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1 Introduction

The object of this article is to study the behavior of certain deformation problems and
Hecke rings under base change to a real quadratic field. These questions were the subject
of conjectures by Doi, Hida, Ishii (see [DHI98] and [Hid98]); in this paper, we will show
that Conjecture 2.2 of [Hid98] holds under a suitable hypothesis, and that the isomorphism
predicted by Conjecture 3.8 of [DHI98] holds up to a pseudo-null cokernel. The deformations
studied in this paper are also interesting in light of the recent work by Skinner and Wiles
(see [SW97] and [SW99]) on the deformation of reducible Galois representations. Namely,
the ring Rord

+ studied in [Hid98] and [DHI98] turns out to be closely related to a pseudo-
deformation ring; the explication of this connection is crucial to our results. Furthermore,
the central conjecture of [Hid98] turns out to be related to a certain class number condition,
which is exactly analogous to the condition that appears in [SW97]. Finally, we would like to
point out that the deformations considered here give rise to a number of interesting examples.
Specifically, we are able to exhibit Λ-adic representations whose traces generate a nontrivial
extension of Λ, and with the property that the specializations to certain arithmetic points of
weight one are actually ramified over Spec(Λ). This is in contrast to the well-known theorem
of Hida, which asserts that arithmetic points of weight k ≥ 2 are smooth over Spec(Λ).
To state the results more precisely, we consider a real quadratic extension F = Q(

√
D)

of Q, with D > 0. Write σ for a generator of the group ∆ = Gal (F/Q) . We fix a prime
p > 2, with (D, p) = 1, such that p = ppσ in F with p �= pσ. Let Fp denote the maximal
algebraic extension of F unramified outside p and infinity. Let H = Gal (Fp/F ), and let
G = Gal (Fp/Q).
Now consider a character

ϕ : H → F×

unramified outside p, where F is a finite field of characteristic p. Then let

ρ = IndFQϕ : G→ GL2(F)
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be the induction of ϕ from H to G. We assume that ρ̄ is absolutely irreducible. Observe
that our hypotheses imply that ρ is ordinary in the sense that

ρ|Dp
=

(
ϕ ∗
0 ϕσ

)

where ϕσ is unramified for the decomposition group Dp at p. Furthermore, we will assume
that

ϕ2|Ip �= 1,
for the inertia group Ip at p.
Let O denote the ring of integers of a finite extension K/Qp. We assume that O contains

the ring of Witt vectors for F. Let π denote a uniformizing element of O, and let k = O/π
denote the residue field. Let CNLO be the category of complete, noetherian, localO-algebras
with residue field k, and let SETS be the category of sets. We consider a deformation functor
Ford
G : CNLO → SETS given by strict equivalence classes of deformations ρ̃ : G → GL2(A)
of ρ, that are ordinary at p. It is by now a standard matter to show, using Schlesinger’s
criteria, that the functor Ford

G is representable; taking this for granted, we write Rord for the
universal deformation ring. Thus Rord is a complete Noetherian local O-algebra with residue
field k.
Let χF : G/H ∼= {±1} be the nontrivial character of ∆ = G/H . Since ρ ⊗ χF ∼= ρ, we

see that
ρ �→ ρ⊗ χF

induces an automorphism of the deformation functor and hence, an automorphism

τ : Rord → Rord

with τ 2 = 1. Write Rord
+ for the subring of Rord fixed by τ . Then Rord

+ and R are naturally
algebras over Λ = O[[T ]], and it is known by works of Hida and Taylor-Wiles that Rord, and
hence Rord

+ , are reduced and free of finite rank over Λ. See [Hid85], [Wil95] and [TW95]. To
apply the result of Taylor-Wiles, we observe that it follows from our assumption that ϕ2 is
nontrivial on inertia that ρ is not induced from the quadratic subfield of Q(ζp).
Now let ε denote a fundamental unit of the quadratic field F . We may view ε as an

element of Cp via the completion of F at the prime p, where Cp denotes the completion of an
algebraic closure of Qp at a prime lying over p. If logp denotes the p-adic logarithm function

on Cp, we set < ε >= (1 + T )logp(ε)/ logp(1+p). Let Iχ denote the ideal of R
ord generated by

elements of the form a − τ(a). Then we have the following conjecture of Hida ([Hid98],
Conjecture. 2.2):

Conjecture 1.1 If O is sufficiently large, we have Rord = Rord
+ [

√
< ε > −1]. The ideal Iχ

is principal, generated by
√
< ε > −1.
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In this paper, we will show that this conjecture is equivalent to certain hypotheses on
class numbers. To state this more precisely, let ClF denote the p-Sylow subgroup of the ideal
class group of F . Then we will prove

Theorem A. Each of the following statements is a necessary condition for the validity of
Conjecture 1.1 :

1. rankΛ(R
ord) = #ClF , or

2. the subgroup S ⊂ dimk(H
1(Gal (Fp/F ), ϕ/ϕ

σ) consisting of cocycles unramified outside
p is a one-dimensional k-space.

Furthermore, statement 1 above is even sufficient for Conjecture 1.1

Condition 2 above is the exact analogue of the condition (ii) in Theorem 1.2 of the work by
Skinner and Wiles (see [SW97]), on deformation of reducible Galois representations. Indeed,
Skinner and Wiles show that their condition (ii) implies that certain deformation rings
coming from reducible representations are complete intersections. This property is faithfully
echoed in our Theorem 2.1 below. It seems rather likely that one could prove the sufficiency
of the second statement by generalizing the results of [SW97] to real quadratic fields, but we
have not pursued this.

On the other hand, the present situation was studied from a different point of view by
Doi, Hida, and Ishii, in the fundamental work [DHI98]. The main consideration here is
that of congruence relations between Hilbert modular forms, and their reflection in certain
twisted adjoint L-values. Crucial to this study is the understanding of congruences between
forms that arise via base-change from Q, and forms that are intrinsic to F .
Thus, let m denote the maximal ideal of the Hecke ring p-adic Hecke algebra hQ =

hQ(Dp
∞) of level Dp∞, determined by the representation ρ = IndFQ (ϕ) : G → GL2(O), for

the Teichmuller lift ϕ of ϕ. Such a maximal ideal exists because (as was known to Hecke)
the representation ρ corresponds to a theta series of weight one on Γ1(Dp).
Now consider the Hecke ring hF = hF (p

∞) arising from Hilbert modular forms of level
p∞ for the field F . Then Doi, Hida, and Ishii have constructed a base-change morphism

β : hF → hQ .

Let n denote the inverse image of m under this base-change map. Then we have the following
conjecture (see [DHI98], Conjecture. 3.8):

Conjecture 1.2 Suppose ϕ is everywhere unramified, so that det(ρ) = χF . Then, passing
to the completions at m and n gives an isomorphism

β : hF,n ∼= hwQ,m,
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where hwQ,m is the fixed part of hQ,m under the action of the Atkin-Lehner involution w.

In view of the isomorphism theorems between Hecke rings and deformation rings, one
can translate the above conjecture into a statement about deformation rings. In this setting
the conjecture predicts that the fixed part of Rord under the involution τ is generated by the
image of hF . In view of the well-known properties of modular representations, this may be
restating as requiring that Rord

+ be generated by the traces Tr (!(Frob(q))), for primes q of
F , where ! : G→ GL2(R

ord) denotes the universal representation.
In this paper, we will prove that the analog of Conjecture 1.2 holds up to pseudo-

isomorphism:

Theorem B Suppose that ϕ satisfies ϕ2|Ip �= 1. Then there is a natural morphism

β : hF → Rord
+ ⊂ Rord ∼= hQ,m.

The ring β(hF ) has finite index in Rord
+ .

The proof of this theorem is based on the interpretation of Rord
+ in terms of deformation

theory. However we cannot simply appeal to Mazur’s deformation theory to complete this
plan. Rather, we are forced to consider the more general notions of pseudo-representations
and pseudo-deformations, as introduced by Wiles and Skinner (see [Wil88] and [SW99]).
The reason for this may be described as follows. The Taylor-Wiles theorem, applied to
the residual representation ρ, tells us that Rord is isomorphic to the Hecke ring hQ,m. It is
therefore natural to seek an interpretation of Rord

+ in terms of the restriction (base-change)
of ρ to Gal (Fp/F ). But, since ρ is an induced representation, it is clear that ρ becomes
reducible when restricted to Gal (Fp/F ). As is well-known, reducible representations do
not have a good deformation theory, because the associated functor is not representable.
Skinner and Wiles observed that one still has a good pseudo-deformation functor, and it is
their approach that we will follow in this paper.
Finally, we would like to warn the reader that we will make free use of the theorems of

Taylor and Wiles [TW95], [Wil95] in this paper. These celebrated theorems identify certain
deformation rings as familiar Hecke algebras, and one can therefore obtain information about
the deformation side by invoking Hida’s extensive study of the Hecke theory. As a reference
for Hida’s theory, we refer the reader to [Hid85] and [Hid93]. Note however that the results
of [Hid85] assume p ≥ 5 for technical reasons, although it is well-known to the experts that
the the restriction can be eliminated. The basic argument is given in [Hid93], Chapter 7,
where simpler proofs are given for many of the theorems in [Hid85]. In this paper we will
assume the validity of Hida’s theory for p = 3.
The authors would like to thank H. Hida and A. Wiles for their help and guidance.

Some of the results in this paper are drawn from the first named author’s Ph. D. thesis,
written at UCLA under the direction of Hida. By a curious coincidence, a related line of
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investigation was suggested to the second author by Wiles, but that project subsequently
took a somewhat different direction. The second author would also like to thank Skinner and
Wiles for sharing the results of their joint work; their study of pseudo-deformations provided
some of the crucial ideas needed for the proof of Theorem B. Finally, we would like to thank
the referee for numerous comments towards the improvement of this work, and for pointing
out an error in the original version of the manuscript. The responsibility for any remaining
errors is solely that of the authors.

2 A Sufficient Condition

In this section, we prove a necessary and sufficient condition for the validity of Conjecture
1.1, as given in Theorem A of the introduction.

Theorem 2.1 The following statements hold:

1. We have RankΛ(R
ord
+ ) ≥ #ClF . If the equality holds for the rank, the ring Rord

+ is a
complete intersection.

2. If the ring Rord
+ is a Gorenstein ring, then the ideal Iχ is principal, generated by an

element D ∈ Rord with D2 ∈ Rord
+ . The element D generates a free Rord

+ -module, and
Rord = Rord

+ [D] is free of rank 2 over Rord
+ .

3. If the rank condition in part 1 above is satisfied, then (D2) = (< ε >− 1) and Rord =
Rord

+ [
√
< ε >− 1], if O is sufficiently large.

4. If rankΛ(R
ord
+ ) is strictly greater than #ClF , then Iχ ∩ Rord

+ is strictly larger than
(< ε >− 1). The conjecture 1.1 does not hold in this case.

We will break up the proof of the theorem into a series of steps. To begin with, consider
the functor FH : CNLO → SETS defined by

FH(A) = {ϕ̃ : H → A×|ϕ̃ is unramified outside p and ϕ̃ ≡ ϕ (mod mA)}.

Let N be the maximal abelian p-extension of F unramified outside p. Then N/F is
finite, since F is real quadratic. Let Hp denote the finite group Gal (N/F ). Then FH(A) is
represented by (O[Hp],Φ) where Φ(h) = ϕ(h)h in O[Hp]. Here we have identified the group
element h ∈ Hp with the corresponding element of the group ring, and we have written
ϕ(h) ∈ O× for the Teichmuller lift of ϕ(h) ∈ k×. With these notations, IndFQ (Φ) is an
element of FG(O[Hp]). Thus, there exists a unique morphism α : Rord → O[Hp] such that
α ◦ ! is equivalent to IndFQ (Φ), where (Rord, !) is the universal couple for FG. As we have
remarked, the character χ acts on Ford

G by ρ �→ ρ ⊗ χ. Then we have the following simple
lemma:
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Lemma 2.2 The morphism ι : FH(A)→ FG(A)
τ given by ξ �→ IndFQ(ξ) is an isomorphism,

where FG(A)
τ is the part of FG(A) fixed by τ .

Proof. Let ρ̃ denote an element of FG(A)
τ . Then we have ρ̃ ∼= ρ̃⊗χ. According to a lemma

of Doi, Hida, and Ishii ([DHI98], Lemma 3.2) the isomorphism ρ̃⊗χ ∼= ρ̃ holds if and only if
ρ̃ is of the form IndFQ (ξ) for some ϕ. Thus the map ι is surjective. The injectivity is an easy
exercise, and may safely be left to the reader.

Corollary 2.3 There is an isomorphism Rord/Iχ ∼= O[Hp]. The ideal Iχ∩Λ of Λ is principal,
generated by 〈ε〉 − 1.

Proof. The first assertion follows from the preceding lemma, and the observation that
Rord/Iχ is the maximal quotient of R

ord on which τ acts trivially. Now let ClF denote
the p-Sylow subgroup of the class group of F . Then the second statement follows from the
short exact sequence of class-field theory

0→ U1
p /〈ε〉 → Hp → ClF → 0,

where U1
p denotes the the pro-p part part of the unit group in the integer ring in Fp. Here

we have used the facts that the action of Λ is via the determinant, and that det(IndFQ(Φ)) =
χF ·NF

Q (Φ) restricts to a faithful character of U
1
p /< ε >.

We can now prove the first statement in Theorem 2.1. We contend first that there is a
surjection

Rord
+ /TRord

+ → O[ClF ]. (1)

This may be seen as follows. Corollary 2.3 gives an exact sequence

0→ Iχ → Rord → O[Hp]→ 0.

The ideal Iχ is invariant under the action of τ , so that we get an induced action of τ onO[Hp].
One verifies that this induced action coincides with the obvious IndFQ (Φ) �→ IndFQ (Φ) ⊗ χ.

But, by the lemma of Doi, Hida and Ishii cited previously, one has IndFQ(Φ)
∼= IndFQ (Φ)⊗ χ.

Thus H0(τ,O[Hp]) = O[Hp]. Furthermore, we have H
0(τ, Rord) = Rord

+ by definition, and
H1(τ, Iχ) = 0 since Iχ is p-profinite and τ has order 2 (recall that p �= 2). We therefore
obtain a surjection

Rord
+ = H0(τ, Rord)→ H0(τ,O[Hp]) = O[Hp].

Reduce both sides modulo T . Since the tensor product is right-exact, the resulting map
is still a surjection. The left-hand side is simply Rord

+ /TRord
+ . Since O[Hp] represents the
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functor FH , we see that the quotient modulo T represents the subfunctor whose points give
a trivial deformation of the determinant. It is clear that this subfunctor is represented by
O[ClF ]. Thus we get a surjection Rord

+ /TRord
+ → O[ClF ].

Now suppose that rankΛ(R
ord
+ ) ≤ #ClF . Since O[ClF ] already has rank equal to #ClF ,

we must have an equality of ranks in (1), and, consequently, an isomorphism Rord
+ /TRord

+ =
O[ClF ]. It is clear that O[ClF ] is a complete intersection. Furthermore, it follows from
the work of Taylor and Wiles that T is not a zero-divisor in Rord

+ . Indeed, the theorems of
[TW95] and [Wil95] show that Rord is isomorphic to a certain p-adic Hecke algebra T of level
Dp∞, which was shown by Hida to be free over Λ. The ring Rord

+ being a direct summand of
Rord, it follows that Rord

+ is a projective, hence free, Λ-module as well. Applying Theorem
21.2 (ii), of [Mat90], we conclude that Rord

+ is a complete intersection. This proves the first
part of Theorem 2.1.
We now consider the second statement of the theorem. For an element x ∈ Rord, we

define Tr (x) = Tr R
ord

Rord
+
(x) = x + τ(x). This definition makes sense even though Rord is not

known to be free over Rord
+ (which is necessary to give a definition using linear algebra). We

would also like to point out another simple consequence of the Taylor-Wiles isomorphism,
namely, that Rord is finitely generated over Rord

+ , since both rings are finite, flat Λ-modules.
This will be useful in the sequel.

Lemma 2.4 The linear map Rord → Hom Rord
+
(Rord, Rord

+ ) given by a �→ ξa : b �→ Tr (ab) is

injective. The induced pairing Rord × Rord → Rord
+ is nondegenerate.

Proof. Since the Hecke ring T is known to be reduced (see [Hid93], Chapter 7), we may
apply the Taylor-Wiles theorems as above to conclude that that the ring Rord ∼= T is reduced.
Now consider the total ring of fractions L of R+. Since the set of zero-divisors of R

ord
+ is the

union of the minimal prime ideals, we see that L has the property that every prime ideal
is maximal. Since L is reduced, it follows from [Mat90], Theorem 8.15 that L is in fact a
product of fields (this could also be checked by hand). In particular, any L-module M is
projective. Let L =

∏
Li, where each Li is a field. Let K = Rord ⊗ L. Then we have a

corresponding decomposition K =
∏
Ki, where Ki = K ⊗L Li.

We contend that each Ki is free of rank 2 over Li, satisfying Ki = Li ⊕ Xi · Li where
τ(Xi) = −Xi. To see this, observe first that each Ki is a reduced Artin algebra over the field
Li, since R

ord is reduced and finitely generated over Rord
+ . This implies that Ki is a product

of fields, and, in fact, that either Ki = Li ⊕ Li, or Ki is a quadratic extension of Li. In
any case, K is a product of fields, and τ acts on each component Ki. Let K

′ be any direct
factor of K, and write P for the kernel of the composite map Rord → K → K ′. Composing
with the universal deformation, we get a representation ρ′ of Gal (Fp/F ) into GL2(R

ord/P ).
Since Rord is a finitely generated module over Rord

+ , we see that P is a minimal prime ideal
of Rord. Since Hida’s Λ-adic Hecke rings are equidimensional, of dimension 2, we conclude
from the Taylor-Wiles isomorphism that Rord/P has Krull dimension 2. On the other hand,
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we have seen above that the maximal quotient of Rord on which τ acts trivially is isomorphic
to O[Hp], which has Krull dimension 1. It follows that τ acts nontrivially on the image of
Rord/P ⊂ K ′ ⊂ K. Thus we see that τ either induces a nontrivial automorphism of K ′ (if
K ′ = Ki for some i), or interchanges K

′ with another component K ′′ (if Ki = K
′ ⊕K ′′, for

some i). In any case, we have Ki = Li ⊕Xi · Li, where τ(Xi) = −Xi, as asserted.
In view of these remarks, one sees that if x ∈ K, then x + τ(x) ∈ L is the trace of the

L-linear mapping induced by multiplication by x. The lemma follows since K is reduced.

We now return to the proof of part 2 of the theorem. It is known, again as a consequence
of the results of Wiles and Taylor, that the ring Rord is a Gorenstein Λ-algebra. Furthermore,
we are assuming that Rord

+ is Gorenstein as well. Thus we have HomΛ(R
ord
+ ,Λ) ∼= Rord

+ , and
this leads to

HomRord
+
(Rord, Rord

+ ) ∼= HomRord
+
(Rord,HomΛ(R

ord
+ ,Λ)) ∼= HomΛ(R

ord,Λ) ∼= Rord. (2)

Here the penultimate isomorphism is induced by f �→ {r �→ (f(r))(1)}.
In view of the preceding lemma, the rule

θ(a) : x �→ Tr (ax)

induces an inclusion θ : Rord ↪→ Hom Rord
+
(Rord, Rord

+ ). Fix an isomorphism

Hom Rord
+
(Rord, Rord

+ ) ∼= Rord.

Then the Rord-module Θ = Rord/(θ(Rord)) is independent of this choice, and we have Θ ∼=
Rord/DRord, for some D ∈ Rord. The element D is called a different of Rord/Rord

+ . It is

determined up to units in Rord×.
Observe that D is not a zero-divisor in Rord. To prove this, consider x ∈ Rord such

that x · D = 0. Then, for arbitrary a ∈ Rord, the definition of D shows that there exists
fa ∈ HomRord

+
(Rord, Rord

+ ) such that θ(a) = D · fa. Hence we have Tr (ax) = (D · fa)(x) =
fa(Dx) = fa(0) = 0. Since the trace is non-degenerate, it follows that x = 0. Thus D−1

exists in the total ring of fractions of Rord. We will exploit this fact below.
We will now show that we may choose D so that τ(D) = −D. Let us temporarily assume

that there is a different D which is a non-unit. Assuming this, we may then argue as follows.
By definition of the different, D = D−1Rord ⊂ K is the set of x ∈ K with Tr (xRord) ⊂ Rord

+ .
Let D+ = D ∩ L. Then if x ∈ D+, we have 2x = Tr (x) ∈ Rord

+ , so that x ∈ Rord
+ (as p �= 2).

It follows that D+ = Rord
+ ⊂ R ⊂ K. Since we have assumed that D is a non-unit, we see

that Rord � D, which means that Rord is a proper Rord-submodule of D. On the other hand,
D is free of rank one over Rord, which implies that Rord ⊂ mD, for the maximal ideal m

of Rord (because mX contains all proper Rord-submodules of X, for any X free of rank 1).
In particular, we get D+ = Rord

+ ⊂ Rord ⊂ mD. It follows from Nakayama’s Lemma (since
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p �= 2) that there exists x ∈ D− = D ∩Kτ=−1 such that x generates D as a B-module, as
required.
Thus, we have reduced our contention to showing that the different D is a non-unit. This

does not seem to be evident, owing to the facts that Rord is not known to be flat over Rord
+ ,

and our trace map is defined in an ad hoc way so that the formation of the different does not
obviously commute with passage to fibers over the ramified points. We are forced therefore
to invoke the analysis of §3 below, which uses entirely different methods, and which gives
some control of the local properties at the points of interest. Thus we let Pord denote the
height one prime ideal of Rord corresponding to the weight-one representation ρ = IndFQ(ϕ),
for the Teichmuller lift ϕ of ϕ. Let P+

ord = Pord ∩ Rord
+ . Then Pord is a fixed point for the

action of τ , and we want to show that the localization of D at Pord is a non-unit.
Let us simply write S = (Rord

+ )P+
ord
for the localization of Rord

+ at the prime P+
ord. Then,

according to Lemma 3.9 below, S is a discrete valuation ring. It follows from this that the
localization Rord ⊗ S of Rord at P+

ord is free, of rank 2. Furthermore, S is a Gorenstein ring
by [Mat90], Thm. 18.2. Finally, S is a flat Rord

+ -algebra, so we have

(
Hom Rord

+
(X, Y )

)
⊗ S = Hom S (X ⊗ S, Y ⊗ S) ,

for any two finitely generated Rord
+ -modules X and Y . In particular, we get

Hom S(R
ord ⊗ S, S) = Hom Rord

+
(Rord, Rord

+ )⊗ S ≡ Rord ⊗ S. (3)

One then has a local different Dloc corresponding to the flat extension of rings S → Rord⊗S.
One checks, using the flatness, that the trace pairing on Rord (as defined above) gives the
standard trace on the free S-module Rord ⊗ S. It is clear from this and (3) that formation
of the different commutes with localization, which means that D and Dloc, are associate in
(Rord)P+

ord
. On the other hand, we know from Corollary 3.12, that (Rord)Pord

is ramified over

(Rord
+ )P+

ord
, with ramification index 2. A standard calculation as in number theory shows that

the local different Dloc is a non-unit, and in fact lies in Pord. Thus D is a non-unit, as we
have asserted.
In summary, we have shown that we may choose a different D for Rord over Rord

+ such
that τ(D) = −D. Now let x ∈ Rord satisfy τ(x) = −x. Then we have Tr (x/D) ∈ Rord

+ . But
x/D is fixed by τ , so that we get 2x/D ∈ Rord

+ . Since 2 is a unit, we get x = aD, for some
a ∈ Rord

+ . This proves that that Rord = Rord
+ ⊕ DRord

+ , and that Rord = Rord
+ [D], as claimed.

It is also clear from this that Iχ = DRord is principal. This completes the proof of item 2 in
the theorem.
To verify statement 3, we must prove that (D)2 is associate to < ε > − 1, under the

hypothesis that rankΛ(R
ord
+ ) = h = #ClF . It follows easily from part 2 above that Iχ ∩Rord

+

is principal, generated by D2. It suffices therefore to show that Iχ ∩ Rord
+ is also generated

by < ε >− 1. Note here that since Iχ ∩ Λ = (< ε >− 1), we have < ε >− 1 ∈ Iχ.
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Thus let n denote the cardinality of the finite group Γ/< ε >. Then the algebra Λ/(< ε >−
1) is a finite flatO-algebra of rank n, and Rord

+ /(< ε >−1) hasO-rank nh. On the other hand,
we have seen already that there are surjections Rord

+ /(< ε >−1)→ Rord
+ /(Iχ∩Rord

+ )→ O[Hp].
Since O[Hp] also has O-rank nh, we find that Iχ ∩ Rord

+ is generated by < ε >− 1.
It remains to prove the final assertion of our theorem. So suppose that rankΛ(R

ord
+ ) > h.

Then Rord
+ /(< ε >− 1)Rord

+ has O-rank strictly larger than nh. In particular,

Rord
+ /(< ε >− 1)Rord

+ → O[Hp] = R
ord
+ /(Iχ ∩Rord

+ )

must have nontrivial kernel. This implies that Iχ ∩ Rord
+ is strictly larger than (< ε >− 1).

Thus Conjecture 1.1 cannot be valid in this case.

3 Deformations and pseudo-deformations

In this section we will give representation-theoretic descriptions of the rings Rord and Rord
+ ,

and thereby calculate their cotangent spaces at certain prime ideals corresponding to dihedral
representations. In terms of the Hecke algebra, these primes ideals correspond to modular
forms of weight one.
These tangent space calculations are the key to our proof of Theorem B in the intro-

duction. While the calculations for Rord follow quite closely the ideas in [Wil95], where the
prime ideals corresponding to certain modular forms of weight k ≥ 2 are considered, the case
of Rord

+ is quite different. As we have already remarked, we are interested in dihedral repre-
sentations which become reducible upon restriction to Gal (Fp/F ), so that we are forced to
consider pseudo-representations, as introduced in [Wil88], as well as the pseudo-deformations
of [SW99]. Even in the case of Rord, we see a significant difference arising in the present
instance: while the cotangent spaces of prime ideals that arise from modular forms of weight
k ≥ 2 are generally finite, our weight one form gives rise to a prime whose cotangent space
is infinite.
The basic plan of attack is as follows. We will introduce a certain pseudo-deformation

ring Rps, which admits a map
Rps → Rord

+ → Rord.

The image of Rps inside Rord ∼= hQ,m is precisely the image of the base-change Hecke ring
hF constructed from Hilbert modular forms over F . To compare Rord

+ and hF , it therefore
suffices to compare Rps and Rord

+ . We achieve this by computing the tangent spaces, and
showing that the map Rps → Rord

+ becomes an isomorphism upon passing to the completion
at height one prime ideals.
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Deformations

Let ρ′ : Gal (Fp/Q) → GL2(O) be any ordinary deformation of ρ, such that ρ′ becomes
reducible on the subgroup H = Gal (Fp/F ). It follows from the considerations of the previous
section that

ρ′ = IndFQ(ξ),

where ξ : Hp → O× is some abelian character. Then ρ′ is induced by a unique homomorphism
Rord → O, and we will write Pord to denote the corresponding prime ideal of Rord. Note
of course that both Pord, as well as the homomorphism Rord → O depend on ρ′ and ξ; for
simplicity we will suppress this from the notation. Let K denote the field of fractions of O.
Then our goal is to prove

Theorem 3.1 The vector space M = Pord/P
2
ord ⊗K has dimension 1, and the localization

of Rord at Pord is a discrete valuation ring.

Proof. Consider the rank-4 representation Ad(ρ′). Then an easy exercise in linear algebra
shows that we have

Ad(ρ′) = 1⊕ χF ⊕ IndFQ (ξ/ξσ), (4)

where χF denotes the Kronecker character of the quadratic extension F/Q. Observe here
that, since ϕ is ramified only at p and ϕ2|Ip �= 1, we have ξ

ξσ �= ξσ

ξ
, so that the representation

IndFQ(
ξ
ξσ ) is irreducible.

We may realize Ad(ρ) by letting ρ act by conjugation on 2× 2 matrices as follows:

Ad(ρ) =

(
λ 0
0 λ

)
⊕

(
λ 0
0 −λ

)
⊕

(
0 ∗
∗ 0

)
, (5)

where each of the three summands in (4) is realized on matrices of the form indicated in the
corresponding component of (5).
Now consider the subspace V ord ⊂ V = M2(O) = Ad(ρ) consisting of matrices of the

form ( ∗ ∗
0 0 ). Then we consider a Selmer group

Sel(Q, V ) ⊂ H1(Gal (Fp/Q), V ⊗K/O)

defined by local condition at p as follows: we require that

Sel(Q, V ) = ker
{
H1(Gal (Fp/Q), V ⊗K/O)→ H1(Ip, (V/V

ord)⊗K/O)
}
. (6)

Observe that we have V ord = V ord
1 ⊕ V ord

2 , where V ord
1 is the subspace ( ∗ 0

0 0 ), and V
ord
2 is

the subspace ( 0 ∗
0 0 ). Then, with the notations of (4), we find that V

ord
1 ⊂ 1 ⊕ χF , and that

V ord
2 ⊂ IndFQ (ξ/ξ

σ). Thus we find that

Sel(Q, V ) = Sel(Q, 1⊕ χF )⊕ Sel(Q, IndFQ(ξ/ξσ))

11



breaks up as a direct sum of two pieces, with local conditions given by the subspaces V ord
1

and V ord
2 respectively.

We first compute Sel(Q, 1⊕ χF ). The inflation-restriction sequence gives

H1(Gal (Fp/Q), (1⊕ χF )⊗K/O) = Hom (Gal (Fp/Q), K/O)⊕ Hom (Gal (Fp/Q), K/O)χF .
(7)

Now let F ab
p denote the maximal pro-p-abelian extension of F that is unramified outside p.

Let L ⊂ F ab
p denote the Hilbert class-field, and let h denote the degree of L/F . Then the

definition of V ord
1 shows that Sel(Q, 1⊕ χF ) is finite, of order equal #(O/η), where

η = h ·
logp(< ε >)

logp(1 + p)
∈ O×. (8)

This comes from a simple analysis of the ramification conditions, together with the de-
scription, coming from class field theory:

Gal (F ab
p /H) = (U

1
p × U1

pσ)/ < ε > .

Here U1
p denotes the pro-p-part of the units in the ring of integers in the completion of F at

p. The definition of U1
pσ is analogous.

On the other hand, the group Sel(Q, IndFQ (ξ/ξ
σ)) is infinite, and in fact has O-corank 1.

To see this, observe that the O-corank of Sel(Q, IndFQ(ξ/ξσ)) is equal to the K-dimension
of Sel(Q, IndFQ (ξ/ξ

σ)K), where this time we take coefficients in the field K, rather than in

the divisible module K/O. But we may easily compute Sel(Q, IndFQ(ξ/ξσ)K). Indeed, the
inflation-restriction sequence gives

H1(Gal (F (ξ/ξσ)/Q), K2)→ H1(Gal (Fp/Q), Ind
F
Q (ϕ/ϕ

σ)K)

→ Hom (Gal (Fp/F (ξ/ξ
σ)), K2)Gal (F (ξ/ξσ)/Q) → H2(Gal (F (ξ/ξσ)/Q), K2), (9)

where F (ξ/ξσ) is the splitting field of the character ξ/ξσ, and Gal (F (ξ/ξσ)/Q) acts via
the representation IndFQ (ξ/ξ

σ). We remark that the degree of F (ξ/ξσ)/Q may be divisi-
ble by p. But, even so, we know that each of the terms H i(F (ξ/ξσ)/F,K2) is killed by
#(Gal (F (ξ/ξσ)/Q)), and so must vanish, since we have taken coefficients in a field of char-
acteristic zero. Thus we get an isomorphism

H1(Gal (Fp/Q), Ind
F
Q(ϕ/ϕ

σ)K) ∼= Hom(Gal (Fp/F (ξ/ξσ)), K2)Gal (F (ξ/ξσ)/Q) .

Observe also that we may identify

Hom (Gal (Fp/F (ξ/ξ
σ)), K2)Gal (F (ξ/ξσ)/Q) = Hom (Gal (Fp/F (ξ/ξ

σ)), K)ξ/ξ
σ

.

12



Now, unwinding the ramification conditions at Ip, and the action of Gal (F (ξ/ξ
σ)/Q), we

find that
Sel(Q, IndFQ (ϕ/ϕ

σ)K) ⊂ Hom(Gal (Fp/F (ξ/ξ
σ)), K)ξ/ξ

σ

consists of homomorphisms that are unramified at all primes of F (ξ/ξσ) away from the prime
p of F . Any such homomorphism must factor through the Galois group G′ of the maximal
pro-p-abelian extension N of F (ξ/ξσ) that is unramified outside p. But, from class-field
theory, we know that ∏

P|p

U1
P/U(F (ξ/ξ

σ)) ⊂ G′

with finite index, where U(F (ξ/ξσ)) denotes the image of the group of global units. But
the character ξ is nontrivial at precisely one infinite place of F (since ρ′ is odd) so that the
character ξ/ξσ is totally odd. Dirichlet’s unit theorem now implies that the ξ/ξσ-eigenspace
inside the global units is trivial. Thus we get

Hom (G′, K)ξ/ξ
σ

= Hom(((
∏
P|p

U1
P)⊗K)ξ/ξ

σ

, K),

and one checks easily that ((
∏

P|p U
1
P)⊗K)ξ/ξ

σ
has dimension one, as required.

Now, according to an argument of Wiles (see [Wil95], Proposition 1.2), we have

Sel(Q,Ad(ρ)) = Hom(Pord/P
2
ord, K/O).

Since the former has O-corank one by what we have already proven, it follows that the
prime ideal Pord of R

ord at Pord is locally principal, in the sense that Pord is principal in the
localization of Rord at Pord. To complete the proof of the first statement in our theorem, it
therefore remains to prove that Pord has height one. To do this, we recall the Λ-adic Hecke
ring hQ,m of level Dp

∞, as defined in the introduction. As we have already remarked, there
is a deformation ρh of ρ, with values in hQ,m . Since ρ

′ is associated to a p-ordinary modular
form, we see that the morphism Rord → O induced by ρ′ factors through the morphism
Rord → hQ,m . Let Ph denote the corresponding prime ideal of hQ,m . Since hQ,m is a finite,
flat Λ-algebra, we find that Ph has height one. This implies that Pord has height ≥ 1. Since
Pord is locally generated by a single element, we conclude from [Mat90], Theorem 11.2 that
the localization of Rord at Pord is a discrete valuation ring (see Remark 3.5 below).

Remark 3.2 Having proven that Pord is locally principal, it is natural to ask for an explicit
generator. In the case of prime ideals associated to modular forms of weight k ≥ 2, Hida has
shown that the corresponding prime ideals are unramified over Λ, and are locally generated
by elements of the form ωk = (1+T )

k− 1. According to the Taylor-Wiles theorem, we have
Rord ∼= hQ,m , so that the corresponding primes of Rord are also unramified over Λ. However,
the prime ideal Pord considered above is associated to a prime of weight one, and it turns out
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to be ramified over Λ. This may be most conveniently seen as follows. The representation
ρ′ = IndFQ (ξ) satisfies ρ

′ = ρ′ ⊗ χ, and so is fixed by the involution τ . It follows that Pord is
ramified over Rord

+ , and that the ramification index of Pord over Λ is even.

Now let F denote any Λ-adic family of representations that specializes to ρ in weight
one. It follows from the theorem above that F is unique, since there is only one component
of Spec(Rord) passing through the point Pord. Furthermore, since Pord is ramified over Λ, it
follows that the representation F cannot be realized over Λ. Equivalently, the coefficients
of the associated Λ-adic form generate a nontrivial extension of Λ. We summarize these
observations in the following

Corollary 3.3 The prime ideal Pord has even ramification index 2n over Λ, where n ≥ 1.
There exists a unique Λ-adic family of representations specializing to ρ in weight one. The
traces of this Λ-adic representation generate a nontrivial extension of Λ.

Remark 3.4 We will show in the next subsection that Pord has ramification index exactly
two over Λ.

Remark 3.5 Let R denote any commutative ring, and I ⊂ R any prime ideal. We will
often encounter the situation that I, while not principal as an ideal of R, becomes principal
in the localization RI of R at I. In this case, we shall say that I is locally principal. It
is clear in this case that I has height at most 1. If I has height 1, then RI is a discrete
valuation ring. This was already used above.

We now give a necessary condition for Conjecture 1.1 to hold, in terms of the Zariski
tangent spaces at the closed points m and m+ of the rings R

ord and Rord
+ respectively. Indeed,

writing k for the residue field of O, it is known that

Sel(Q,Ad(ρ)) = Hom (m/(p,m2), k),

where
Sel(Q,Ad(ρ)) ⊂ H1(Fp/Q,Ad(ρ))

consists of the cocycles that lie in the kernel of the natural morphism to H1(Ip,Ad(ρ)/V
ord
p ).

Here V ord
p denotes the k-space of matrices ( ∗ 0

0 0 ). There is a natural map m+ → m, and this
induces a map m+ → m/(p,m2). Furthermore, there is an induced action of the involution
τ on the k-vector space m/(p,m2), and it is clear that the image of m+ is contained in the
subspace of invariants under τ . We can compute the action of τ precisely, using the iden-
tification H1(Gal (Fp/Q),Ad(ρ)) = Hom (m/(p,m

2), k). In view of the lemma of Doi, Hida
and Ishii already cited, the k-dimension of the fixed space of τ is given by the k-dimension
of the maximal subspace of m/(p,m2) on which Galois acts via an induced representation.
One sees easily that this dimension is given by the p-rank of the ideal class-group Hp. We
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remind the reader that Hp = Gal (N/F ), where N/F is the maximal pro-p-abelian extension
of F that is unramified outside p.
On the other hand, we can compute the dimension of the Selmer group precisely, using

the analogue of (4). Letting N ′ denote the maximal abelian pro-p-extension of F (ϕ/ϕσ) that
is unramified away from p, we find that

dimk(Sel(Q,Ad(ρ))) = dimk(Hp)⊗ k + dimk(Hom (Gal (N
′/F (ϕ/ϕσ)), k))ϕ/ϕ

σ

.

Thus the image of m+ has cokernel of dimension at least equal to the p-rank of the group
Gal (N ′/F (ϕ/ϕσ))ϕ/ϕ

σ
. On the other hand, it is clear that Rord is of the form Rord

+ [x] if and
only if the image of m+ has codimension ≤ 1. It follows that Conjecture 1.1 cannot hold if
Gal (N ′/F (ϕ/ϕσ))ϕ/ϕ

σ
has k-dimension greater than 1. We summarize this observation in

the following

Proposition 3.6 Conjecture 1.1 cannot hold if Gal (N/F (ϕ/ϕσ))ϕ/ϕ
σ
has k-dimension greater

than 1. In particular, Conjecture 1.1 cannot hold if the ϕ/ϕσ-part of the p-Sylow subgroup
of the ideal class group of F (ϕ/ϕσ) is not cyclic.

Finally, we record a consequence of Theorem 3.1 that will be useful in our analysis of
pseudo-deformations in the next section.

Corollary 3.7 Let h →
(
a(h) b(h)
c(h) d(h)

)
∈ GL2(R

ord) be a realization of the universal deforma-

tion by matrices. There exist elements g, h of Gal (Fp/F ) such that each of b(g) and c(h)
has order 1 at the discrete valuation associated to Pord.

Proof. This follows directly from the explicit description of the K-space Pord/(T, P
2
ord)

in terms of the Selmer group Sel(Q,Ad(ρ)) = Sel(Q, 1 ⊕ χF ) ⊕ Sel(Q, IndFQ (
ξ
ξσ )). Indeed,

we showed that the group Sel(Q, IndFQ (ϕ/ϕ
σ)) has O-corank 1. Since the representation

IndFQ(ϕ/ϕ
σ) is concentrated on the off-diagonal elements in (5), and IndFQ (ϕ/ϕ

σ) is irre-
ducible, the assertion of the lemma is immediate.

Pseudo-deformations

In this section we will prove that the ideal P+
ord = Pord ∩ Rord

+ is unramified over Λ. We
apply this result to prove Theorem B of the introduction. The key idea is to relate Rord

+ to
a certain pseudo-deformation ring.
Recall therefore (see [Wil88], pp 563-564 for details) that a pseudo-representation ρ of

a group H into a ring (A,m) ∈ CNLO consists of functions a, d : H → A and a function
x : H ×H → mA satisfying the following rules:

1. a(στ) = a(σ)a(τ) + x(σ, τ),
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2. d(στ) = d(σ)d(τ) + x(τ, σ)

3. x(σ, τ)x(α, β) = x(σ, β)x(α, τ),

4. x(στ, αβ) = a(σ)a(β)x(τ, α) + a(β)d(τ)x(σ, α) + a(σ)d(α)x(τ, β) + d(τ)d(α)x(σ, β),

5. a(1) = d(1) = 1, and

6. x(σ, g) = x(g, σ) = 0 if g = 1, or g is some fixed choice c of complex conjugation.

The trace and determinant of ρ are the functions Tr (ρ)(σ) = a(σ)+d(σ), and det(ρ)(σ) =
a(σ)d(σ) − x(σ, σ). Now let ρ : G → GL2(A) be a representation. Suppose that ρ(c) =(
1 0
0 −1

)
. Then, writing ρ(σ) =

(
a(σ) b(σ)
c(σ) d(σ)

)
, the functions a(σ), d(σ) and x(σ, τ) =

b(σ)c(τ) define a pseudo-representation. The trace and determinant of this pseudo-representation
coincide with the usual trace and determinant of ρ.
Now let ρps denote the k-valued pseudo-representation of H = Gal (Fp/F ) corresponding

to the representation

(
ϕ 0
0 ϕσ

)
. Then a pseudo-deformation of ρps is a pair (A, ρ̃) consisting

of a complete Noetherian local O-algebra A with residue field k, and a pseudo-representation
ρ̃ of H into A such that ρ ≡ ρps (mod mA). Equivalently, we require that a ≡ ϕ (mod mA),
and d ≡ ϕσ (mod mA). For more on pseudo-representations we refer the reader to [Wil88]
and [Hid93]. Meanwhile, the work [SW99] is the definitive reference for pseudo-deformations.
Recall our assumption that IndFQ(ϕ) was an ordinary representation. Specifically, we

assumed that p = ppσ in F , and that the restriction of IndFQ(ϕ) to a given decomposition
group Dp at p was upper-triangular, with a one-dimensional unramified quotient. As before,
we will write p for the prime of F singled out by this choice of Dp. With these notations,
we will say that a pseudo-deformation ρ̃ = (A, ρ̃) is ordinary at the prime p|p if x(h′, h) = 0
for h ∈ Dp, and d(h) = 1 if h ∈ Ip.
Consider now the functor that assigns to an A ∈ CNLO the set of ordinary pseudo-

deformations (A, ρ̃) of ρps to A satisfying the further condition that

Tr (ρ̃(h)) = Tr (ρ̃(hσ)) (10)

for h ∈ Gal (Fp/F ). Here h
σ denotes the image of h under conjugation by any element

of Gal (Q/Q) which induces the nontrivial automorphism of F/Q. It is straightforward to
check, using Schlesinger’s criteria, that this functor is representable. Write Rps and ρps for
the universal pseudo-deformation ring and universal pseudo-deformation respectively. Note
that there is a natural morphism Λ→ Rps, induced by the determinant.

Lemma 3.8 The pseudo-deformation ring Rps is topologically generated over Λ by elements
of the form Tr (ρps(h)), for h ∈ Gal (Q/F ). The pseudo-deformation ρps satisfies the follow-
ing additional properties:

16



• x(h, h′) = 0 for h in Dpσ , and

• a(h) = 1 for h ∈ Ipσ .

Proof. The first statement is well-known (see, for instance, [Wil88], page 564). The rest of
the lemma is a consequence of the fact thatDp (resp. Ip) andDpσ (resp. Ipσ) are interchanged
by the action of Gal (F/Q), and that the functions a and d are multiplicative on Dp and Ip.
The details are left to the reader.

To proceed further, observe that the universal deformation ! : Gal (Fp/Q)→ GL2(R
ord)

of ρ gives rise to an ordinary pseudo-deformation ρ+ of ρ, with invariant traces as above.
Furthermore, it is clear that this ρ+ actually takes values in the smaller ring Rord

+ . It is
the relationship between ρ+ and the universal pseudo-deformation that is the focus of this
section.
First we study the local properties of of Rord

+ and Rps in the neighbourhood of a point
corresponding to a dihedral representation. Thus fix a representation ρ′ = IndFQ (ξ) as in the
previous subsection, and let Pord denote the corresponding prime ideal of R

ord. We will write
P+
ord for the ideal Pord∩Rord

+ of Rord
+ . As always, we will let K denote the fraction field of O.

Lemma 3.9 The localization of Rord
+ at the ideal P+

ord is a discrete valuation ring. The
image of ρ+ in Rord

+ /(P+
ord)

2 ⊗ K ∼= K[ε]/ε2 is nontrivial (i.e, not equal to the K-valued
pseudorepresentation ρ′).

Proof. Consider the localization S of Rord
+ at P+

ord, and the corresponding localization S ⊗
Rord of Rord. Since Pord is the unique prime of R

ord over P+
ord, we see that S⊗Rord is a local

ring, so that S ⊗Rord coincides with the localization of Rord at Pord. We know already that
the localization of Rord at the prime Pord is a discrete valuation ring. In particular, S⊗Rord

is an integrally closed domain. It follows that S is also an integral domain. Now let x be
any element of the fraction field of S, such that x is integral over S. Then x is integral over
S ⊗ Rord, and we get x ∈ S ⊗ Rord. Write x = r/s, where r ∈ Rord and s ∈ Rord

+ lies in the
complement of P+

ord. Since x is in the fraction field of S, we find that x is fixed by τ . But
the denominator s lies in Rord

+ , and so is fixed by τ as well. A simple argument shows that
we may take r ∈ Rord

+ , and that S is integrally closed. Thus S must be a discrete valuation
ring.
To verify that pseudo-deformation into Rord

+ /(P+
ord)

2 ⊗ K is nontrivial, we will use the
explicit description coming from Lemma 3.7. Writing a, d, x for the coefficients of the pseudo-
deformation into Rord

+ , we know that there is a factorization x(g, h) = b(g)·c(h), for functions
b, c with values in the larger ring Rord. As we have already remarked, there exist g, h such
that the elements b(g) and c(h) have order one at discrete valuation associated to the ideal
Pord. Since Pord is ramified over P

+
ord with ramification index two, it follows from this that

there is a pair (g, h) such that the element x(g, h) = b(g) · c(h) has order one at P+
ord. The

lemma is now immediate, since such an element x(g, h) is nonzero in P+
ord/(P

+
ord)

2 ⊗K.
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Now let Pps denote the prime ideal of R
ps associated to the pseudo-deformation coming

from the O-valued representation ρ′ = IndFQ (ξ). The following result is the first theorem of
this section; it leads to a complete description of the local structure of the ring Rord in a
neighborhood of the point Pord.

Theorem 3.10 The localization of Rps at the prime ideal Pps is a discrete valuation ring.
The ideal Pps is unramified over the corresponding prime of Λ.

Proof. We begin with the first statement. For this it suffices to show that Pps is locally
principal. Note that by the universal property of Rps, there is a natural morphism

α : Rps → Rord
+

such that Pps = α−1(P+
ord). Let I = ker (α). Then I ⊂ Pps, and we will show first that

α(Pps) = Pps/I is locally principal in R
ps/I. To see this, observe that there is a well defined

function
v : Pps :→ Z ∪∞

defined by v(x) = val(α(x)), where “val” is the discrete valuation defined by P+
ord. To prove

that Pps is principal modulo I, it suffices to show that there exists an x ∈ Pps such that
v(x) = 1. Indeed, since Rps and Rord

+ have the same residue ring O at Pps and P
+
ord, it will

then follow that the map α(Rps) ↪→ Rord
+ induces an isomorphism on completing at Pps/I

and P+
ord.

Now suppose on the other hand that every x ∈ Pps satisfies v(x) ≥ 2. Then we get

α(Pps) ⊂ (P+
ord)

2, (11)

at least upon localization at P+
ord. Writing K for the fraction field of O, we have seen above

that M+ = P+
ord/(P

+
ord)

2 ⊗K is a 1-dimensional K-space, and since Rps is generated by the
traces of the universal pseudo-deformation, it follows from (11) that the natural pseudo-
deformation of ρ′ into

(Rord
+ /P+

ord
2
)⊗K

is constant. But this contradicts the conclusion of Lemma 3.9.
We have therefore proven that Pps is locally principal modulo I. To complete the proof

that Pps is locally principal, we simply observe that I is contained in the nilradical of R
ps.

Indeed, given an arbitrary prime ideal Q of Rps, with residue ring T , we can find a genuine
representation ρ̌ of Gal (Q/F ) with values in the fraction field of T which induces the pseudo-
deformation ρps (mod Q) (see [Wil88], pp. 564-565). If ρ̌ is reducible, there may be several
such representations, so we make a choice by specifying that ρ̌ be the unique semisimple
representation with the given traces.
Now, since the trace of ρps is invariant under the action of Gal (F/Q), we see that there

exists an extension of ρ̌ to a representation ρ̌′ of Gal (Q/Q), defined over some extension
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T ′ of T . The extension may not be unique, but that will not be relevant here. We need
only to observe that ρ̌′ is ordinary (since ρps is so) and that ρ̌′ is a deformation of ρ. To
verify this latter point, one can simply observe that the traces of ρ̌′ agree with those of ρps

on Gal (Q/F ), so that the reduction of ρ̌′ modulo the maximal ideal of T ′ coincides with
ϕ ⊕ ϕσ up to semisimplification. Since ρ̌′ extends to a representation of Gal (Q/Q), and ϕ
and ϕσ are interchanged by Gal (F/Q), we see that the reduction of ρ̌′ must equal to ϕ⊕ϕσ
on Gal (Q/F ). But ρ is the unique extension of ϕ⊕ ϕσ to a representation of Gal (Q/Q).
By the universal property of Rord, there is a homomorphism Rord → T ′ inducing ρ̌′.

Unwinding the definitions, one finds that the map Rps → Rps/Q = T → T ′ may be factored
as

Rps α→ Rord
+ → Rord → T ′.

Since Q = ker {Rps → T} = ker {Rps → T ′}, it follows from this that there must exist a
prime ideal of Rord, and hence of Rord

+ , lying over Q. Let Q+ denote a prime ideal of R
ord
+

such that α−1(Q+) = Q. Since I = α
−1(0) ⊂ α−1(Q+) = Q, it follows that I is contained in

every prime ideal Q of Rps, and hence lies in the nilradical of Rps. We may now conclude,
by Nakayama’s Lemma, that Pps is locally principal. Since the localization of R

ps at Pps has
Krull dimension at least one, it must be a discrete valuation ring. This completes the proof
of the first statement in the theorem.
We have now to prove that Pps is unramified over Λ. To achieve this, it suffices to show

that the O-module Pps/(Tζ , P
2
ps) is finite. Here Tζ = T − (ζ − 1), for ζ ∈ µp∞, is such that

the weight one prime ideal Pord ∩ Λ is generated by Tζ . Equivalently, if we write K for
the fraction field of O, then it suffices to show that M = Pps/(Tζ , P

2
ps) ⊗ K = 0. We will

prove the latter statement by contradiction. Indeed, if it were false, then there would exist a
nonconstant deformation ρ̃ps of ρ′ into the ring of dual numbers K[ε]/ε2, such that ρ̃ps = ρ′

(mod ε). Furthermore, since Tζ �→ 0 in M , we see that det(ρ̃ps) = det(ρ′).
Write ã, d̃, and x̃ for the coefficients a, d and x of the pseudo-representation ρ̃ps. It

follows from the fact that ρ̃ps is ordinary that the function x̃ is trivial on Ip× Ip, and also on
Ipσ × Ipσ . Thus the functions ã and d̃ define multiplicative characters Ipσ , Ip → O×. Since
det(ρ̃ps) = det(ρ′), and one of the functions ã or d̃ is unramified, we may conclude that the
pseudo-deformation ρ̃ps is constant on the inertia groups Ip and Ipσ .
Now let F ′ denote the splitting field of the representation ρ′ = IndFQ (ξ), and let H

′ =

Gal (Q/F ′). It follows from the defining properties of a pseudo-deformation that the function
x̃ defines a bilinear homomorphism

H ′ ×H ′ → K.

Furthermore, it follows from the fact that ρ̃ps is nonconstant that the homomorphism
defined by x̃ is nonzero (see the proof of Lemma 3.9). Now let F ′

∞ denote the maximal
abelian pro-p-extension of F ′ that is unramified away from primes lying over p, and let

19



H ′
∞ = Gal (Q/F ′

∞). It is clear that the function x̃ is trivial on H
′
∞ × H ′

∞. Thus there are
characters

ϕ′, ψ′ : H ′
∞ → K[ε]/ε2

such that the pseudo-representation defined by ρ̃ps coincides with that defined by ϕ′ ⊕ ψ′.
By relabeling, if necessary, we may assume that ã = ϕ′ and d̃ = ψ′ on H ′

∞.
Now let g ∈ Ipσ and h ∈ Gal (Q/F ′

∞). Then we can compute

ã(ghg−1) = ã(g)ã(hg−1) + x̃(g, hg−1) = ã(g)ã(hg−1) = ã(g)(ã(h)ã(g−1) + x̃(h, g−1))

= ã(g)ã(h)ã(g−1), (12)

where we have used the fact that x̃(g, ∗) = 0 for g ∈ Ipσ (ordinariness) and that x̃(h, g−1) = 0
(the functional x̃(∗, g−1) kills Gal (Q/F ′

∞) by definition). Finally, since our deformation is
constant on inertia groups, we find that ã(g−1) = ã(g)−1, so that a(ghg−1) = ã(h), for
g ∈ Ip and h ∈ Gal (Q/F ′

∞). A very similar computation shows that a(ghg
−1) = a(h), for

g ∈ Ip and h ∈ Gal (Q/F ′
∞). One can also make analogous computations upon replacing the

function ã by d̃.
Let F ′′ denote the maximal everywhere unramified subextension of N∞/F

′. Then F ′′

is finite over F ′. Observe now that Gal (N∞/F
′′) is abelian, and can be expressed as the

surjective image of a product of inertia groups. We may conclude from the considerations
above that Gal (F ′

∞/F
′′) acts trivially on the characters ϕ′ = ã and ψ′ = d̃ ofH ′

∞. Thus ifN∞
denotes the splitting field (over H ′

∞) of ϕ
′⊕ψ′, then it follows that N∞ is an abelian extension

of F ′′. Furthermore, one verifies directly that the restriction of ρ̃ps to Gal (Fp/F
′′) actually

factors through the abelian quotient Gal (N∞/F
′′), in the sense that the coefficient functions

are well-defined on this quotient. Then one checks that the function x̃(g, h) is symmetric
in g and h (by abelianness: a(gh) = a(hg) and d(gh) = d(gh).) Since ρ̃ps is ordinary, it
follows that x vanishes identically on Gal (N∞/F

′′). Finally, since our pseudo-deformation
is constant on inertia groups, we see that it must become constant upon base-change to
the finite extension F ′′. This contradicts the fact that x̃ defines a nonzero bilinear map
H ′ ×H ′ → K, and completes the proof of the theorem.

We can now prove Theorem B of the introduction. Before commencing the proof, we
remark that we have followed the conventions given in [DHI98] for normalizing the Hecke
operators and Frobenius elements. Of course, this choice of convention does not affect the
argument. With this in mind, our Theorem B follows directly from the following

Theorem 3.11 Let α(Rps) ⊂ Rord
+ denote the image of Rps under the natural morphism.

Then

• α(Rps) coincides with the closed subring of Rord
+ topologically generated over Λ by the

trace elements Tr (ρps(h)), for h ∈ (Gal (Q/F );
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• The ring α(Rps) is in the image of the Hecke ring hF of Hilbert modular forms over F
under the base change map β, and

• The ring α(Rps) has finite index in Rord
+ .

Proof. The first assertion is immediate, as Rps is topologically generated over Λ by the trace
elements indicated (see Lemma 3.8). As for the second, we note simply that the ring hF is
generated over Λ by Hecke operators Tq, for all q. By the Tchebotarev density theorem, and
the first assertion already proven, we find that Rps is topologically generated by elements
Tr (ρps(Frob(q))), for q � Dp. On the other hand, we know that Tr (!(Frob(q))) is the image
of β(Tq) under the base change map. Thus, α(R

ps) coincides with the subring topologically
generated over Λ by the elements β(Tq), which is contained in β(hF ).
To verify the remaining assertion, let Q+ denote a prime ideal of R

ord
+ , and let Q denote

the corresponding prime of S = α(Rps). Then we shall show that the map of Spec(Rord
+ )→

Spec(Rps) is unramified at Q+. More precisely, we will show that the map of completions

SQ → (Rord
+ )Q+ (13)

is an isomorphism. To achieve this, select a prime ideal Qord of R
ord lying over Q+, and let

ρQ denote the specialization of the universal deformation ρ
ord to Qord. We will first consider

the case where ρQ is irreducible on the subgroup Gal (Q/F ). Now consider the fibre ring

T = Rord ⊗ SQ/Q.

Then there is a natural deformation ρT of ρ into T , obtained by reducing the universal
deformation. By definition of T , we have Tr (ρT (h)) = Tr (ρQ(h)), for h ∈ H = Gal (Q/F ).
Since ρQ is assumed irreducible on H , it we may argue as in [Maz89], Proposition 4, to
conclude that the deformation ρT is constant on H . It follows easily from this that ρT is
constant, equal to ρQ, on Gal (Q/Q). This implies then that the morphism Spec(Rord) →
Spec(S) is unramified at Qord.
On the other hand, since Rord

+ is the fixed subring of an involution τ , it is clear that the
map Spec(Rord) → Spec(Rord

+ ) is unramified away from the fixed points of τ . But a prime
ideal of Rord is fixed by τ if and only if the corresponding representation is dihedral, and
reducible on the subgroup H . Since our ρQ was assumed irreducible on H , it follows that
Spec(Rord) → Spec(Rord

+ ) is unramified at Q. This implies that Spec(Rord
+ ) → Spec(S) is

unramified at Q+. Since it is obvious that R
ord
+ and S have the same residue ring, we obtain

(13) when ρQ is irreducible on H .
To treat the case of a prime Q where ρQ is dihedral, we note that such primes can be

described exactly. Namely, such a prime ideal is either maximal, or has residue characteristic
zero, and is such that ρQ = IndFQ(ϕξ), for some unramified character ψ of Gal (Q/F ) of p-
power order. To obtain (13) in this latter case, we can use Theorem 3.1. Indeed, we have
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shown that Rps
Pps
and (Rord

+ )P+
ord
are both discrete valuation rings, and in the course of proving

Theorem 3.10, we checked that there existed an element x ∈ Rps such that α(x) had valuation
1 at P+

ord. This proves the map (13) is unramified at P
+
ord.

To summarize, we have shown that the map (13) is an isomorphism for any nonmaximal
prime ideal Q+ of R

ord
+ . It follows now that α(Rps) has finite index in Rord

+ , since the cokernel
is supported at the the closed point.

Corollary 3.12 The prime ideals Pord of Rord and P+
ord of Rord

+ are both locally principal.
The ideal P+

ord is unramified over Λ, and Pord is ramified over P+
ord with ramification index

two.

Proof. This follows from Lemma 3.9, Theorem 3.1, Theorem 3.10, and the isomorphism
(13).
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