conditions.

4.12 For the proof of Proposition 2.14, we need a more quantitative version of Ratner’s theorem,

namely the uniform distribution of certain one-parameter flows. To describe this, we proceed as

follows. Let G denote a p-adic Lie group, and let U = u(t ) : Qp → G be a one-parameter subgroup.

If Ŵ denotes a lattice in G, and x ∈ Ŵ\G, then Theorem 4.6 applies to U and x, and shows that the

closure of xU in Ŵ\G is homogenous. Let H denote a closed subgroup such that U ⊂ H and such

that the closure X of xU is the orbit xH of H . Then Ŵ ∩ xH x−1 is a lattice in xH x−1, and there is a

unique H-invariant Borel measure µ on supported on X , normalized so that µ(X ) = 1. Ratner has

shown that xU is uniformly distributed in X in the following precise sense. Let λ denote an additive

Haar measure on Qp , and for s ∈ R, let F (s) ⊂ Qp denote the subset {x ∈ Qp : |x | ≤ s}.

Theorem 4.13 ([Rat95], Theorem 3) Let φ denote any bounded continuous function on X . Then we

have

lim
s→∞

1

λ(F (s))

∫

F (s )
φ(xu(t ))dλ(t ) =

∫

X
φ(x )dµ(x ). (23)

4.14 Let G be any p-adic Lie group and U a one-parameter subgroup as above. Let G denote the Lie

algebra of G, and let u ∈ G denote a nonzero vector tangent to U . Then u is nilpotent. We say that

a ∈ G is a diagonal for u if there is a nilpotent u∗ ∈ G such that

adu∗ (u ) = a, ada (u ) = −2u, ada (u
∗ ) = 2u∗ .

The element u∗ is called an opposite for u. Then u and u∗ generate a Lie subalgebra sl2 (u, u∗ ) of

G isomorphic to sl2(Qp ). The terminology is motivated by the example of G = SL2 (Qp ), when

G = sl2 consists of the matrices of trace zero. In this case, U can be taken to be the upper triangular

unipotent subgroup, and the elements a, u∗ , and u may be taken to be the matrices

a =




−1 0

0 1



 , u∗ =




0 0

1 0



 , and u =




0 1

0 0



 .

Now let U, u, u∗ , a be as above, and let A ⊂ G denote a one-dimensional Lie subgroup of G

normalizing U , whose tangent space is spanned by a. Then we say that a subgroup A ⊂ G is a diagonal

for U if there exists a one-parameter ad-unipotent subgroup U ∗ normalized by A which is tangent to

u∗ and such that A ⊂ S, where S is the subgroup of G generated by U and U ∗. We require further

that AdG maps A homomorphically onto the multiplicative 1-parameter subgroup of AdG (S) with

tangent vector a. For a discussion of this definition, we refer the reader to [Rat], page . The

existence and properties of such diagonal subgroups is a key ingredient in all of Ratner’s theory. In the
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example of G = SL2 , the opposite U ∗ is the lower triangular unipotent subgroup, and the diagonal A

is the subgroup of diagonal matrices of determinant 1.

We would like to use these notions in the following very simple situation. Let G denote a p-

adic Lie group, and Ŵ ⊂ G a lattice. We suppose that there is a closed subgroup S ⊂ G such that

S ∼= PSL2 (Qp ), and we fix such an identification. In particular, any unipotent subgroup U of PSL2

gives a one-parameter subgroup of G. Then it is obvious that such a U admits a diagonal and an

opposite. Namely, if we conjugate so that U becomes the (image of) the standard upper triangular

unipotent subgroup, then A is the diagonal subgroup and U ∗ is the lower triangular subgroup, as

above.

With these assumptions, let x ∈ Y = Ŵ\G, and let X denote the closure of xU . Then X is the

orbit of some closed H ⊂ G. Let µ be the normalized H-invariant measure on X , as above. Then

Ratner has proved the following theorem.

Theorem 4.15 ([Rat95], Theorem 6, Corollary 4) Suppose that the lattice Ŵ ⊂ G is cocompact,

and that the one parameter group U satisfies U ⊂ S ⊂ G, where S ∼= PSL2 (Qp ). Then the measure µ

is preserved by cSc−1 for some c ∈ G such that c centralizes U .

We note a simple consequence of this theorem. The measure µ is supported on the orbit of H .

The fact that S ′ = cSc−1 preserves the measure µ means that we may assume S ′ ⊂ H . We will use

this observation below.

5 Proof of the main results

We may now complete the proof of Proposition 2.14. For the convenience of the reader, we repeat the

statement here. Recall the definitions of the numbers h, c , and ψ: we have

h =
∑

[R]∈Cl(B )

1/wR ,

where wR is the order of R× , and

|ψ|2 = 1

h

∑

ψ([R])2/wR = 1

h

∑

|ψ([R])|2/wR .

We put Ep =
(

a2
p

(

p+1

p−1

)

+ 1
)

, and define ED = ∏

qi |D(1 + χt (Frob(qi ))aqi
/(qi + 1)). Finally,

c = en/pn−δ−1, where en is the order of Gn .

Proposition The following limit formulae hold:

lim
n→∞

1

cpn−δ−1

∑

P∈Xn

∑

τ∈G1

χt (τ )ψ(P
τ )ψ(P ) = ED · |ψ|2 , (24)
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and

lim
n→∞

1

cpn−δ−2

∑

Q∈Xn−1

∑

τ∈G1

χt (τ )
(

apψ(Q
τ ) − ψ(Q̌τ )

)(

apψ(Q ) − ψ(Q̌ )
)

= Ep · ED · |ψ|2 .

(25)

We will see below that the limits on the right-hand-side come from the terms on the left with

τ ∈ G0, where G0 ⊂ G1 is the genus subgroup (the main terms) and that the terms for τ /∈ G0 all tend

to the value zero.

5.1 We begin by considering the terms coming from τ ∈ G0, in the first case of the proposition.

In this case, we are required to calculate the asymptotic distribution of the vertices (v, τpv ) in the

product graph G × G. Equivalently, we want the distribution of (v, v ) in G × Gτ , where Gτ = Ŵτ\T ,

and Ŵτ = τpŴτ
−1
p . Note that the map v 7→ (v, v ) 7→ G × Gτ factors through a finite quotient of

the tree T precisely when the groups Ŵ and Ŵτ are commensurable, which is the case if and only

if τ ∈ G0. One can therefore compute the average when τ ∈ G0 by combinatorial means, as in the

proof of Theorem 1.5 in the previous section. But it will be convenient to show how this may be

deduced from Ratner’s theorems instead, as this kind of argument is valid even when τ /∈ G0, and also

allows one to treat both limits of the proposition in a uniform manner. The reader will notice that the

arguments below show that the main results of this paper may be proven without any recourse to the

theory of finite graphs, by using Ratner’s theorem and working with the tree instead. We have chosen

to retain the graph theoretic arguments because they are natural in this context, and illustrate a special

case of Ratner’s theorem.

We consider therefore the following general situation. Let φ denote a bounded, continuous, real-

valued function on G̃ = PGL2 (Qp ) = B×
p /Q×

p , left-invariant under some discrete cocompact sub-

group Ŵ, and right-invariant under some open compact subgroup Ṽ . Let P = ( f, R) denote a Heeg-

ner point of level 1, and let P1 = ( f, R ′ ) denote a good Heegner point of level p, so that the predeces-

sor of P1 is P. Then, Ṽ will be one of the following:

• the full maximal compact K̃ = R×
p /Z×

p stabilizing the vertex of T determined by Rp , or

• the stabilizer of the oriented edge of the tree T = G̃/K̃ going from P to P1.

These choices of Ṽ are motivated by the functions ψ(P ) and apψ(Q ) − ψ(Q̌ ) appearing in the

proposition above, since ψ is a function of the vertices of T , while apψ(Q ) − ψ(Q̌ ) is a function on

the oriented edges of T .

Now given any good Heegner point P ′ = ( f, R ′ ) of level pn , for n ≥ 1, we get a coset in G̃/Ṽ as

follows. If Ṽ is the maximal compact K̃ , then G̃/Ṽ = T , and the coset determined by P ′ is simply the
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corresponding vertex of T . If Ṽ is the stabilizer of an oriented edge, then the coset determined by P ′

is simply the edge whose origin is P ′ and whose terminus is the predecessor P̌ ′. In this way, we may

view the function φ as being defined on the good Heegner points by putting φ(P ′ ) = φ(gṼ ), where

gṼ is the coset determined by P ′ . (Recall that φ is right-invariant under Ṽ .)

Let τp ∈ G̃ be given, and consider the function ξ on G̃ × G̃ defined by the formula ξ(g1, g2 ) =
φ(g1 )φ(τp g2 ). Then ξ becomes a function on Heegner points by putting ξ(P ′ ) = ξ(g , g ), where g

is a representative of the coset gV determined by P ′ . Our task in this situation is to compute the limit,

as n tends to infinity, of the average 1
pn−1

∑

P∈X ′
n
ξ(P ), where X ′

n denotes the set of good Heegner

points of level pn . Note that it is not clear at the outset that this limit even exists.

To state the result, put Ŵ′ = τ−1
p Ŵτp , so that ξ is a function on Ŵ × Ŵ′\G̃ × G̃ . Let X̃ denote the

closure of the diagonal orbit 1̃ in Ŵ∗\G̃∗ , where Ŵ∗ = Ŵ × Ŵ′ and G̃∗ = G̃ × G̃. Ratner’s theorem

(Theorem 4.6 above) states that X is the orbit of some group H̃ , with 1̃ ⊂ H̃ ⊂ G̃∗. Since the orbit

of H̃ is closed, the subgroup ŴH̃ = Ŵ∗ ∩ H̃ is a lattice in H̃ , and X̃ = ŴH̃ \H̃ carries the right Haar

measure µ on H̃ , normalized so that µ(X̃ ) = 1. Then the key result we will use is the following

Proposition 5.2 Suppose that the graph Ŵ\T = Ŵ\G̃/K̃ is not bipartite. Then the following limit

formula holds:

lim
n→∞

1

δ0 pn−δ−1

∑

P∈X ′
n

ξ(P ) = lim
n→∞

1

cpn−δ−1

∑

P∈Xn

ξ(P ) =
∫

X̃
ξ(x )dµ(x ) =

∫

ŴH̃ \H̃
ξ(h)dµ(h).

(26)

Here we remind the reader that Xn is the set of Heegner points of level pn−δ, and that the number

c is defined so that cpn−δ−1 = #Xn , while X ′
n denotes the set of good Heegner points at distance n − δ

from the origin, and δ0 pn−δ−1 is the cardinality of X ′
n . Thus the proposition states that the average of

ξ over Heegner points of level pn converges to the average of ξ over the closure of the diagonal orbit.

Let us admit for the moment the validity of this proposition, and show how to complete the proofs

of our main results. The main point is to compute explicitly the integrals on the right of (26). Here

there are two cases, depending on whether Ŵ and Ŵ′ are commensurable or not. Indeed, the subgroup

H̃ of G̃∗ satisfies 1̃ ⊂ H̃ ⊂ G̃∗, and by Remark 4.10, we must have either H̃ = 1̃ or H̃ = 1̃ · (PSL2 ×
PSL2 ). The first possibility occurs if and only if Ŵ and Ŵ′ are commensurable.

Now we specialize to the cases of interest, where τp is the element of B×
p arising from τ ∈ G1 (see

§), the group Ŵ comes from a suitable congruence subgroup of R[1/p]× , and Ŵ′ = Ŵτ = τ−1
p Ŵτp .

We begin with the case where τ ∈ G0. We have τ ∈ G0 ⇐⇒ H̃ = 1̃, and in this case ŴH̃ =
Ŵ ∩ Ŵτ is a cocompact lattice in H̃ = 1̃ ∼= G̃. Write Ŵ(τ) for ŴH̃ = Ŵ ∩ Ŵτ , to emphasize the

dependence on τ. Let Sτ denote the finite set Ŵ(τ)\H̃ /Ṽ , and let sτ = #Sτ ; then since ξ is right-Ṽ -
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invariant, the right hand side of (26) is simply

∫

ŴH̃ \H̃
ξ(h)dµ(h) = 1

sτ

∑

x∈Sτ

ξ(x ). (27)

We can make this more concrete, for the Ṽ and ξ at hand. To treat equation (24), we take Ṽ to be

the maximal compact, and define ξ(g1, g2 ) = ψ(g1 )ψ(τp g2 ), where ψ is our original function on

G = Ŵ\T = Ŵ\G̃/Ṽ . To treat equation (25), we take Ṽ to be the stabilizer of an oriented edge of T .

In this case, let φ denote the function on oriented edges of T defined by φ(Ee ) = apψ(v) − ψ(w),

where v, w are the origin and terminus of Ee respectively. Identifying the set of oriented edges with

the coset space G̃/Ṽ , we may view φ as a right-Ṽ -invariant function on G̃. Then we put ξ(g1, g2 ) =
φ(g1 )φ(τp g2 ). Note that the hypothesis in Proposition 5.2 is satisfied, since by our choices the graph

G = Ŵ\T is not bipartite.

Let A1 denote the right-hand side of (27), when τ = 1, and let S1 = Ŵ\G̃/Ṽ . Let τ ∈ G0 be given.

Let τ = Frob(q1 )Frob(q2 ) . . . Frob(qr ), with qi |D, as in section 3.8, and put d = q1q2 . . . qr . Then

we claim that Sτ has cardinality sτ = s1td , where td is the degree of the d-th Hecke correspondence

Td , and that

Ad = 1

sτ

∑

x∈Sτ

ξ(x ) = 1

s1td

∑

x∈Sτ

ξ(x ) = ad

s1td

∑

x∈S1

ξ(x ) = ad

td
A1, (28)

where ad is the eigenvalue of Td acting on the function ψ. To see this, it is most convenient to work

adelically. Recall therefore that Ŵ is a suitable congruence subgroup of R[1/p]× , of level M . We have

assumed that M is relatively prime to N Dp. Define the open compact subgroup V of B̂× by saying

V = ∏

Vℓ ⊂ R̂× , where the local component Vℓ consists of elements in R×
ℓ that are congruent to 1

modulo M , at primes ℓ 6= p, and setting Vp ⊂ Rp to be the inverse image under the natural projection

of Ṽ ⊂ K̃ = R×
p /Z×

p . Let J = B× · Q̂× · B×
p · V . Then J is a normal subgroup of finite index in B̂×

(by strong approximation) and S1 = Ŵ\G̃/Ṽ = B×\ J/V . Note that V is a congruence subgroup,

and that S1 is endowed with a family of Hecke correspondences Tn , in the usual way. (See section 2.3

above, or [BD], §. A detailed discussion may also be found in § of [DT]. We will recall the

definition below.)

To relate Sτ and S1, we need to unwind the definitions from § above. Let d = q1q2 . . . qr denote

the factorization of d into distinct primes as above. Then each qi is ramified in K , and we write πi for

a uniformizer at qi . Now let τ̃ denote the idele of the field K with component πi at qi , for 1 ≤ i ≤ r ,

and with component 1 at other primes. Let P = ( f, R) be our fixed Heegner point of level 1. Then,

according to Proposition 3.6, the local element τp ∈ G̃ corresponding to τ is given by τp = bp f (tp ),

where tp is the local component of τ̃ at p, and bp is the local component of some b ∈ B×, which

is chosen such that the local component of bf (τ̃ ) lies in Q×
ℓ R̂×

ℓ , for all primes ℓ 6= p. For τ ∈ G0 ,
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the explicit form of τ̃ given above shows that the local component tp is trivial, so that τp = bp is an

element of B× ⊂ Bp . Recalling the notation Ŵτ = τ−1
p Ŵτp , we find from strong approximation that

Ŵτ\G̃/Vp = B×\ J/Q̂×Vτ , where Vτ is the open compact subgroup of B̂ given by (Vτ )ℓ = b−1
ℓ Vℓbℓ,

for ℓ 6= p, and (Vτ )p = Vp , where V = ∏

Vℓ is the subgroup defined previously. By definition of the

element b, we find that Vℓ = (Vτ )ℓ unless ℓ is one of the primes qi appearing in the factorization of

d. If ℓ = qi , then we have (Vτ )qi
= f (π̃i )Vqi

f (π̃i )
−1, where π̃i is the idele of K with component

equal to πi at qi , and with component 1 at other places. Since qi is ramified in K , we find that f (πi )

has reduced norm qi . Since the level M of V was assumed prime to D, the local component Vqi
is

a maximal compact, and the double coset Vqi
f (π̃i )Vqi

is the one defining the usual Hecke operator

Tqi
. Let V (τ ) = V ∩ Vτ ⊂ V . It follows that Sτ = B×\ J/Q̂×V (τ ). The inclusion of V (τ ) ⊂ V

induces a projection Sτ → S1, and for given x ∈ Si , the fiber above x is by definition the Hecke

correspondence Td (x ). The claim of equation (28) now follows readily, since the functions ψ and φ

defining ξ are eigenfunctions for Td with eigenvector ad .

It follows that the terms for τ ∈ G0 in equations (24) and (25) each contribute a factor ofχt (τ )
ad
td

A1

to the right hand side. Together, these give

∑

τ∈G0

ad

td
χt (τ )A1 = A1 ·





∑

τ∈G0

ad

td
χt (τ )



 = A1 ·
∏

(

1 + aqi

tqi

χt (Frob(qi ))

)

,

where the last equality follows from the fact that the primes qi are distinct, so that the Hecke operators

are multiplicative.

To complete our analysis of these terms, we need to compute the numbers A1 in each of the two

cases. In the situation of (24), we have already achieved this by combinatorial means above: we have

A1 = |ψ|2 .

In the situation of (25), the set S1 is simply the set of oriented edges of the finite graph G, and we have

to compute the average value of ξ2, over all the edges Ee of G:

∑

Ee
(apψ(x ) − ψ(y ))2 =

∑

Ee

(

a2
pψ(x )

2 + ψ(y )2 − 2apψ(x )ψ(y )
)

= a2
p (p + 1)

∑

x∈G

ψ(x )2 + (p + 1)
∑

y∈G

ψ(y )2 − 2ap

∑

Ee
ψ(x )ψ(y )

= a2
p (p + 1)|ψ|2 + (p + 1)|ψ|2 − 2a2

p |ψ|2 = |ψ|2 (p + 1 + a2
p (p − 1)). (29)

Since there are m(p + 1) oriented edges on G, where m is the number of vertices, we get

A1 = |ψ|2 · Ep ,
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where Ep is as in the statement of the proposition. This completes our analysis of the terms with

τ ∈ G0 in (24) and (25): we have shown that the contribution of these terms is exactly the quantity on

the right-hand side.

It now remains to analyze the terms with τ /∈ G0 , and to show that these vanish in the limit. In this

case the groups Ŵ and Ŵτ are not commensurable, and the closure of the diagonal orbit 1̃ is ŴH \H̃ ,

where H̃ is the subgroup H̃ ⊂ G̃∗ given by H̃ = 1̃ · (PSL2 × PSL2 ), and ŴH̃ = Ŵ∗ ∩ H̃ . By hypoth-

esis, the function φ in the definition of ξ is left-invariant under some γ ∈ Ŵ such that γ interchanges

the odd and even vertices on the tree T . Then ξ is left-invariant under the element (γ, 1), and right

invariant under the compact subgroup Ṽ∗ = Ṽ × Ṽ . Using the fact that Ṽ is the stabilizer of either

a vertex or an edge, one checks that the coset spaces G̃/(PSL2 (Qp ) · Ṽ ) and G̃∗/(H̃ · Ṽ∗ ) each has

two elements, and that the nontrivial coset in the latter is represented by γ∗. Since ξ is left-invariant

under γ∗ and right invariant under Ṽ∗, it follows then that the average of ξ over the orbits X̃ of H̃ and

the full Ŵ∗\G̃∗ are equal. Thus, to prove that the integral over X̃ is zero, it suffices to compute the

integral over Ŵ∗\G̃∗ .

But this latter is easy. In the situation of (24), the function ξ is right-invariant by the maximal

compact K̃ = PGL2 (Zp ), and Ŵ∗\G̃∗/K̃∗ = G × Gτ , where K̃∗ = K̃ × K̃ . It follows that

∫

Ŵ∗\G̃∗
ξ(x )dµ(x ) =

∑

x,y

ψ(x )ψ(y ),

where the sum is taken over pairs of vertices (x, y ) ∈ G × Gτ . But clearly

∑

x,y

ψ(x )ψ(y ) = (
∑

x

ψ(x ))(
∑

y

ψ(y )) = 0,

since ψ is orthogonal to the constant functions.

As for (25), ξ is right- invariant under the stabilizer Ṽ of an oriented edge. It follows thatŴ∗\G̃∗/Ṽ∗
consists of pairs (Ee1, Ee2 ) of oriented edges in G and Gτ . Then one simply has to show that

∑

Ee ξ(Ee ) =
0, where the sum is taken over all oriented edges of G. But we have

∑

Ee ξ(Ee ) = (p + 1)
∑

x∈G apψ(x )+
(p + 1)

∑

y∈Gψ(y ) = 0, by Lemma 3.11.

5.3 Thus we have reduced everything to proving Proposition 5.2. There are two possibilities for

the function ξ on the left: we have ξ(P ) = φ(P )φ(Pτ ), where either φ(P ) = ψ(P ), or φ(P ) =
apψ(P ) − ψ(P̌ ). In the former case ξ arises from a function on the vertices of the tree, and in the

latter from a function on the oriented edges. The argument is the same in each case, and we will

endeavor in the sequel to keep the notation uniform. Thus let us consider the tree T , together with a

fixed base point given by a Heegner point P = ( f, R) of level 1. Let X ′
n denote the set of good vertices
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at distance n − δ, corresponding to Heegner points of level n − δ. Let e ′
n = δ0 pn−δ−1 denote the

cardinality of X ′
n ; it is then enough to show that

lim
n→∞

1

e ′
n

∑

v∈X ′
n

ξ(P(v )) = A, (30)

where we have written A to denote the right-most term of (26), and P(v ) is the Heegner point corre-

sponding to v. Now, for each vertex v at distance n from the origin, we write v̌ to denote the prede-

cessor of v. Namely, v̌ is the unique vertex at distance 1 from v and distance n − 1 from the origin. If

v corresponds to the Heegner point P ′ , then v̌ corresponds to the predecessor P̌ ′ . We let Ee(v ) denote

the oriented edge with origin v and terminus v̌ . We say that Ee(v ) is at distance n if the origin v is at

distance n from the origin, and we say that Ee(v ) is a good edge if the origin v is a good vertex. Note

that the definition of Ee(v ) depends only on v and the choice of an origin on the tree.

Let us consider an arbitrary origin v0 for T , and let us write Zn for the set of objects (vertices

or edges) at distance n from this v0. Thus if ξ comes from a function of vertices, we take Zn to be

the set of vertices at distance n, and if ξ comes from a function of edges, we take Zn to be the set

of oriented edges with origin at distance n and terminus at distance n − 1. Then Zn has cardinality

en = (p + 1)pn−1. To prove (30), it is enough to show that

lim
n→∞

1

en

∑

z∈Zn

ξ(z ) = A, (31)

for an arbitrary origin v0. Then the required average over the good objects at distance n follows as in

the proof of Proposition 3.16.

We will first prove (31) when the limit is taken over the set n = 2t of even integers. Recall that the

tree T is given by G̃/K̃ = PGL2 (Qp )/PGL2 (Zp ), where we choose the coordinates on PGL2 so that

K̃ = PGL2 (Zp ) corresponds to a given origin v0. Then consider the image in T of the 1-parameter

subgroup U : t → u(t ) =




1 t

0 1



, and let v(t ) denote the vertex determined by u(t ). Let Ee(t )

denote the oriented edge determined by v(t ) and the choice of the origin coming from K̃ = v0. To

keep the notation uniform, we will simply write z (t ) = v(t ) or Ee(t ) to denote the z ∈ Zn determined

by u(t ) in this manner. Then z (t ) is at distance 2n from the origin, where n = −ord p(t ). Further-

more, if K̃ = PSL2 (Zp ), then we see that K̃ z (t ) runs through the set of all objects z ∈ Zn at distance

2n, and that the stabilizer K̃t has index given by e2n = (p + 1)p2n−1. Thus, we find that

1

e2n

∑

z∈Zn

ξ(z ) =
∫

K̃
ξ(ku(t ))dµ(k ),
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where µ is a Haar measure on K̃ normalized so that µ(K̃ ) = 1. Note that for fixed k, the map

t 7→ ku(t ) is another 1-parameter orbit.

Now let λ denote an additive Haar measure on Qp , normalized so that λ(Zp ) = 1. For n ≥ 0, let

Fn ⊂ Qp denote the set {t ∈ Qp : ordp (t ) ≥ −n}. Then, according to Theorem 4.13, we have

lim
n→∞

1

λ(Fn )

∫

Fn

ξ(ku(t ))dλ(t ) =
∫

Xk

ξ(x )dµk (x ),

where Xk is the (homogeneous) closure of kU and µk is the U -invariant measure as in the statement

of the theorem.

We claim that
∫

Xk
ξ(x )dµk (x ) = A, for all but countably many k. This will then imply that

∫

K̃

(

lim
n→∞

1

λ(Fn )

∫

Fn

ξ(ku(t ))dλ(t )

)

dµ(k ) = A.

Since K̃ is compact, and the averages inside the limit are bounded, we may interchange the limits and

the integral to obtain

lim
n→∞

1

λ(Fn )

∫

Fn

(∫

K̃
ξ(ku(t ))dk

)

dλ(t ) = A.

Setting F ′
n = {t ∈ Qp |ordp (t ) = −n}, so that the image of F ′

n consists of vertices at distance 2n, one

sees easily that

lim
n→∞

1

λ(F ′
n )

∫

F ′
n

(
∫

K̃
ξ(ku(t ))dk

)

dλ(t ) = A,

which implies that 1
e2n

∑

d (v,v0)=2n ξ(v ) converges to A as n → ∞, as required.

To compute
∫

Xk
ξ(x )dµk (x ), we must first determine the size of the orbit closure Xk . To do this,

recall that X̃ = ŴH̃ \H̃ , where H̃ is either the diagonal 1̃ or H̃ = 1̃ · (PSL2 × PSL2 ), depending on

whether Ŵ and Ŵ′ are commensurable or not. Let H = 1 ⊂ 1̃ in the former case, where 1 ⊂ 1̃ is

the diagonally embedded PSL2 . In the latter case let H = PSL2 × PSL2 . In either case H is a closed

subgroup of H̃ , and we have kU ⊂ kH ⊂ kH̃ = H̃ , since k ∈ 1̃ ⊂ H̃ . Note that kH is closed in

Ŵ∗\G̃∗ , since Ŵ∗ ∩ H is a lattice in H . We will show that kU is dense in the orbit Yk = kH , for all but

finitely many k, so that Xk = kU = Yk .

But the orbit kH is isomorphic to Ŵk \kHk−1, where Ŵk = Ŵ∗ ∩ kHk−1. Since H is normal in

H̃ , we have kHk−1 ∼= H and Ŵk
∼= ŴH = Ŵ∗ ∩ H . Under these identifications, the invariant measure

µ on H corresponds to the measure µk on Yk , where µk is obtained from µ via the automorphism of

H given by conjugation by k. Using the fact that k lies in the compact subgroup K̃ , we see easily that

conjugation by k preserves the invariant measure on H , so that the average of ξ on the orbit kH is the

same as the average over the identity orbit Y1 = X . But the average of ξ on the identity orbit X of H





is equal to the average of ξ on the orbit X̃ of H̃ , because (as we have remarked several times already) ξ

is invariant on the left by some γ ∈ Ŵ, which represents the nontrivial coset in G̃/(PSL2 · Ṽ ). Thus,

for k such that kU is dense in Yk , we get Xk = Yk , and that
∫

Xk
ξ(x )dµk (x ) = ∫

X ξ(x )dµ(x ) = A,

for all but countably many k, as asserted.

Thus it remains to show that kU is dense in kH , for all but countably many k. Here it is convenient

to separate out two cases, depending on whether the diagonal orbit is closed or not. Consider first the

case where the diagonal orbit is closed, and X = ŴH \1. It is a general fact that if Ŵ in PSL2 (Qp ) is a

cocompact lattice, then every orbit xU of a unipotent U is dense; we may see this in the present case

by applying Theorem 4.15 to the group PSL2 . Since every U has an opposite in PSL2 , the theorem

states precisely that the measure µ supported on the closure of kU is invariant under the full PSL2 ,

so that the closure of kU contains the full orbit of PSL2 .

In the second case, we have H = PSL2 × PSL2 . Note first of all that kU is dense in the orbit

of kH if and only if kU k−1 is dense in the orbit of H . Now Theorem 4.15 shows that the closure of

U ′ = kU k−1 is invariant under the action of S(U ′ ) = {(g , ugu−1 )|g ∈ PSL2 }, for some u ∈ U ′ . If

H ′ is a subgroup of H such that the closure of U ′ coincides with the orbit of H ′, then we may assume

that S(U ′ ) ⊂ H ′. If the containment is strict, then, writing u∗ = (1, u ), we find that the conjugate

subgroup u−1
∗ H ′u∗ strictly contains the diagonal. But we have already seen (in the proof of Corollary

4.9 and in Remark 4.10) that the only subgroup of PSL2 × PSL2 which strictly contains the diagonal

is PSL2 × PSL2 itself. This implies that u−1
∗ H ′u∗ = PSL2 × PSL2 = H and H ′ = H . This implies

that the orbit of U is dense in that of H , as asserted.

But if the containment is not strict, then we have H = S(U ′ ), and the orbit of S(U ′ ) is closed.

But then Ŵ × Ŵτ ∩ S(U ′ ) must be a lattice in S(U ′ ), and this happens if and only if the groups Ŵ

and uτpŴ(uτp )
−1 are commensurable. But the commensurator of Ŵ in Bp is Q×

p · B×, and B× is

countable. Since u is unipotent, it has determinant 1, and so it is clear that there are only countably

many u such that uτp ∈ Q×
p B×. Since τp /∈ Q×

p B×, any such u is nontrivial, and, as two unipotent

subgroups of rank 1 that intersect non-trivially are necessarily equal, it follows that this can happen

for only countably many U ′ = kU k−1.

In summary, we have shown that lim
n→∞

1

e2n

∑

d (v,v0)=2n

ξ(v ) = A, where v0 is the origin of the tree.

It remains to extend this to arbitrary v0, and to vertices at odd distance. This is relatively straight-

forward. If v is a vertex at even distance from the origin, then v is represented by x ∈ PSL2 (Qp ).

One can then argue precisely as above, using Theorem 4.13, and considering 1-parameter flows that

originate from x. Since the function ψ is invariant on the left by γ ∈ R[1/p]× ,and the latter con-

tains an element γ which interchanges odd and even vertices, so that lim
n→∞

1

e2n

∑

d (v,v0)=2n

ξ(v ) = A
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for arbitrary v ∈ T .

It remains finally to verify that

lim
n→∞

1

e2n+1

∑

d (v,v0)=2n+1

ξ(v ) = A

for arbitrary v0 ∈ T . But this may be checked as in the proof of (3.16). Indeed, if for any vertex v we

define Tn (v ) = ∑

d (v ′,v )=n ξ(v
′ ), and if we list the neighbors of v0 as v1, . . . , v p+1, then we have

the recurrence

T2n+1(v ) =
p+1
∑

i=1

T2n (v i ) − pT2n−1(v ),

from which the required average follows immediately. This completes the proof of the proposition.
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