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1 Introduction

1.1 Rankin-Selberg L-functions

Let π be an irreducible cuspidal automorphic representation of GL2 over a
totally real number field F . Let K be a totally imaginary quadratic exten-
sion of F . Given a quasi-character χ of A×

K/K
×, we denote by L(π, χ, s)
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the Rankin-Selberg L-function associated to π and π(χ), where π(χ) is the
automorphic representation of GL2 attached to χ – see [16] and [15] for the
definitions. This L-function, which is first defined as a product of Euler fac-
tors over all places of F , is known to have a meromorphic extension to C
with functional equation

L(π, χ, s) = ε(π, χ, s)L(π̃, χ−1, 1− s)

where π̃ is the contragredient of π and ε(π, χ, s) is a certain ε-factor.
Let ω : A×

F/F
× → C× be the central quasi-character of π. The condition

χ · ω = 1 on A×
F ⊂ A×

K (1)

implies that L(π, χ, s) is entire and equal to L(π̃, χ−1, s). The functional
equation thus becomes

L(π, χ, s) = ε(π, χ, s)L(π, χ, 1− s)

and the parity of the order of vanishing of L(π, χ, s) at s = 1/2 is determined
by the value of

ε(π, χ)
def
= ε(π, χ, 1/2) ∈ {±1}.

We say that the pair (π, χ) is even or odd, depending upon whether ε(π, χ) is
+1 or −1. It is expected that the order of vanishing of L(π, χ, s) at s = 1/2
should ’usually’ be minimal, meaning that either L(π, χ, 1/2) or L′(π, χ, 1/2)
should be nonzero, depending upon whether (π, χ) is even or odd.

Calculation of sign

For the computation of ε(π, χ), one first writes it as the product over all
places v of F of the local signs ε(πv, χv) which are attached to the local
components of π and χ, normalized as in [9, Section 9]. Let η be the quadratic
Hecke character of F attached to K/F , and denote by ηv and ωv the local
components of η and ω. Then

ε(π, χ) = (−1)S(χ) (2)

where
S(χ)

def
= {v; ε(πv, χv) 6= ηv · ωv(−1)}. (3)
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Indeed, S(χ) is finite because ε(πv, χv) = 1 = ηv · ωv(−1) for all but finitely
many v’s, and (2) then follows from the product formula: η · ω(−1) = 1 =∏

v ηv · ωv(−1).
The various formulae for the local ε-factors that are spread throughout

[16] and [15] allow us to decide whether a given place v of F belongs to
S(χ), provided that the local components πv and π(χv) of π and π(χ) are
not simultaneously supercuspidal. At the remaining places, one knows that
χ ramifies and we may use a combination of [16, Proposition 3.8] and [15,
Theorem 20.6] to conclude that, when χ is sufficiently ramified at v, v does
not belong to S(χ). For our purposes, we just record the following facts.

For any finite place v of F in S(χ), Kv is a field and πv is either special
or supercuspidal. Conversely, if v is inert in K, χ is unramified at v and πv

is either special or supercuspidal, then v belongs to S(χ) if and only if the
v-adic valuation of the conductor of πv is odd. Finally an archimedean (real)
place v of F belongs to S(χ) if χv = 1 and πv is the holomorphic discrete
series of weight kv ≥ 2.

Ring class characters

In this paper, we regard the automorphic representation π as being fixed
and let χ vary through the collection of ring class characters of P -power
conductor, where P is a fixed maximal ideal in the ring of integers OF ⊂ F .

Here, we say that χ is a ring class character if there exists some OF -ideal
C such that χ factors through the finite group

A×
K/K

×K×
∞Ô×C ' Pic(OC)

where K∞ = K⊗R and OC def
= OF + COK is the OF -order of conductor C in

K. The conductor c(χ) of χ is the largest such C. Note that this definition
differs from the classical one — the latter yields an ideal c′(χ) of OK such
that c′(χ) | c(χ)OK .

Equivalently, a ring class character is a finite order character whose re-
striction to A×

F is everywhere unramified. In view of (1), it thus make sense to
require that ω is a finite order, everywhere unramified character of A×

F/F
×.

Then, there are ring class characters of conductor P n satisfying (1) for any
sufficiently large n. Concerning our fixed representation π, we also require
that
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π is cuspidal of parallel weight (2, · · · , 2) and level N , and the
prime to P part N ′ of N is relatively prime to the discriminant
D of K/F .

In this situation, we can give a fairly complete description of S(χ).

Lemma 1.1 For a ring class character χ of conductor P n, S(χ) = S or
S ∪ {P}, where S is the union of all archimedean places of F , together with
those finite places of F which do not divide P , are inert in K, and divide N
to an odd power. Moreover, S(χ) = S if either P does not divide N , or P
splits in K, or n is sufficiently large.

Remark 1.2 Note that πv is indeed special or supercuspidal for any finite
place v of F which divides N to an odd power, as the conductor of a principal
series representation with unramified central character is necessarily a square.

It follows that the sign of the functional equation essentially does not depend
upon χ, in the sense that for all but finitely many ring class characters of
P -power conductor,

ε(π, χ) = (−1)|S| = (−1)[F :Q]η(N ′).

If P - N or splits in K, this formula even holds for all χ’s. We say that the
triple (π,K, P ) is definite or indefinite depending upon whether this generic
sign (−1)[F :Q]η(N ′) equals +1 or −1.

Exceptional cases

In the definite case, it might be that the L-function L(π, χ, s) actually factors
as the product of two odd L-functions, and therefore vanishes to order at least
2. This leads us to what Mazur calls the exceptional case.

Definition 1.3 We say that (π,K) is exceptional if π ' π ⊗ η.

This occurs precisely when π ' π(α) for some quasi-character α of A×
K/K

×,
in which case L(π, χ, s) = L(αχ, s) · L(αχ′, s) where χ′ is the outer twist of
χ by Gal(K/F ). Moreover, both factors have a functional equations with
sign ±1 and it can and does happen that both signs are −1, in which case
L(π, χ, s) has at least a double zero. It is then more natural to study the
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individual factors than the product; this is the point of view taken in [20].
In this paper, we will always assume that (π,K) is not exceptional when
(π,K, P ) is definite.

Mazur’s conjectures

With this convention, we now do expect, in the spirit of Mazur’s conjectures
in [17], that the order of vanishing of L(π, χ, 1/2) should generically be 0 in
the definite case and 1 in the indefinite case. Let us say that χ is generic
if it follows this pattern. We will show that there are many generic χ’s of
conductor P n for all sufficiently large n.

More precisely, let K[P n]/K be the abelian extension of K associated by
class field theory to the subgroup K×K×

∞Ô×P n of A×
K , so that

G(n)
def
= Gal(K[P n]/K) ' A×

K/K
×K×

∞Ô×P n ' Pic(OP n).

Put K[P∞] = ∪K[P n], G(∞) = Gal(K[P∞]/K) = lim←−G(n) and let G0 be
the torsion subgroup of G(∞). It is shown in section 2 below that G0 is a
finite group and G(∞)/G0 is a free Zp-module of rank [FP : Qp], where p
is the residue characteristic of P . Moreover, the reciprocity map of K maps
A×

F ⊂ A×
K onto a subgroup G2 ' Pic(OF ) of G0 (the missing group G1 will

make an appearance latter). Using this reciprocity map to identify ring class
characters of P -power conductor with finite order characters of G(∞), and
ω with a character of G2, we see that the condition (1) on χ is equivalent to
the requirement that χ · ω = 1 on G2.

Conversely, a character χ0 of G0 induces a character on A×
F , and it make

sense therefore to require that χ0 · ω = 1 on A×
F . Given such a character,

we denote by P (n, χ0) the set of characters of G(n) which induce χ0 on G0

and do not factor through G(n− 1) – these are just the ring class characters
of conductor P n which, beyond (1), satisfy the stronger requirement that
χ = χ0 on G0.

Theorem 1.4 Let the data of (π,K, P ) be given and definite. Let χ0 be any
character of G0 with χ0 ·ω = 1 on A×

F . Then for all n sufficiently large, there
exists a character χ ∈ P (n, χ0) for which L(π, χ, 1/2) 6= 0.

For the indefinite case, we obtain a slightly more restrictive result.
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Theorem 1.5 Let the data of (π,K, P ) be given and indefinite. Suppose also
that ω = 1, and that N , D and P are pairwise coprime. Let χ0 be any
character of G0 with χ0 = 1 on A×

F . Then for all n sufficiently large, there
exists a character χ ∈ P (n, χ0) for which L′(π, χ, 1/2) 6= 0.

We prove these theorems using Gross-Zagier formulae to reduce the nonvan-
ishing of L-functions and their derivatives to the nontriviality of certain CM
points. The extra assumptions in the indefinite case are due to the fact that
these formulae are not yet known in full generality, although great progress
has been made by Zhang [29, 28, 30] in extending the original work of Gross
and Zagier. We prove the relevant statements about CM points without
these restrictions.

1.2 Gross-Zagier Formulae

Roughly speaking, the general framework of a Gross-Zagier formula yields a
discrete set of CM points on which the Galois group of the maximal abelian
extension of K acts continuously, together with a function ψ on this set with
values in a complex vector space such that the following property holds: a
character χ as above is generic if and only if

a(x, χ)
def
=
∫
GalabK

χ(σ)ψ(σ · x)dσ 6= 0 (4)

where x is any CM point whose conductor equals that of χ – we will see that
CM points have conductors. Note that the above integral is just a finite sum.

In the indefinite case, the relevant set of CM points consists of those
special points with complex multiplication by K in a certain Shimura curve
M defined over F , and ψ takes its values in (the complexification of) the
Mordell-Weil groups of a suitable quotient A of J = Pic0

M/F . In the definite
case, a finite set M plays the role of the Shimura curve. The CM points
project onto this M and the function ψ is the composite of this projection
with a suitable complex valued function on M .

Quaternion algebras

In both cases, these objects are associated to a quaternion algebra B over F
whose isomorphism class is uniquely determined by π, K and P . To describe
this isomorphism class, we just need to specify the set Ram(B) of places of F
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where B ramifies. In the definite case, the set S of Lemma 1.1 has even order
and we take Ram(B) = S, so that B is totally definite. In the indefinite case,
S is odd but it still contains all the archimedean (real) places of F . We fix
arbitrarily a real place τ of F and take Ram(B) = S − {τ}.

We remark here that in both cases, B splits at P . Moreover, the Jacquet-
Langlands correspondence implies that there is a unique cuspidal automor-
phic representation π′ on B associated to π = JL(π′), and π′ occurs with
multiplicity one in the space of automorphic cuspforms on B – this is the
space denoted by A0(G) in [27]. Finally, since Kv is a field for all v’s in S,
we may embed K into B as a maximal commutative F -subalgebra. We fix
such an embedding.

Let G
def
= ResF/Q(B×) be the algebraic group over Q whose set of points

on a commutative Q-algebra A is given by G(A) = (B ⊗ A)×. Thus, G

is a reductive group with center Z
def
= ResF/Q(F×) and the reduced norm

nr : B → F induces a morphism nr : G→ Z which also identifies Z with the
cocenter G/[G,G] of G. Our chosen embedding K ↪→ B allows us to view

T
def
= ResF/Q(K×) as a maximal subtorus of G which is defined over Q.

CM points.

For any compact open subgroup H of G(Af ), we define a set of CM points
by

CMH
def
= T (Q)\G(Af )/H.

There is an action of T (Af ) on CMH , given by left multiplication in G(Af ).
This action factors through the reciprocity map

recK : T (Af )� GalabK

and thus defines a Galois action on CMH . For x = [g] in CMH (with g in
G(Af )), the stabilizer of x in T (Af ) equals

U(x)
def
= T (Q) · (T (Af ) ∩ gHg−1)

and we say that x is defined over the abelian extension of K which is fixed
by recK(U(x)). When H = R̂× for some OF -order R ⊂ B, T (Af )∩gHg−1 =

Ô(x)
×

for some OF -order O(x) ⊂ K, and we define the conductor of x to
be that of O(x). In particular, a CM point of conductor P n is defined over
K[P n].
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We shall also need a some what more technical notion, namely that of a
good CM point.

Definition 1.6 Assume therefore that H = R̂× as above, and that the P -
component of R is an Eichler order of level P δ in BP ' M2(FP ). Then
R is uniquely expressed as the (unordered) intersection of two OF -orders
R1 and R2 in B, which are both maximal at P but agree with R outside
P . We say that a CM point x = [g] ∈ CMH is good if either δ = 0 or
KP ∩ gPR1g

−1
P 6= KP ∩ gPR2g

−1
P , and we say that x is bad otherwise.

It is relatively easy to check that if CMH contains any CM point of P -
power conductor, then it contains good CM points of conductor P n for all
sufficiently large n.

Automorphic forms

Let S denote the space of automorphic forms on B in the definite case, and
the space of automorphic cuspforms on B in the indefinite case. As a first
step towards the construction of the function ψ of (4), we shall now specify
a certain line C · Φ in the realization S(π′) of π′ in S. We will first define
an admissible G(Af )-submodule S2 of S, using the local behavior of π′ at
infinity. The line we seek then consists of those vectors in S2(π

′) = S2∩S(π′)
which are fixed by a suitable compact open subgroup H of G(Af ). We refer
to [8] for a more comprehensive discussion of these issues.

Recall from [16] that S and π′ are representations of G(Af )×H∞ where
H∞ is a certain sort of group algebra associated to G(R). As a representa-
tion of H∞, π′ is the direct sum of copies of the irreducible representation
π′∞ = ⊗v|∞π

′
v of H∞. Let V∞ be the representation space of π′∞. We claim

that V∞ is one dimensional in the definite case, while V∞ has a “weight
decomposition”

V∞ = ⊕k∈2Z−{0}V∞,k (5)

into one dimensional subspaces in the indefinite case. Indeed, the compat-
ibility of the global and local Jacquet-Langlands correspondence, together
with our assumptions on π = JL(π′), implies that for a real place v of F , π′v
is the trivial one dimensional representation of B×

v if v ramifies in B, while
for v = τ in the indefinite case, π′v ' πv is the holomorphic discrete series of
weight 2 which is denoted by σ2 in [6, section 11.3], and the representation
space of σ2 is known to have a weight decomposition similar to (5).
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Remark 1.7 In the indefinite case, the above decomposition is relative to the
choice of an isomorphism between Bτ and M2(R). Given such an isomor-
phism, the subspace V∞,k consists of those vectors in V∞ on which SO2(R)
acts by the character (

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
7→ e2kiθ.

Definition 1.8 We denote by S2 the admissible G(Af )-submodule of S which
is the image of the G(Af )-equivariant morphism

HomH∞(V∞,S) ↪→ S : ϕ 7→ ϕ(v∞)

where v∞ is any nonzero element of V∞ in the definite case, and any nonzero
element of V∞,2 (a lowest weight vector) in the indefinite case. By con-
struction, the G(Af )-submodule S2(π

′) = S2 ∩ S(π′) of S2 is isomorphic to
HomH∞(V∞,S(π′)). It is therefore irreducible.

Level subgroups

Turning now to the construction of H, let δ be the exponent of P in N , so
that N = P δN ′. Let R0 ⊂ B be an Eichler order of level P δ such that the
conductor of the OF -order O = OK ∩ R0 is a power of P . The existence of
R0 is given by [26, II.3], and we may even require that O = OK if P does
not divide N or splits in K. On the other hand, recall that the reduced
discriminant of B/F is the squarefree product of those primes of F which
are inert in K and divide N ′ to an odd power. We may thus find an ideal
M in OK such that

NormK/F (M) ·DiscB/F = N ′.

We then take

H
def
= R̂× where R

def
= O +M∩O ·R0. (6)

Note that R is anOF -order of reduced discriminantN in B. Since RP = R0,P

is an Eichler order (of level P δ), we have the notion of good and bad CM
points on CMH . Since x = [1] is a CM point of P -power conductor (with
O(x) = O), there are good CM points of conductor P n for all sufficiently
large n.

We claim that S2(π
′)H is 1-dimensional. Indeed, for every finite place v

of F , (π′v)
R×v is 1-dimensional: this follows from [3, Theorem 1] when v does

not divide N ′ (including v = P ) and from [8, Proposition 6.4], or a mild
generalization of [29, Theorem 3.2.2] in the remaining cases.
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1.3 The indefinite case

Suppose first that (π,K, P ) is indefinite, so that

B ⊗R =
∏
v|∞

Bv 'M2(R)×H[F :Q]−1

where H is Hamilton’s quaternion algebra and the M2(R) factor corresponds
to v = τ . We fix such an isomorphism, thus obtaining an action of

G(R) ' GL2(R)× (H×)[F :Q]−1

on X
def
= C − R by combining the first projection with the usual action of

GL2(R) on X.
For any compact open subgroup H of G(Af ), we then have a Shimura

curve ShH(G,X) whose complex points are given by

ShH(G,X)(C) = G(Q)\ (G(Af )/H ×X) .

The reflex field of this curve is the subfield τ(F ) of C, and its pull-back to F
is a smooth curve MH over F whose isomorphism class does not depend upon
our choice of τ . When S = ∅, F = Q, G = GL2 and theMH ’s are the classical
(affine) modular curves over Q. These curves can be compactified by adding
finitely many cusps, and we denote by M∗

H the resulting proper curves. In all
other cases, MH is already proper over F and we put M∗

H = MH . We denote
by JH the connected component of the relative Picard scheme of M∗

H/F .
Let x be the unique fixed point of T (R) in the upper half plane X+ ⊂ X.

The map g 7→ (g, x) then defines a bijection between CMH and the set
of special points with complex multiplication by K in MH . It follows from
Shimura’s theory that these points are defined over the maximal abelian
extension Kab of K, and that the above bijection is equivariant with respect
to the Galois actions on both sides.

On the other hand, there is a natural G(Af )-equivariant isomorphism
between the subspace S2 of S and the inductive limit (over H) of the spaces
of holomorphic differentials on M∗

H . This is well-known in the classical case
where S = ∅ – see for instance [6], section 11 and 12. For the general case,
we sketch a proof in section 3.6 of this paper.

In particular, specializing now to the level structure H defined by (6), we
obtain a line S2(π

′)H = C ·Φ in the space SH
2 of holomorphic differentials on
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M∗
H , a space isomorphic to the cotangent space of JH/C at 0. By construc-

tion, this line is an eigenspace for the action of the universal Hecke algebra
TH , with coefficients in Z, which is associated to our H. Since the action of
TH on the cotangent space factors through EndFJH , the annihilator of C ·Φ
in TH cuts out a quotient A of JH :

A
def
= JH/AnnTH

(C · Φ) · JH .

The Zeta function of A is essentially the product of the L-function of π
together with certain conjugates – see [29, Theorem B] for a special case.

The function ψ of (4) is now the composite of

• the natural inclusions CMH ↪→MH ↪→M∗
H ,

• a certain morphism ιH ∈ Mor(M∗
H , JH)⊗Q, and

• the quotient map JH � A.

In the classical case where S = ∅, ιH is a genuine morphism M∗
H → JH which

is defined using the cusp at ∞ on M∗
H . In the general case, one has to use

the so-called Hodge class. For a discussion of the Hodge class, we refer to
[30, section 6], or [9, section 23]. A variant of this construction, adapted to
out purposes, is given in section 3.5 below.

Statement of results

Now, let χ be a ring class character of conductor P n such that χ·ω = 1 on A×
F .

Suppose also that ε(π, χ) = −1: this holds true for any n ≥ 0 if P - N or P
splits in K, but only for n� 0 in the general case. Then L(π, χ, 1/2) = 0 and
the Birch and Swinnerton-Dyer conjecture predicts that the χ−1-component
of A(K[P n]) ⊗ C should be non-trivial. If moreover L′(π, χ, 1/2) 6= 0, the
Gross-Zagier philosophy tells us more, namely that this non-triviality should
be accounted for by the CM points of conductor P n: if x is such a point,
there should exists a formula relating L′(π, χ, 1/2) to the canonical height of

a(x, χ)
def
=

1

|G(n)|
∑

σ∈G(n)

χ(σ)ψ(σx) ∈ A(K[P n])⊗C,

thereby showing that L′(π, χ, 1/2) is nonzero precisely when a(x, χ) is a
nonzero element in the χ−1-component of A(K[P n])⊗C.
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Unfortunately, such a formula has not yet been proven in this degree of
generality. For our purposes, the most general case of which we are aware
is Theorem 6.1 of Zhang’s paper [30], which gives a precise formula of this
type under the hypotheses that the central character of π is trivial and that
N , D and P are pairwise prime to each other.

Remark 1.9 We point out that Zhang works with the Shimura curves at-
tached to G/Z instead of G, and uses a(x, χ−1) instead of a(x, χ). The first
distinction is not a real issue, and the second is irrelevant, as long as we are
restricting our attention to the anticyclotomic situation where χ = ω = 1
on A×

F . Indeed, χ−1 is then equal to the outer twist of χ by Gal(K/F ),
so that L(π, χ, s) = L(π, χ−1, s) and any lift of the non-trivial element of
Gal(K/F ) to Gal(K[P n]/F ) interchanges the eigenspaces for χ and χ−1 in
A(K[P n])⊗C.

One has to be more careful when χ is non-trivial on A×
F . To be consistent

with the BSD conjecture, a Gross-Zagier formula should relate L′(π, χ, 1/2)
to a point in the χ−1-component of A(K[P n])⊗C.

In any case, Zhang’s Gross-Zagier formula implies that Theorem 1.5 is now
a consequence of the following result, which itself is a special case of Theo-
rem 4.1 in the text.

Theorem 1.10 Let χ0 be any character of G0 such that χ0 · ω = 1 on A×
F .

Then, for any good CM point x of conductor P n with n sufficiently large,
there exists a character χ ∈ P (n, χ0) such that a(x, χ) 6= 0.

1.4 The definite case

Suppose now that the triple (π,K, P ) is definite, so that π′∞ is the trivial
1-dimensional representation of

G(R) =
∏
v|∞

B×
v ' (H×)[F :Q].

Then S(π′) is contained in S2, and the latter is simply the subspace of S on
which G(R) acts trivially; this is the space of all smooth functions

φ : G(Q)\G(A)/G(R) = G(Q)\G(Af ) −→ C,
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with G(Af ) acting by right translation. Note that the G(Af )-module un-
derlying S(π′) = S2(π

′) is admissible, infinite dimensional and irreducible; it
contains no nonzero function which factors through the reduced norm, be-
cause any such function spans a finite dimensional G(Af )-invariant subspace.

For any compact open subgroup H of G(Af ), we may identify SH
2 with

the set of complex valued functions on the finite set

MH
def
= G(Q)\G(Af )/H,

and any such function may be evaluated on CMH = T (Q)\G(Af )/H.
Specializing now to the H which is defined by (6), let ψ be the function

induced on CMH by some nonzero element Φ in the 1-dimensional space
S2(π

′)H = S(π′)H = C · Φ:

ψ : CMH →MH
Φ−→ C.

For a ring class character χ of conductor P n such that χ · ω = 1 on A×
F , the

Gross-Zagier philosophy predicts that there should exist a formula relating
L(π, χ, 1/2) to |a(x, χ)|2, for some CM point x ∈ CMH of conductor P n, with

a(x, χ)
def
=

1

|G(n)|
∑

σ∈G(n)

χ(σ)ψ(σ · x) ∈ C.

Such a formula has indeed been proven by Zhang [30, Theorem 7.1], under
the assumption that ω = 1, and that N , D and P are pairwise coprime.
On the other hand, there is a more general theorem of Waldspurger which,
although it does not give a precise formula for the central value of L(π, χ, s),
still gives a criterion for its non-vanishing.

Statement of results

Thus, let χ be any character of T (Q)\T (A) such that χ ·ω = 1 on A×
F . Such

a character yields a linear form `χ on S(π′), defined by

`χ(φ)
def
=
∫

Z(A)T (Q)\T (A)
χ(t)φ(t)dt

where dt is any choice of Haar measure on T (A). By a fundamental theorem
of Waldspurger [27, Théorème 2], this linear form is nonzero on S(π′) if and
only if L(π, χ, 1/2) 6= 0 and certain local conditions are satisfied. The results
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of Tunell and Saito which are summarized in [9, Section 10] show that these
local conditions are satisfied if and only if the set S(χ) of (3) is equal to the
set S of places where B ramifies. For a ring class character χ of P -power
conductor, Lemma 1.1 shows that S(χ) = S if and only if (π, χ) is even. We
thus obtain the following simple criterion.

Theorem 1.11 [Waldspurger] For a ring class character χ of P -power con-
ductor such that χ · ω = 1 on A×

F ,

L(π, χ, 1/2) 6= 0 ⇔ ∃φ ∈ S(π′) : `χ(φ) 6= 0.

Remark 1.12 Waldspurger’s theorem does not give a precise formula for the
value of L(π, χ, 1/2), and it does not specify a canonical choice of φ (a test
vector in the language of [10]) on which to evaluate the linear functional `χ.
The problem of finding such a test vector φ and a Gross-Zagier formula re-
lating `χ(φ) to L(π, χ, 1/2) is described in great generality in [9], and explicit
formulae are proven in [7] (for F = Q) and for a general F in [28, 30], under
various assumptions. A leisurely survey of this circle of ideas may be found
in [25].

Recall that ψ is the function which is induced on CMH by some nonzero Φ
in S(π′)H . For φ = g · Φ ∈ S(π′), with g ∈ G(Af ) corresponding to a CM
point x = [g] ∈ CMH whose conductor P n equals that of χ, we find that, up
to a nonzero constant,

`χ(φ) ∼ a(x, χ).

Theorem 1.4 therefore is a consequence of the following result, which itself is
a special case of Theorem 5.10 in the text.

Theorem 1.13 Let χ0 be any character of G0 such that χ0 · ω = 1 on A×
F .

Then, for any good CM point x of conductor P n with n sufficiently large,
there exists a character χ ∈ P (n, χ0) such that a(x, χ) 6= 0.

1.5 Applications

As we have already explained, the present work was firstly motivated by a
desire to prove non-vanishing of L-functions and their derivatives. However,
the results we prove on general CM points have independent applications
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to Iwasawa theory, even when they are not yet known to be related to L-
functions.

For instance, Theorem 1.10 implies directly that certain Euler systems
of Bertolini-Darmon (when F = Q) and Howard (for general F ) are ac-
tually non-trivial. The non-triviality of these Euler systems is used by
B. Howard in [14] to establish half of the relevant Main Conjecture, for the
anti-cyclotomic Iwasawa theory of abelian varieties of GL(2)-type. It is also
used by J. Nekovář in [18] to prove new cases of parity in the Bloch-Kato
conjecture, for Galois representations attached to Hilbert modular newforms
over F with trivial central character and parallel weight (2k, · · · , 2k), k ≥ 1.

1.6 Sketch of proof

We want to briefly sketch the proof of our nontriviality theorems for CM
points. The basic ideas are drawn from our previous papers [4, 23, 24] with
a few simplifications and generalizations.

Thus, let χ0 be a character of G0 such that χ0 ·ω = 1 on A×
F , let H = R̂×

be the compact open subgroup of G(Af ) defined by (6), and let x be a CM
point of conductor P n in CMH . We have defined a function ψ on CMH with
values in a complex vector space, and we want to show that

a(x, χ)
def
=

1

|G(n)|
∑

σ∈G(n)

χ(σ)ψ(σ · x)

is nonzero for at least some χ ∈ P (n, χ0), provided that n is sufficiently large.
The analysis of such sums proceeds in a series of reductions.

From G(n) to G0

To prove that a(x, χ) 6= 0 for some χ ∈ P (n, χ0), it suffices to show that the
sum of these values is nonzero. A formal computation in the group algebra
of G(n) shows that this sum,

b(x, χ0)
def
=

∑
χ∈P (n,χ0)

a(x, χ)

is given by

b(x, χ0) =
1

q |G0|
∑

σ∈G0

χ0(σ)ψ∗ (σ · x̃)
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where ψ∗ is the extension of ψ to Z[CMH ] and

x̃ = q · x− TrZ(n)(x) =
∑

σ∈Z(n)

x− σ · x.

Here, Z(n) = Gal(K[P n]/K[P n−1]) and q = |Z(n)| = |OF/P |.

Distribution relations

To deal with x̃, we have to use distribution relations and Hecke correspon-
dences, much as in the case of F = Q treated in our previous works. However,
there are numerous technicalities to overcome, owing to the fact that we are
now working over a more general field, with automorphic forms that may
have a nontrivial central character, and with a prime P that may divide the
level. Although the necessary arguments are ultimately quite simple, the de-
tails are somewhat tedious, and we request forgiveness for what might seem
to be a rather opaque digression. To avoid obscuring the main lines of the
argument, we have banished the discussion of distribution relations to the
appendices.

Basically, these distribution relations will produce for us a level structure
H+ ⊂ H, a function ψ+ on CMH+ and a CM point x+ ∈ CMH+ of conductor
P n such that

∀σ ∈ Galab
K : ψ+(σ · x+) = ψ∗(σ · x̃).

In fact, H+ = R̂+
×

for some OF -order R+ ⊂ B which agrees with R outside
P , and is an Eichler order of level Pmax(δ,2) at P .

Note that this part of the proof is responsible for the goodness assump-
tions in our theorems. Indeed, the bad CM points simply do not seem to
satisfy any distribution relations, and the above construction may therefore
only be applied to a good CM point x. We also mention that this computa-
tion would not work with a more general function ψ: one needs ψ to be new
at P , in some suitable sense.

From G0 to G0/G2

We now have

b(x, χ0) =
1

|G0|
∑

σ∈G0

χ0(σ)ψ+(σ · x+).

17



Using the fact that χ0 · ω = 1 on G2, we prove that

b(x, χ0) =
1

|G0/G2|
∑

σ∈G0/G2

χ0(σ)ψ+(σ · x+).

Indeed, the map σ 7→ χ0(σ)ψ+(σ · x+) factors through G0/G2.

From G0/G2 to G0/G1

We can reduce the above sum to something even simpler. Indeed, it turns
out that there is a subgroup G1 ⊂ G0, containing G2, such that the Galois
action of the elements in G1 can be realized by geometric means. In fact, G1

is the maximal such subgroup, and G1/G2 is generated by the classes of the
frobeniuses in G(∞) of those primes of K which are ramified over F but do
not divide P .

More precisely, we construct yet another level structure H+
1 ⊂ H+, a

function ψ+
1 on CMH+

1
, and a CM point x+

1 ∈ CMH+
1

of conductor P n, such
that

∀γ ∈ GalabK : ψ+
1 (γ · x+

1 ) =
∑

σ∈G1/G2

χ0(σ)ψ+(σγ · x+).

This H+
1 corresponds to an OF -order R+

1 ⊂ B which only differs from R+ at
those finite places v 6= P of F which ramify in K.

This part of the proof is responsible for our general assumption that
N ′ and D are relatively prime. Indeed, to establish the above formula, we
need to know that for all v 6= P that ramify in K, the local component
H+

v = Hv = R×
v of H+ is a maximal order in a split quaternion algebra. It

seems likely that the case where Rv is an Eichler order of level v in a split
algebra could still be handled by similar methods.

Dealing with G0/G1

We finally obtain

b(x, χ0) =
1

|G0/G2|
c(x+

1 ) with c(y) =
∑

σ∈G0/G1

χ0(σ)ψ+
1 (σ · y).

We prove that c(y) 6= 0 for sufficiently many y’s in CMH+
1
(P n), n� 0, using

a theorem of M. Ratner on uniform distribution of unipotent orbits on p-
adic Lie groups. Just as in our previous work, we show that the elements of
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G0/G1 act irrationally on the relevant CM points. Slightly more precisely,
we prove that for y as above, the images r(z) of vectors of the form

r(z) = (σ · z)σ∈G0/G1 ∈ CMH+
1
(P n)G0/G1

are uniformly distributed in some appropriate space, as z runs through the
Galois orbit of y, and n goes to infinity. In the indefinite case, r(z) is the vec-
tor of supersingular points in characteristic ` which is obtained by reducing
the coordinates of r(z) at some suitable place of K[P∞]. In the definite case,
MH itself plays the role of the supersingular locus. The uniform distribution
theorem implies that the image of the Galois orbit of y tends to be large,
and it easily follows that c(y) is nonzero.

We have chosen to present a more general variant of the uniform distribu-
tion property alluded to above in a separate paper [5], which is quoted here
in propositions 4.17 and 5.6 (for respectively the indefinite and the definite
case). Although it really is the kernel of our proof, one may consider [5] as a
black box while reading this paper.

1.7 Notations.

For any place v of F , Fv is the completion of F at v and OF,v is its ring of
integers (if v is finite). If E is a vector field over F , such as K or B, we put
Ev = E⊗F Fv. More generally, if R is a module over the ring of integers OF of
F , we put Rv = R ⊗OF

OF,v. We denote by A (resp. Af ) the ring of adeles
(resp. finite adeles) of Q, so that A = Af × R, and Af is the restricted
product of the Fv’s with respect to the OF,v’s. We put AF = A ⊗Q F
and AK = A ⊗Q K. For the finite adeles, we write F̂ = Af ⊗Q F and

K̂ = Af ⊗Q K. Thus F̂ = ÔF ⊗Q where M̂ = M ⊗ Ẑ denotes the profinite
completion of a finite generated Z-module M . For any affine algebraic group
G/Q, we topologize G(A) = G(Af ) × G(R) in the usual way. When G is
the Weil restriction G = ResF/QG

′ of an algebraic group G′/F , we denote by

gv ∈ G′(Fv) the v-component of g ∈ G(A) = G′(AF ) (or G(Af ) = G′(F̂×)),
and we identify G′(Fv) with the subgroup {g ∈ G(A); ∀w 6= v, gw = 1} of
G(A) (or G(Af )).

We put GalF = Gal(F/F ) and GalK = Gal(F/K) where F is a fixed
algebraic closure of F containing K. We denote by F ab and Kab the maximal
abelian extensions of F and K inside F , with Galois groups GalabF and GalabK .
We denote by Frobv the geometric Frobenius at v (the inverse of x 7→ xN(v))
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and normalize the reciprocity map

recF : A×
F → GalabF and recK : A×

K → GalabK

accordingly.

2 The Galois group of K[P∞]/K

Fix a prime P of F with residue field F = OF/P of characteristic p and order
q = |F|. We have assembled here the basic facts we need pertaining to the
infinite abelian extension K[P∞] = ∪n≥0K[P n] of K. Recall that

G(n) = Gal(K[P n]/K) and G(∞) = Gal(K[P∞]/K) = lim←−G(n).

The first section describes G(∞) as a topological group: it is an extension of
a free Zp-module of rank [FP : Qp] by a finite group G0, the torsion subgroup
of G(∞). The second section defines a filtration

{1} ⊂ G2 ⊂ G1 ⊂ G0

which plays a crucial role in the proof (and statement) of our main results.
Finally, the third section gives an explicit formula for a certain idempotent
in the group algebra of G(n).

2.1 The structure of G(∞)

Lemma 2.1 The reciprocity map induces an isomorphism of topological groups
between K̂×/K×U and G(∞) where

U = ∩Ô×P n = {λ ∈ Ô×K , λP ∈ O×F,P}.

Proof. We have to show that the natural continuous map

φ : K̂×/K×U → lim←− K̂
×/K×Ô×P n

is an isomorphism of topological groups. Put

Xn = K×Ô×P n/K×U ' O×P n,P/O×P nO×F,P

so that ker(φ) = lim←−Xn and coker(φ) = lim←−
(1)Xn. Note that (O×P n)n≥0 is a

decreasing sequence of subgroups of O×K with ∩n≥0O×P n = O×F : since O×F has
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finite index in O×K, O×P n = O×F and Xn = O×P n,P/O×F,P for all n� 0. It follows

that lim←−Xn = lim←−
(1)Xn = {1}, so that φ is indeed a group isomorphism.

This also shows that K×U ∩ Ô×P n = U for n � 0. In particular, K×U is a
locally closed, hence closed subgroup of K̂×. Being a separated quotient of
the compact group K̂×/K×, K̂×/K×U is also compact. Being a continuous
bijection between compact spaces, φ is an homeomorphism.

It easily follows that the open subgroup Gal(K[P∞]/K[1]) of G(∞) is iso-
morphic to O×K,P/O×KO×F,P . Since O×K/O×F is finite and O×K,P/O×F,P contains

an open subgroup topologically isomorphic to Z[FP :Qp]
p , a classical result on

profinite groups implies that

Corollary 2.2 The torsion subgroup G0 of G(∞) is finite and G(∞)/G0 is
topologically isomorphic to Z[FP :Qp]

p .

2.2 A filtration of G0

Let G(∞)′ be the subgroup of G(∞) which is generated by the Frobeniuses
of those primes of K which are not above P (these primes are unramified in
K[P n] for all n ≥ 0). In particular, G(∞)′ is a countable but dense subgroup
of G(∞).

Lemma 2.3 The reciprocity map induces topological isomorphisms

(K̂×)P/(S−1OF )×(Ô×K)P '−→ G(∞)′

and K×
P /K

×F×
P

'−→ G(∞)/G(∞)′.

Here: S = OF − P and XP = {λ ∈ X, λP = 1} for X ⊂ K̂×.

Proof. Class field theory tells us that G(∞)′ is the image of recK((K̂×)P )
in G(∞). Both statements thus follow from Lemma 2.1.

The map λ 7→ λÔK ∩K× yields an isomorphism between (K̂×)P/(Ô×K)P and
the group IP

K of all fractional ideals of K which are relatively prime to P .
This bijection maps (S−1OF )×(Ô×K)P/(Ô×K)P to the group PP

F of those ideals
in IP

K which are principal and generated by an element of F× – which then
necessarily belongs to (S−1OF )×. We thus obtain a perhaps more enlight-
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ening description of G(∞)′: it is isomorphic to IP
K/PP

F . The isomorphism
sends the class of a prime Q - P of K to its Frobenius in G(∞)′.

Definition 2.4 We denote by G1 ⊂ G0 the torsion subgroup of G(∞)′.

There is an obvious finite subgroup in IP
K/PP

F . Indeed, let IP
F be the group

of all fractional ideals J in K for which J = OKI for some fractional ideal
I of F relatively prime to P . Then PP

F ⊂ IP
F ⊂ IP

K and IP
F /PP

F is finite. In
fact,

IP
F /PP

F ' (F̂×)P/(S−1OF )×(Ô×F )P ' F̂×/F×Ô×F ' Pic(OF ).

Definition 2.5 We denote by G2 ' Pic(OF ) the corresponding subgroup of
G1.

Note that G2 is simply the image of recK(F̂×) in G(∞) and the isomor-
phism between G2 and Pic(OF ) ' F̂×/F×Ô×F is induced by the reciprocity
map of K. By definition, G1/G2 is isomorphic to the torsion subgroup of
(K̂×)P/(F̂×Ô×K)P ' IP

K/IP
F . We thus obtain:

Lemma 2.6 G1/G2 is an F2-vector space with basis

{σQ mod G2; Q | D′}

where D′ is the squarefree product of those primes Q 6= P of F which ramify
in K, and σQ = FrobQ ∈ G1 with Q2 = QOK. In particular,

G1/G2 = {σD mod G2; D | D′}

where σD =
∏

Q|D σQ for D | D′.

The following lemma is an easy consequence of the above discussion.

Lemma 2.7 Let Q 6= P be a prime of OF which does not split in K and let
Q be the unique prime of OK above Q. Then the decomposition subgroup of
Q in G(∞) is finite. More precisely, it is a subgroup of G2 if Q = QOK and
a subgroup of G1 not contained in G2 if Q2 = QOK.
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2.3 A formula

Let χ0 : G0 → C× be a fixed character of G0. For n > 0, we say that a
character χ : G(n)→ C× is primitive if it does not factor through G(n− 1).
We denote by P (χ0, n) the set of primitive characters of G(n) inducing χ0

on G0 and let e(χ0, n) be the sum of the orthogonal idempotents

eχ
def
=

1

|G(n)|
∑

σ∈G(n)

χ(σ) · σ ∈ C[G(n)], χ ∈ P (χ0, n).

Note that e(χ0, n) is yet another idempotent in C[G(n)].

Lemma 2.8 For n � 0, we may identify G0 with its image G0(n) in G(n)
and

e(χ0, n) =
1

q |G0|
·
(
q − TrZ(n)

)
·
∑

σ∈G0

χ0(σ) · σ in C[G(n)].

Here, TrZ(n)
def
=
∑

σ∈Z(n) σ with Z(n)
def
= Gal(K[P n]/K[P n−1]).

Proof. We denote by G∨ the group of characters of a given G. Write

e(χ0, n) =
∑

σ∈G(n)

eσ(χ0, n) · σ ∈ C[G(n)]

and put H(n) = G(n)/G0(n). If n is sufficiently large, (1) G0 � G0(n) is
an isomorphism, (2) G(n) � H(n) induces an isomorphism from Z(n) =
ker (G(n)� G(n− 1)) to the kernel of H(n)� H(n−1), and (3) the kernel
X(n) of G(n)→ H(n− 1) is the direct sum of G0(n) and Z(n) in G(n). In
particular, there exists an element χ′0 ∈ G(n)∨ inducing χ0 on G0(n) ' G0

and 1 on Z(n), so that

P (χ0, n) = H(n)∨χ′0 −H(n− 1)∨χ′0 = (H(n)∨ −H(n− 1)∨)χ′0.

For σ ∈ G(n), we thus obtain

|G(n)| · eσ(χ0, n) =

 ∑
χ∈H(n)∨

χ(σ)−
∑

χ∈H(n−1)∨

χ(σ)

 · χ′0(σ)

=


0 if σ /∈ X(n)
− |H(n− 1)| if σ ∈ X(n) \G0(n)
|H(n)| − |H(n− 1)| if σ ∈ G0(n)

 · χ′0(σ).
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Since X(n) = G0(n)⊕ Z(n) with χ′0 = χ0 on G0(n) and 1 on Z(n),

|G(n)| · e(χ0, n) =
∑

σ∈G0(n)

∑
τ∈Z(n)

|G(n)| · eστ (χ0, n) · στ

=
∑

σ∈G0

(
|H(n)| − |H(n− 1)| · TrZ(n)

)
· χ0(σ)σ

This is our formula. Indeed,

|G(n)| = |G0| |H(n)| , |H(n)| = |Z(n)| |H(n− 1)| ,

and |Z(n)| = |F| = q by Lemma 2.9 below.

The reciprocity map induces an isomorphism between

K×Ô×P n−1/K
×Ô×P n ' O×P n−1,P/O

×
P n−1O×P n,P

and Z(n). For n � 0, O×P n−1 = O×F is contained in O×P n,P , so that Z(n) '
O×P n−1,P/O

×
P n,P . On the other hand, for any n ≥ 1, the F-algebra OP n/POP n

is isomorphic to F[ε] = F[X]/X2F[X], and the projectionOP n,P → OP n,P/POP n,P '
OP n/POP n induces an isomorphism betweenO×P n,P/O×P n+1,P and F[ε]×/F× '
{1 + αε; α ∈ F}. We thus obtain:

Lemma 2.9 For n� 0, Z(n) ' F as a group.

3 Shimura Curves

Let F be a totally real number field. To each finite set S of finite places of F
such that |S|+ [F : Q] is odd, we may attach a collection of Shimura curves
over F . If K is a totally imaginary quadratic extension of F in which the
primes of S do not split, these curves are provided with a systematic supply
of CM points defined over the maximal abelian extension Kab of K. As
explained in the introduction, our aim in this paper (for the indefinite case)
is to prove the non-triviality of certain cycles supported on these points.

This section provides some of the necessary background on Shimura curves,
with [2] as our main reference. Further topics are discussed in Section 3 of
[5]. To simplify the exposition, we require S to be nonempty if F = Q.
This rules out precisely the case where our Shimura curves are the classical
modular curves over Q. This assumption implies that our Shimura curves
are complete – there are no cusps to be added, but then also no obvious way
to embed the curves into their Jacobians.
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3.1 Shimura curves

Let {τ1, · · · , τd} = HomQ(F,R) be the set of real embeddings of F . We shall
always view F as a subfield of R (or C) through τ1. Let B be a quaternion
algebra over F which ramifies precisely at S ∪ {τ2, · · · , τd}, a finite set of
even order. Let G be the reductive group over Q whose set of points on a
commutative Q-algebra A is given by G(A) = (B⊗A)×. Let Z be the center
of G.

In particular, GR ' G1 × · · · × Gd where Bτi
= B ⊗F,τi

R and Gi is the
algebraic group over R whose set of points on a commutative R-algebra A
is given by Gi(A) = (Bτi

⊗R A)×. Fix ε ∈ {±1} and let X be the G(R)-

conjugacy class of the morphism from S def
= ResC/R(Gm,C) to GR which maps

z = x+ iy ∈ S(R) = C× to[(
x y
−y x

)ε

, 1, · · · , 1
]
∈ G1(R)× · · · ×Gd(R) ' G(R). (7)

We have used an isomorphism of R-algebras Bτ1 'M2(R) to identify G1 and
GL2/R; the resulting conjugacy class X does not depend upon this choice,
but it does depend on ε, cf. Section 3.3.1 of [5] and Remark 3.1 below.

It is well-known that X carries a complex structure for which the left
action of G(R) is holomorphic. For every compact open subgroup H of
G(Af ), the quotient of G(Af )/H ×X by the diagonal left action of G(Q) is
a compact Riemann surface

Man
H

def
= G(Q)\ (G(Af )/H ×X) .

The Shimura curve MH is Shimura’s canonical model for Man
H . It is a proper

and smooth curve over F (the reflex field) whose underlying Riemann surface
MH(C) equals Man

H .

Remark 3.1 With notations as above, let h : S → GR be the morphism
defined by (7). There are G(R)-equivariant diffeomorphisms

X
'←− G(R)/H∞

'−→ C \R
ghg−1 ←− [ g 7−→ g · εi

where

H∞ = StabG(R)(h) = StabG(R)(±i)
= R×SO2(R)×G2(R)× · · · ×Gd(R)
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with G(R) acting on C\R through its first component G1(R) ' GL2(R) by
( a b

c d ) · λ = aλ+b
cλ+d

. With these conventions, the derivative of λ 7→ gh(z)g−1 · λ
at λ = g · εi equals z/z (for g ∈ G(R), λ ∈ C \ R and z ∈ C× = §(R)).
In other words, the above bijection between X and C \R is an holomorphic
diffeomorphism.

This computation shows that the Shimura curves of the introduction,
which are also those considered in [30] or [14], correspond to the case where
ε = 1. On the other hand, Carayol explicitly works with the ε = −1 case in
our main reference [2].

3.2 Connected components

We denote by
MH

c−→MH → Spec(F )

the Stein factorization of the structural morphism MH → Spec(F ), so that

MH
def
= Spec Γ(MH ,OMH

) is a finite étale F -scheme and the F -morphism
c : MH →MH is proper and smooth with geometrically connected fibers. In
particular,

MH(F ) ' π0(MH ×F F ) ' π0(MH(C)) ' π0(M
an
H ). (8)

Remark 3.2 (1) In the notations of remark 3.1, let X+ be the connected
component of h in X, so that X+ = G(R)+ · h ' Hε where G(R)+ is the

neutral component of G(R) and Hε
def
= {λ ∈ C; ε · <(λ) > 0}. Put G(Q)+ def

=
G(R)+ ∩ G(Q). Then π0(M

an
H ) ' G(Q)+\G(Af )/H, corresponding to the

decomposition∐
α Γα\Hε

'←− ∐
α Γα\X+ '−→ Man

H

[g · εi] ∈ Γα\Hε ←− [ [x = ghg−1] ∈ Γα\X+ 7−→ [(α, x)]
(9)

where α ∈ G(Af ) runs through a set of representatives of the finite set
G(Q)+\G(Af )/H, Γα is the discrete subgroup αHα−1∩G(Q)+ ofG(R)+ and
Γα ⊂ PGL+

2 (R) is its image through the obvious map G(R)+ → GL+
2 (R)→

PGL+
2 (R).

(2) The strong approximation theorem [26, p. 81] and the norm theorem
[26, p. 80] imply that the reduced norm nr : B̂× → F̂× induces a bijection

π0(M
an
H ) ' G(Q)+\G(Af )/H

'−→ Z(Q)+\Z(Af )/nr(H) (10)
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where Z(Q)+ = nr(G(Q)+) is the subgroup of totally positive elements in
Z(Q) = F×. Using also (8), we obtain a left action of GalF on the RHS of
(10). The general theory of Shimura varieties implies that the latter action
factors through GalabF , where it is given by the following reciprocity law (see
Lemma 3.12 in [5]): for λ ∈ F̂×, the element σ = recF (λ) of GalabF acts on the
RHS of (10) as multiplication by λε. In particular, this action is transitive and
MH is therefore a connected F -curve (although not a geometrically connected
one).

3.3 Related group schemes

The Jacobian JH of MH is the identity component of the relative Picard
scheme PH of MH → Spec(F ) and the Néron-Severi group NSH of MH is
the quotient of PH by JH . By [12, VI], JH is an abelian scheme over F while
NSH is a “separable discrete” F -group scheme. The canonical isomorphism
[12, V.6.1] of F -group schemes

PH
'−→ ResMH/F (PicMH/MH

)

induces an isomorphism between JH and ResMH/F (Pic0
MH/MH

), so that

NSH
'−→ ResMH/F

(
PicMH/MH

/Pic0
MH/MH

) '−→ ResMH/F (Z)

where we have identified PicMH/MH
/Pic0

MH/MH
with the constantMH-group

scheme Z using the degree map degH : PicMH/MH
→ Z. We denote by

degH : PH → NSH = PH/JH

the quotient map, so that degH = ResMH/F (degH) under the above identifi-
cations.

Remark 3.3 IfMH(F ) = {sα} with sα : Spec(F )→MH ,

MH ×F Spec(F ) =
∐

α Cα, PH ×F Spec(F ) =
∏

α Pα,
JH ×F Spec(F ) =

∏
α Jα, and NSH ×F Spec(F ) =

∏
α Zα

where Cα = c−1(sα), Pα = Pic(Cα), Jα = Pic0(Cα) and Zα = s∗α(Z) is isomor-
phic to Z over F . With these identifications, degH maps (pα) ∈ ∏α Pα to
(deg(pα)) ∈ ∏α Z.
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3.4 Hecke operators

As H varies among the compact open subgroups of G(Af ), the Shimura
curves {MH}H form a projective system with finite flat transition maps which
is equipped with a “continuous” right action of G(Af ). Specifically, for any
element g ∈ G(Af ) and for any compact open subgroupsH1 andH2 of G(Af )
such that g−1H1g ⊂ H2, multiplication on the right by g in G(Af ) defines a
map Man

H1
→Man

H2
which descends to a finite flat F -morphism

[·g] = [·g]H1,H2 : MH1 →MH2 .

We shall refer to such a map as the degeneracy map induced by g. Letting
H1 and H2 vary, these degeneracy maps together define an automorphism
[·g] of lim←−{MH}H .

There is a natural left action of the Hecke algebra

TH
def
= EndZ[G(Af )] (Z[G(Af )/H]) ' Z[H\G(Af )/H]

on PH , JH and NSH . We normalize these actions in the Albanese fashion
(CoVa2riantly): for α ∈ G(Af ), the Hecke operator TH(α) ∈ TH correspond-
ing to the double class HαH acts by TH(α) = f ′∗ ◦ [·α]∗ ◦ f ′∗ where f and f ′

are the obvious transition maps in the following diagram

MH∩αHα−1

f

yyrrrrrrrrrr

[·α] // Mα−1Hα∩H

f ′

%%LLLLLLLLLL

MH
TH(α) // MH

The degree of TH(α) is the degree of f , namely the index of H ∩ αHα−1 in
H. On the level of divisors, TH(α) maps x = [g, h] ∈Man

H to

TH(α)(x) =
∑

[gαi, h] ∈ DivMan
H

where HαH =
∐
αiH. If α belongs to the center of G(Af ), then [·α] : MH →

MH is an automorphism of MH/F and TH(α) = [·α]∗.

Definition 3.4 We denote by θM and θJ the induced left action of Z(Af )
on MH and JH : θM(α) = [·α] and θJ(α) = [·α]∗. These actions factor
through Z(Q)\Z(Af )/Z(Af )∩H. WhenH = R̂× for some OF -order R ⊂ B,
Z(Af ) ∩H = Ô×F and we thus obtain left actions

θM : Pic(OF )→ AutFMH and θJ : Pic(OF )→ AutFJH .
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3.5 The Hodge class and the Hodge embedding

Let S be a scheme. To any commutative group scheme G over S, and indeed
to any presheaf of abelian groups G on the category of S-scheme, we may
attach a presheaf of Q-vector spaces G ⊗ Q by the following rule: for any

S-scheme X, G ⊗Q(X)
def
= G(X) ⊗Q. To distinguish between the sections

of G(X) and the sections of G ⊗Q(X), we write X → G for the former and
X  G for the latter, but we will refer to both kind of sections as morphisms.

This construction is functorial in the sense that given two presheaves of
abelian groups G1 and G2 over S, any element α of

Hom0
S(G1,G2)

def
= HomS(G1,G2)⊗Q

defines a morphism α : G1  G2: choose n ≥ 1 such that nα = α0⊗1 for some
α0 ∈ HomS(G1,G2), set α(f) = α0(f) ⊗ 1

n
∈ G2(X) ⊗Q for f ∈ G1(X) and

extend by linearity to G1(X)⊗Q. The resulting morphism does not depend
upon the choice of n and α0 and furthermore satisfies α(λ1f1 + λ2f2) =
λ1α(f1) + λ2α(f2) in G2 ⊗Q(X) for any λ1, λ2 ∈ Q and f1, f2 : X  G1.

This said, the “Hodge embedding” is a morphism ιH : MH  JH over F
which we shall now define. To start with, consider the F -morphism (·)H :
MH → PH which for any F -scheme X maps x ∈ MH(X) to the element
(x) ∈ PH(X) which is represented by the effective relative Cartier divisor on
MH ×F X defined by x (viewing x as a section of MH ×F X → X). Our
morphism ιH is the composite of this map with a retraction PH  JH of
JH ↪→ PH . Defining the latter amounts to define a section NSH  PH of
degH : PH � NSH and since degH = ResMH/F (degH), we may as well search
for a section Z  PicMH/MH

of degH : PicMH/MH
� Z. In other word, we

now want to construct an element (the Hodge class)

δH ∈ PicMH/MH
(MH)⊗Q = Pic(MH)⊗Q

such that deg(δH) = 1 in Z(MH)⊗Q = Q (recall from remark 3.2 thatMH

is connected). The resulting morphism ιH : MH  JH will thus be given by

ιH(x) = (x)H − sH ◦ degH(x)H in JH ⊗Q(X)

for any F -scheme X and x ∈MH(X), with sH : NSH  PH defined by

sH
def
= ResMH/F

(
Z  PicMH/MH

n 7→ n · δH

)
.
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We may now proceed to the definition of the Hodge class δH . For a
compact open subgroup H ′ of H, the ramification divisor of the transition
map f = TH′,H : MH′ →MH is defined by

RH′/H
def
=
∑
x

lengthOMH′ ,x
(Ωf )x · x in Div(MH′)

where x runs through the finitely many closed points of MH′ in the support
of the sheaf of relative differentials Ωf = ΩMH′/MH

. The branch divisor is the
flat push-out of RH′/H :

BH′/H
def
= f∗RH′/H in Div(MH).

When H ′ is a normal subgroup of H, MH = MH′/H and the branch divisor
pulls-back to f ∗BH′/H = deg(f) ·RH′/H .

For H ′′ ⊂ H ′ ⊂ H, f = TH′,H , g = TH′′,H′ and h = f ◦ g = TH′′,H ,

0→ g∗Ωf → Ωh → Ωg → 0

is an exact sequence of coherent sheaves on MH′′ (this may be proven using a
variant of Proposition 2.1 of [13, Chapter IV], the flatness of g and the snake
lemma). This exact sequence shows that

RH′′/H = RH′′/H′ + g∗RH′/H in Div(MH′′)
and BH′′/H = f∗BH′′/H′ + deg(g) ·BH′/H in Div(MH).

(11)

If H ′ is sufficiently small, RH′′/H′ = 0 and BH′′/H′ = 0 for any H ′′ ⊂ H ′ (see
for instance [2, Corollaire 1.4.1.3]). In particular,

BH
def
=

1

deg(f)
BH′/H ∈ Div(MH)⊗Q

does not depend upon H ′, provided that H ′ is sufficiently small. When H
itself is sufficiently small, BH = 0. In general:

Lemma 3.5 f ∗BH = BH′ +RH′/H in Div(MH′)⊗Q.

Proof. Let H ′′ be a sufficiently small normal subgroup of H contained in H ′.
With notations as above, g∗ : Div(MH′)⊗Q→ Div(MH′′)⊗Q is injective,

g∗f ∗BH′ = 1
deg(h)

h∗h∗RH′′/H = RH′′/H ,

and g∗BH′ = 1
deg(g)

g∗g∗RH′′/H′ = RH′′/H′ .

The lemma thus follows from (11).
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On the other hand, Hurwitz formula [13, IV, Prop. 2.3] tells us that

KH′ = f ∗KH + class of RH′/H in Pic(MH′)

where KH is the canonical class on MH , namely the class of ΩMH/F . It follows
that

f ∗(KH +BH) = KH′ +BH′ in Pic(MH′)⊗Q,
f∗(KH′ +BH′) = deg(f) · (KH +BH) in Pic(MH)⊗Q.

(12)

If H ′ is sufficiently small, BH′ = 0 and deg(KH′) > 0. The above formulae
therefore imply that deg(KH +BH) > 0 for any H, and we may thus define

δH
def
=

1

deg(KH +BH)
· (KH +BH) ∈ Pic(MH)⊗Q.

By construction: deg(δH) = 1,

f ∗δH = deg(f) · δH′ in Pic(MH′)⊗Q
and f∗δH′ = δH in Pic(MH)⊗Q.

(13)

Lemma 3.6 For any α ∈ G(Af ), TH(α)(δH) = deg(TH(α)) · δH .

Proof. Given the definition of TH(α), this follows from (13) once we know
that for any H and α, [·α]∗δH = δα−1Hα in Pic(Mα−1Hα)⊗Q. This is obvious
if H is sufficiently small and the general case follows, using (13) again.

Remark 3.7 With notations as in remark 3.2, the restriction of BH to Γα\Hε

equals
∑

x (1− e−1
x )·x where x runs through a set of representatives of Γα\Hε

in Hε and ex is the order of its stabilizer in Γα ⊂ PGL+
2 (R). Compare with

[9, section 23].

Remark 3.8 With the notations of remark 3.3, let δα ∈ Pic(Cα) ⊗Q be the
restriction to Cα of the pull-back of δH to

Pic(MH ×F Spec(F ))⊗Q =
∏
α

Pic(Cα)⊗Q.

Then deg(δα) = 1 and the restriction of ιH to Cα maps x ∈ Cα(F ) to (x)−δα ∈
Jα(F )⊗Q. In particular, the image of ιH on MH(F ) spans JH(F )⊗Q over
Q.

31



The terminology Hodge Class is due to S. Zhang. In his generalization of
the Gross-Zagier formulae to the case of Shimura curves, the morphism
ιH : MH  JH plays the role of the embedding x 7→ (x)− (∞) of a classical
modular curve into its Jacobian. This is why we refer to ιH as the Hodge
“embedding”. It is a finite morphism, in the sense that some nonzero multi-
ple nιH of ιH is a genuine finite morphism from MH to JH . More generally:

Lemma 3.9 Let π : JH  A be a nonzero morphism of abelian varieties over
F . Then α = π ◦ ιH : MH  A is finite (in the above sense).

Proof. We may assume that π : JH → A and α : MH → A are genuine
morphisms. Since MH is a connected complete curve over F , α is either
finite or constant, and it can not constant by remark 3.8.

3.6 Differentials and automorphic forms

Let ΩH = ΩMH/F be the sheaf of differentials on MH and denote by Ωan
H the

pull-back of ΩH to Man
H , so that Ωan

H is the sheaf of holomorphic 1-forms on
Man

H . The right action of G(Af ) on the projective system {MH}H induces
a C-linear left action of G(Af ) on the inductive system {Γ(Ωan

H )}H of global
sections of these sheaves. We want to identify lim−→Γ(Ωan

H ), together with its
G(Af )-action, with a suitable space S2 of automorphic forms on G.

Fix an isomorphism G(R) ' GL2(R) × G2(R) × · · · × Gd(R) as in sec-
tion 3.1 and let S2 be the complex vector space of all functions F : G(A) =
G(Af )×G(R)→ C with the following properties:

P1 F is left G(Q)-invariant.

P2 F is right invariant under R∗ ×G2(R)× · · · ×Gd(R) ⊂ G(R).

P3 F is right invariant under some compact open subgroup of G(Af ).

P4 For every g ∈ G(A) and θ ∈ R,

F

(
g

((
cos(θ) ε sin(θ)
−ε sin(θ) cos(θ)

)
, 1, · · · , 1

))
= exp(2iθ)F (g).

P5 For every g ∈ G(A), the function

z = x+ iy 7→ F (g, z)
def
=

1

y
F

(
g ×

((
εy x
0 1

)
, 1, · · · , 1

))
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is holomorphic on Hε.

There is a left action of G(Af ) on S2 given by (g · F )(x) = F (xg).

Proposition 3.10 There is a G(Af )-equivariant bijection

lim−→Γ(Ωan
H )

∼−→ S2

which identifies Γ(Ωan
H ) with SH

2 .

Proof. Recall from remark 3.2 that there is a decomposition

Man
H =

∐
αΓα\Hε

where α runs through a set of representatives of G(Q)+\G(Af )/H and Γα is
the image of Γα = αHα−1 ∩G(Q)+ in PGL+

2 (R).
Let ω ∈ Γ(Ωan

H ) be a global holomorphic 1-form on Man
H . The restriction

of ω to the connected component Γα\Hε of Man
H pulls back to a Γα-invariant

holomorphic form on Hε. The latter equals fα(z)dz for some holomorphic
function fα on Hε such that fα|γ = fα for all γ ∈ Γα, where

(f |γ)(z) = det(γ)(cz + d)−2f

(
az + b

cz + d

)

for a function f on Hε and γ = ( a b
c d ) in GL+

2 (R). Since

G(A) =
∐

αG(Q) ·
(
αH ×G(R)+

)
,

we may write any element g ∈ G(A) as a product g = gQ(αh× g+
R) for some

α with gQ ∈ G(Q), h ∈ H and

g+
R ∈ G(R)+ = GL+

2 (R)×G2(R)× · · · ×Gd(R).

We put Fω(g) =
(
fα|g+

R,1

)
(εi) where g+

R,1 is the first component of g+
R. If g

also equals g′+R g′Q(α′h′ × g′+R), then α = α′ and g′−1
Q gQ belongs to G+(Q) ∩

αHα−1 = Γα, so that

fα′|g′+R,1 = fα|g′−1
Q gQg

+
R,1 = fα|g+

R,1.

It follows that Fω is a well-defined complex valued function on G(A). We
leave it to the reader to check that Fω belongs to SH

2 . Conversely, any H-
invariant element F in S2 defines an holomorphic differential 1-form ωF on
Man

H : with notations as in P5, the restriction of ωF to Γα\Hε pulls back to
F (α, z)dz on Hε.
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Remark 3.11 The complex cotangent space of JH at 0 is canonically isomor-
phic to Γ(Ωan

H ), and therefore also to SH
2 . With these identifications, the natu-

ral right action of TH = EndZ[G(Af )](Z[G(Af )/H]) on SH
2 ' HomZ[G(Af )](Z[G(Af )/H],S2)

coincide with the right action induced on the cotangent space by the left ac-
tion of TH on JH .

Remark 3.12 When ε = 1, S2 is exactly the subspace of S which is defined
in the introduction, given our choice of an isomorphism between G1 and
GL2(R) (cf. remark 1.7 and definition 1.8). This follows from the relevant
properties of lowest weight vectors, much as in the classical case [6, Section
11.5].

3.7 The P -new quotient

Let P be a prime of F where B is split, and consider a compact open subgroup
H of G(Af ) which decomposes as H = HPR×

P , where RP is an Eichler order
in BP ' M2(FP ) and HP is a compact open subgroup of G(Af )

P = {g ∈
G(Af ); gP = 1}.

Definition 3.13 The P -new quotient of JH is the largest quotient π : JH �
JP−new

H of JH such that for any Eichler order R′
P ⊂ BP strictly containing

RP , π ◦ f ∗ = 0 where H ′ = HPR′×
P and f ∗ : JH′ → JH is the morphism

induced by the degeneracy map f : MH →MH′ .

The quotient map π : JH � JP−new
H induces an embedding from the complex

cotangent space of JP−new
H at 0 into the complex cotangent space of JH at

0. Identifying the latter space first with Γ(Ωan
H ) and then with the space of

H-invariant elements in S2 (Proposition 3.10), we obtain the P -new subspace
SH

2,P−new of SH
2 . By construction,

SH
2 = SH

2,P−new ⊕ SH
2,P−old

where SH
2,P−old is the subspace of SH

2 spanned by the elements fixed by R′×
P

for some Eichler order R′
P ⊂ BP strictly containing RP .

3.8 CM Points

LetK be a totally imaginary quadratic extension of F and put T = ResK/Q(Gm,K).
Any ring homomorphism K ↪→ B induces an embedding T ↪→ G. A mor-
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phism h : S → GR in X is said to have complex multiplication by K if it
factors through the morphism TR ↪→ GR which is induced by an F -algebra
homomorphism K ↪→ B. For a compact open subgroup H of G(Af ), we say
that x ∈ MH(C) is a CM point if x = [g, h] ∈ Man

H for some g ∈ G(Af ) and
h ∈ X with complex multiplication by K.

We assume that K splits B, which amounts to require that Kv is a field
for every finite place v of F where B ramifies. Then, there exists an F -algebra
homomorphism K ↪→ B, and any two such homomorphisms are conjugated
by an element of B× = G(Q). We fix such an homomorphism and let T ↪→ G
be the induced morphism.

In each of the two connected components of X, there is exactly one mor-
phism S→ GR which factors through TR ↪→ GR. These two morphisms are
permuted by the normalizer of T (Q) in G(Q), and T (Q) is their common
stabilizer in G(Q). They correspond respectively to

z ∈ S 7→ (z or z̄, 1, · · · , 1) ∈ T1 × · · · × Td ' TR

where Ki = K ⊗F,τi
R, Ti = ResKi/R(Gm,Ki

) for 1 ≤ i ≤ d, and where we
have chosen an extension τ1 : K ↪→ C of τ1 : F ↪→ R to identify K1 with C
and T1 with S. We choose τ1 in such a way that the morphism hK : S→ GR

corresponding to z 7→ (z, 1, · · · 1) belongs to the connected component of the
morphism h : S→ GR which is defined by (7). The map

g ∈ G(Af ) 7→ [g, hK ] ∈Man
H = G(Q)\ (G(Af )/H ×X)

then induces a bijection between the set of CM points in Man
H and the set

CMH = T (Q)\G(Af )/H of the introduction. In the sequel, we will use
this identification without any further reference. In particular, we denote by
[g] ∈Man

H = MH(C) the CM point corresponding to [g, hK ].
By Shimura’s theory, the CM points are algebraic and defined over the

maximal abelian extension Kab of K. Moreover, for λ ∈ T (Af ) and g ∈
G(Af ), the action of σ = recK(λ) ∈ GalabK on x = [g] ∈ CMH is given by the
following reciprocity law (viewing K as a subfield of C through τ1):

σ · x = [λεg] ∈ CMH .

We refer to Sections 3 and 3.2 of [5] for a more detailed discussion of CM
points on Shimura curves, including a proof of the above facts.
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4 The Indefinite Case

To the data of F , B, K (and ε), we have attached a collection of Shimura
curves {MH} equipped with a systematic supply of CM points defined over
the maximal abelian extension Kab of K. We now also fix a prime P of F
where B is split, and restrict our attention to the CM points of P -power
conductor in a given Shimura curve M = MH , with H = R̂× for some OF -
order R ⊂ B. We assume that

(H1) RP is an Eichler order in BP 'M2(FP ).

(H2) For any prime Q 6= P of F which ramifies in K, B is split at Q and
RQ is a maximal order in BQ 'M2(FQ).

We put J = JH , CM = CMH , ι = ιH and so on. . .We denote by CM(P n) ⊂
M(K[P n]) the set of CM points of conductor P n and put

CM(P∞) = ∪n≥0CM(P n) ⊂M(K[P∞]).

Thanks to (H1), we have the notion of good CM points, as defined in the
introduction. Recall that all CM points are good when RP is maximal;
otherwise, the good CM points are those which are of type I or II, in the
terminology of section 6.

In this section, we study the contribution of these points to the growth
of the Mordell-Weil groups of suitable quotients A of J , as one ascends the
abelian extension K[P∞] of K.

4.1 Statement of the main results

We say that π : J  A is a surjective morphism if some nonzero multiple
of π is a genuine surjective morphism J → A of abelian varieties over F .
We say that π is P -new if it factors through the P -new quotient of J , cf.
definition 3.13. We say that π is Pic(OF )-equivariant if A is endowed with
an action θA of Pic(OF ) such that

∀σ ∈ Pic(OF ) : θA(σ) ◦ π = π ◦ θJ(σ) in Hom0(J,A),

cf. definition 3.4.
We put C

def
= Z[Pic(OF )]. For a character ω : Pic(OF ) → C×, we let

Q{ω} be the cokernel of the induced morphism ω∗ : C ⊗ Q → C. Then
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Q{ω} only depends upon the Aut(C)-conjugacy class {ω} of ω, and C⊗Q '∏
{ω}Q{ω}. If A is endowed with an action of Pic(OF ), then End0(A) is a

C ⊗Q-algebra and we write

A ' ⊕{ω}A{ω}

for the corresponding decomposition in the category Ab0
F of abelian varieties

over F up to isogenies. If A = A{ω} for some ω, then C acts on A through
its quotient Z{ω}, the image of C in Q{ω}.

Recall from section 2 that the torsion subgroupG0 ofG(∞) = Gal(K[P∞]/K)
contains a subgroup G2 which is canonically isomorphic to Pic(OF ). For a
character χ of G(∞) or G0, we denote by Res(χ) the induced character on
Pic(OF ). For a character χ of G(n), we denote by eχ ∈ C[G(n)] the idempo-
tent of χ. We say that χ is primitive if it does not factor through G(n− 1).

Theorem 4.1 Suppose that π : J  A is a surjective, Pic(OF )-equivariant
and P -new morphism. Fix a character χ0 of G0 such that A{ω} 6= 0 where
ωε = Res(χ). Then: for any n � 0 and any good CM point x ∈ CM(P n),
there exists a primitive character χ of G(n) inducing χ0 on G0 such that
eχα(x) 6= 0 in A⊗C.

Replacing π by π{ω} : J  A  A{ω} and using Lemma 4.6 below, one
easily checks that Theorem 4.1 is in fact equivalent to the following variant,
in which we use ω to embed Z{ω} into C.

Theorem 4.2 Suppose that π : J  A is a surjective, Pic(OF )-equivariant
and P -new morphism. Suppose also that A = A{ω} 6= 0 for some character
ω of Pic(OF ). Fix a character χ0 of G0 inducing ωε on G2 ' Pic(OF ). Then:
for any n� 0 and any good CM point x ∈ CM(P n), there exists a primitive
character χ of G(n) inducing χ0 on G0 such that eχα(x) 6= 0 in A⊗Z{ω} C.

Remark 4.3 In the situation of Theorem 1.10, ε = 1 and

A = J/AnnT(C · Φ)J

where C ·Φ = S2(π
′)H , π′ is an automorphic representation of G with central

character ω : Z(Af ) � Pic(OF ) → C× and H = R̂× with R defined by (6)
– see remarks 3.1, 3.11 and 3.12. The assumptions (H1) and (H2) are then
satisfied, and the projection J → A is surjective and Pic(OF )-equivariant
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(with A = A{ω}). By construction, there is no Eichler order in BP strictly
containing RP whose group of invertible elements fixes Φ. It thus follows
from the discussion after definition 3.13 that J → A also factors through the
P -new quotient of J . Since ε = 1, Theorem 4.1 asserts that for any character
χ0 of G0 such that χ0 ·ω = 1 on Z(Af ), and any good CM point x ∈ CM(P n)
with n sufficiently large, there exists a character χ ∈ P (n, χ0) such that

a(x, χ) = eχ−1α(x) 6= 0 in A(K[P n])⊗C.

This is exactly the statement of Theorem 1.10.

4.2 An easy variant

As an introduction to this circle of ideas, we will first show that a weaker
variant of Theorem 4.1 can be obtained by very elementary methods, in the
spirit of [19]. Thus, let π : J  A be a nonzero surjective morphism, and put
α = π ◦ ι : M  A where ι : M  J is the “Hodge embedding” of section
3.5. Then:

Proposition 4.4 For all n� 0 and all x ∈ CM(P n),

α(x) 6= 0 in A(K[P n])⊗Q.

Proof. Using Lemma 3.9, we may assume that α : M → A is a finite
morphism. In particular, there exists a positive integer d such that |α−1(x)| ≤
d for any x ∈ A(C). On the other hand, it follows from Lemma 2.7 that the
torsion subgroup of A(K[P∞]) is finite, say of order t > 0. Then α maps
at most dt points in CM(P∞) to torsion points in A, and the proposition
follows.

Corollary 4.5 There exists a character χ : G(n)→ C× such that

eχα(x) 6= 0 in A(K[P n])⊗C.

Suppose moreover that π is a Pic(OF )-equivariant morphism. On A(K[P n])⊗
C, we then also have an action of Pic(OF ). For a character ω : Pic(OF ) →
C×, let eω

χα(x) be the ω-component of eχα(x). For any σ ∈ Aut(C), the
automorphism 1 ⊗ σ of A(K[P n]) ⊗ C maps eω

χα(x) to eσ◦ω
σ◦χα(x): if the

former is nonzero, so is the latter.
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Lemma 4.6 eω
χα(x) 6= 0 unless Res(χ) = ωε on G2 ' Pic(OF ).

Proof. Write x = [g] for some g ∈ G(Af ). For λ ∈ Z(Af ), put

Pic(OF ) 3 [λ] = σ = recK(λ) ∈ G2.

If ρ denotes the Galois action, we find that

θM(σ)(x) = [gλ] = [λg] = ρ(σε)(x) in M(K[P n]).

It follows that

θJ(σ)(ιx) = ρ(σε)(ιx) in J(K[P n])⊗Q,
θA(σ)(α(x)) = ρ(σε)(α(x)) in A(K[P n])⊗Q,

and ω(σ) · eω
χα(x) = χ(σε) · eω

χα(x) in A(K[P n])⊗C.
(14)

In particular, eω
χα(x) = 0 if ω(σ) 6= χ(σε) for some σ ∈ G2.

We thus obtain the following refinement of Proposition 4.4.

Proposition 4.7 Let ω : Pic(OF ) → C× be any character such that A{ω} 6=
0. Then for all n � 0 and all x ∈ CM(P n), there exists a character χ :
G(n)→ C× inducing ωε on G2 such that

eχα(x) 6= 0 in A(K[P n])⊗C.

Proof. Applying Proposition 4.4 to π{ω} : J  A  A{ω}, we find a
character χ′ on G(n) such that eχ′α(x) 6= 0 in A{ω}(K[P n])⊗C. Lemma 4.6
then implies that Res(χ′) = σ · ωε for some σ ∈ Aut(C), and we take χ =
σ−1 ◦ χ′.

Remark 4.8 In contrast to Theorem 4.1, this proposition does not require
π to be P -new, nor x to be good. It holds true without the assumptions
(H1) and (H2). On the other hand, Theorem 4.1 yields a primitive char-
acter whose tame part χ0 is fixed (but arbitrary). This seems to entail a
significantly deeper assertion on the growth of the Mordell-Weil groups of A
along K[P∞]/K.
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4.3 Proof of Theorem 4.2.

To prove that eχα(x) is nonzero for some primitive character χ of G(n) in-
ducing χ0 on G0, it is certainly sufficient to show that the sum of these values
is a nonzero element in A(K[P n]) ⊗Z{ω} C. Provided that n is sufficiently
large, Lemma 2.8 implies that this sum is equal to

e(χ0, n) · α(x) =
1

q |G0|
· π

 ∑
σ∈G0

χ0(σ)σ · d(x)

 (15)

where d(x) = (q − TrZ(n))(ιx). When x is a good CM point, d(x) may be
computed using the distribution relations of section 6.

Lemma 4.9 Let δ be the exponent of P in the level of the Eichler order
RP ⊂ BP . If n is sufficiently large, the following relations hold in the P -new
quotient JP−new ⊗Q of J ⊗Q.

1. If δ = 0, d(x) = q · ιx− T l
P · ιx′ + ιx′′ where T l

P ∈ T is a certain Hecke
operator, x′ = pru(x) belongs to CM(P n−1) and x′′ = prl(x

′) belongs to
CM(P n−2).

2. If δ = 1, d(x) = q · ιx+ ιx′ with x′ = pr(x) in CM(P n−1).

3. If δ ≥ 2 and x is a good CM point, d(x) = q · ιx.

Proof. We refer the reader to section 6 for the notations and proofs. Strictly
speaking, we do not show there that x′ belongs to CM(P n−1) and x′′ belongs
to CM(P n−2). This however easily follows from the construction of these
points. Also, lemmas 6.6, 6.11 and 6.14 compute formulas involving the
image of

∑
λ∈O×n−1/O×n recK(λ) · x in the P -new quotient of the free abelian

group Z[CM]. To retrieve the above formulas, use the discussion preced-
ing Lemma 2.9 and the compatibility of ι with the formation of the P -new
quotients of Z[CM] and J .

Since π : J  A is P -new, these relations also hold in A⊗Q. In particular,
for δ ≥ 2, part (3) of the above lemma implies that Theorem 4.2 is now a
consequence of the following theorem, whose proof will be given in sections
4.5-4.6.
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Theorem 4.10 Suppose that π : J  A is a surjective, Pic(OF )-equivariant
morphism such that A = A{ω} 6= 0 for some character ω of Pic(OF ). Fix
a character χ of G0 inducing ωε on G2 ' Pic(OF ). Then for all but finitely
many x ∈ CM(P∞),

eχα(x) =
1

|G0|
∑

σ∈G0

χ(σ)σ · α(x) 6= 0 in A⊗Z{ω} C.

Remark 4.11 This is the statement which is actually used in [14].

In the next subsection, we will show that theorem 4.2 also follows from the
above theorem when δ = 0 or 1, provided that we change the original P -
new parameterization π : J  A of A to a non-optimal parameterization
π+ : J+  A. Although this new parameterization will still satisfy to the
assumptions (H1) and (H2), the proof of Theorem 4.10 only requires (H2)
to hold.

4.4 Changing the level (from δ = 0 or 1 to δ = 2)

Suppose first that δ = 0. Let R+
P ⊂ RP be the Eichler order of level P 2

in BP which is constructed in section 6.5. Put H+ = HPR+
P , M+ = MH+ ,

J+ = JH+ and so on. By Lemma 6.16, there exists degeneracy maps d0, d1

and d2 : M+ → M as well as an element ϑ ∈ C× with the property that for
all x ∈ CM(P n) with n ≥ 2, there exists a CM point x+ ∈ CM+(P n) such
that

(d0, d1, d2)(x
+) = (x, x′, ϑ−1x′′).

Combining this with part (1) of Lemma 4.9 (and using also the results of
section 3.5, especially formula 13 and Lemma 3.6) we obtain:

d(x) =
(
q(d0)∗ − T l

P (d1)∗ + ϑ(d2)∗
)

(ι+x+) in J ⊗Q

so that π ◦ d(x) = α+(x+) in A⊗Q, where α+ = π+ ◦ ι+ with

π+ = π ◦ (q,−T l
P , ϑ) ◦

 d0

d1

d2


∗

: J+ → J3 → J  A.

In particular, (15) becomes

e(χ0, n) · α(x) =
1

q |G0|
·
∑

σ∈G0

χ0(σ)σ · α+(x+) in A⊗Z{ω} C.
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Theorem 4.2 for π thus follows from theorem 4.10 for π+, once we know that
our new parameterization π+ : J+  A is surjective and Pic(OF )-equivariant
(these are the assumptions of theorem 4.10). The Pic(OF )-equivariance is
straightforward. Since the second and third morphisms in the definition of
π+ are surjective, it remains to show that the first one is also surjective, which
amounts to showing that the induced map on the (complex) cotangent spaces
at 0 is an injection. In view of Proposition 3.10, this all boils down to the
following lemma.

Lemma 4.12 The kernel of (d∗0, d
∗
1, d

∗
2) : (SH

2 )3 → SH+

2 is trivial.

Proof. With notations as in section 6.5, the above map is given by

(F0, F1, F2) 7→ F ′
0 + F ′

1 + F ′
2

where F ′
i (g) = d∗iFi(g) = Fi(gbi) with bi ∈ B×

P such that biL(0) = L(2 − i).
Here, L = (L(0), L(2)) is a 2-lattice in some simple left BP 'M2(FP )-module
V ' F 2

P such that RP = {α ∈ BP ;αL(0) ⊂ L(0)}. Put

Ri = {α ∈ BP ; αL(2− i) ⊂ L(2− i)}

so that R2 = RP and R×
i = biR

×
2 b

−1
i fixes F ′

i . One easily checks that R×
0 ∩R×

1

and R×
1 ∩ R×

2 generate R×
1 inside B×

P . By [21, Chapter 2, section 1.4], R×
0

and R×
1 (resp. R×

1 and R×
2 ) generate the subgroup (B×

P )0 of all elements in
B×

P ' GL2(FP ) whose reduced norm (=determinant) belongs to O×F,P ⊂ F×
P .

Suppose that F ′
0 + F ′

1 + F ′
2 ≡ 0 on G(A). Then F ′

2 = −F ′
0 − F ′

1 is
fixed by R×

2 and R×
0 ∩ R×

1 and therefore also by (B×
P )0. Being continuous,

left invariant under G(Q) and right invariant under (B×
P )0HP , the function

F ′
2 : G(A)→ C is then also left (and right) invariant under the kernel G1(A)

of the reduced norm nr : G(A) = B̂× → F̂× by the strong approximation
theorem [26, p. 81]. For any g ∈ G(A) and θ ∈ R, we thus obtain (using the
property P4 of section 3.6)

F ′
2(g) = F ′

2

(
g ×

((
cos θ ε sin θ

−ε sin θ cos θ

)
, 1, · · · , 1

))
= e2iθF ′

2(g),

so that F ′
2 ≡ 0 on G(A). Similarly, F ′

0 ≡ 0 on G(A). It follows that F ′
1 ≡ 0,

hence F0 ≡ F1 ≡ F2 ≡ 0 on G(A) and (d∗0, d
∗
1, d

∗
2) is indeed injective.
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Suppose next that δ = 1. Using now Lemma 6.17, we find two degeneracy
maps d01 and d12 : M+ → M , as well as an F -automorphism ϑ of M such
that for all x ∈ CM(P n) with n ≥ 2, there exists a CM point x+ ∈ CM+(P n)
such that (x, x′) equals

(d01, ϑ
−1d12)(x

+) or (d12, ϑd01)(x
+).

Theorem 4.2 (with π) thus again follows from Theorem 4.10 with

π′ = π ◦


(q, ϑ−1

∗ )
or

(ϑ∗, q)

 ◦
(
d01

d12

)
∗

: J+ → J2 → J  A

once we know that π′ induces an injection on the complex cotangent spaces.
Since π is P -new, this now amounts to the following lemma (see section 3.7).

Lemma 4.13 The kernel of (d∗01, d
∗
12) : (SH

2,P−new)2 → SH+

2 is trivial.

Proof. With notations as in section 6.5, the above map is now given by

(F01, F12) 7→ F ′
01 + F ′

12

where F ′
01 = F01 and F ′

12(g) = F12(gb12) with b12 ∈ B×
P such that b12(L(0), L(1)) =

(L(1), L(2)) for some 2-lattice L = (L(0), L(2)) in V such that R×
P = R×

0 ∩R×
1

with
Ri = {α ∈ BP ; αL(i) ⊂ L(i)}.

If F ′
01 +F ′

12 = 0, F ′
01 = −F ′

12 is fixed by R×
0 ∩R×

1 and R×
1 ∩R×

2 . It is therefore
also fixed by R×

1 so that F01 and F12 both belong to the P -old subspace of
SH

2 .

4.5 Geometric Galois action

We now turn to the proof of Theorem 4.10. Thus, let π : J  A be a
surjective and Pic(OF )-equivariant morphism such that A = A{ω} 6= 0 for
some character ω of Pic(OF ), and let χ be a fixed character of G0 inducing
ωε on G2 ' Pic(OF ).

For 0 ≤ i ≤ 2, let Ci be the subring of C which is generated by the
values of χ on Gi, so that C2 ⊂ C1 ⊂ C0, C1 is finite flat over C2, and
so is C0 over C1. Since χ induces ωε on G2, the canonical factorization of
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ω∗ : C → C yields an isomorphism between Z{ω} and C2. Let Ai be the
(nonzero) abelian variety over F which is defined by

Ai(X) = A(X)⊗C Ci = A(X)⊗Z{ω} Ci

for any F -scheme X (note that A2 ' A).
Upon multiplying π by a suitable integer, we may assume that π and α

are genuine morphisms. For any x ∈ CM(P n), we may then view

a(x)
def
=

∑
σ∈G0

χ(σ)σ · α(x)

as an element of

A0(K[P∞]) = A1(K[P∞])⊗C1 C0 = A(K[P∞])⊗Z{ω} C0,

and we now have to show that a(x) is a nontorsion element in this group,
provided that n is sufficiently large.

Using formula (14), which applies thanks to the Pic(OF )-equivariance of
π, we immediately find that

a(x) = |G2|
∑

σ∈R′
χ(σ)σ · α(x)

where R′ ⊂ G0 is the following set of representatives for G0/G2. We first
choose a set of representatives R ⊂ G0 of G0/G1 containing 1, and then take

R′ = {τσε
D; τ ∈ R and D | D′}

where D′ ⊂ OF and the σD’s for D | D′ were defined in Lemma 2.6. The
next lemma will allow us to further simplify a(x).

Lemma 4.14 There exists a Shimura curve M1 and a collection of degeneracy
maps {dD : M1 →M ; D | D′} such that for all n ≥ 0,

∀x ∈ CM(P n), ∃x1 ∈ CM1(P
n) s.t. ∀D | D′ : σε

Dx = dD(x1).

Proof. Our assumption (H2) asserts that for any Q | D′, RQ is a maximal
order in BQ ' M2(FQ). Let ΓQ be the set of elements in RQ whose reduced
norm is a uniformizer in OF,Q, and choose some αQ in ΓQ. Then ΓQ =
R×

QαQR
×
Q and

R1,Q
def
= RQ ∩ αQRQα

−1
Q ⊂ BQ
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is an Eichler order of level Q. Put H1 = R̂×
1 , where R1 is the unique OF -

order in B which agrees with R outside D′, and equals R1,Q at Q | D′. Put
M1 = MH1 , CM1 = CMH1 and so on. For D | D′, put

αD
def
=
∏
Q|D

αQ ∈ G(Af ). (16)

Then α−1
D H1αD ⊂ H. Let dD = [·αD] : M1 → M be the corresponding

degeneracy map.
Recall also that σD =

∏
Q|D σQ for D | D′, where σQ ∈ G1 is the geometric

Frobenius of the unique prime Q of K above Q (so that Q2 = QOK). Let
πQ ∈ OK,Q be a local uniformizer at Q, and for D | D′, put πD =

∏
Q|D πQ

in K̂×, so that σD is the restriction of recK(πD) to K[P∞].
Consider now some x = [g] ∈ CM(P n), with g ∈ G(Af ) and n ≥ 0.

For each Q | D′, KQ ∩ gQRQg
−1
Q = OK,Q. In particular, πQ belongs to

gQRQg
−1
Q and g−1

Q πQgQ belongs to ΓQ: there exists r1,Q and r2,Q in R×
Q such

that πQgQ = gQr1,QαQr2,Q. Put ri =
∏

Q|D′ ri,Q ∈ H and x1 = [gr1] ∈ CM1.
For D | D′, we find that

dD(x1) = [gr1αD] = [gr1αDr2] = [πDgQ] = σε
Dx.

Finally, x1 belongs to CM1(P
n), because K̂× ∩ gr1H1(gr1)

−1 is obviously
equal to K̂× ∩ gHg−1 away from D′, and

KQ ∩ gQr1,QR
×
1,Q(gQr1,Q)−1 =

= KQ ∩ gQr1,QR
×
Q(gQr1,Q)−1 ∩ gQr1,QαQR

×
Qα

−1
Q (gQr1,Q)−1

=
(
KQ ∩ gQR

×
Qg

−1
Q

)
∩
(
KQ ∩ πQgQR

×
Qg

−1
Q π−1

Q

)
= KQ ∩ gQR

×
Qg

−1
Q

for Q | D′. This finishes the proof of Lemma 4.14.

Put J1 = Pic0M1 and let ι1 : M1  J1 be the corresponding “Hodge embed-
ding”. With notations as above, we find that a(x) = |G2|b(x1), where for
any CM point y ∈ CM1(P

∞),

b(y)
def
=
∑
τ∈R

χ(τ)τ · α1(y) in A1(K[P∞])⊗C1 C0.
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Here, α1
def
= π1 ◦ ι1 with π1 : J1 → A1 defined by

J1 −→ J{D|D}
π−→ A{D|D} −→ A1 = A⊗C C1

j 7−→ ((dD)∗(j))D|D (aD)D|D 7−→ ∑
D|D χ(σε

D)aD

Indeed, Lemma 4.14 (together with the formula (13)) implies that

α1(x1) =
∑
D|D

χ(σε
D)σε

D · α(x) in A(K[P∞])⊗C C1 = A1(K[P∞]).

We now have to show that for all x ∈ CM1(P
n) with n� 0,

b(x) 6= torsion in A1(K[P∞])⊗C1 C0.

We will need to know that our new parameterization π1 : J1 → A1 is still
surjective. As before (lemmas 4.12 and 4.13), this amounts to the following
lemma.

Lemma 4.15 The kernel of
∑

D|D′ d
∗
D : (SH

2 ){D|D
′} → SH1

2 is trivial.

Proof. We retain the notations of the proof of Lemma 4.14. The map under
consideration is given by

(FD)D|D′ 7→
∑

D|D′αD · FD

where (αD · F )(g) = F (gαD) for any F : G(A) → C and g ∈ G(A). We
show that it is injective by induction on the number of prime divisors of D′.
There is nothing to prove if D′ = OF . Otherwise, let Q be a prime divisor

of D′. We put D′Q = D′/Q and H ′
1 = R̂′

1

×
, where R′

1 is the unique OF -order
in B which agrees with R1 outside Q, and equals RQ at Q. The functions

F0 =
∑

D|D′Q

αD · FD and F1 =
∑

D|D′Q

αD · FDQ

then belong to SH′
1

2 , and∑
D|D′

αD · FD = F0 + αQ · F1.

If this function is trivial onG(A), F0 = −αQ·F1 is fixed byR×
Q and αQR

×
Qα

−1
Q .

Arguing as in the proof of Lemma 4.12, we obtain F0 ≡ F1 ≡ 0 on G(A).
By induction, FD ≡ 0 on G(A) for all D | D′.
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4.6 Chaotic Galois action

We still have to show that for all but finitely many x in CM1(P
∞), b(x) is

a nontorsion point in A0(K[P∞]). Two proofs of this fact may be extracted
from the results of [5]. These proofs are both based upon the following
elementary observations:

• The torsion submodule of A0(K[P∞]) is finite.

This easily follows from Lemma 2.7. We thus want b(x) to land away from
a given finite set, provided that x belongs to CM1(P

n) with n� 0.

• The map x 7→ b(x) may be decomposed as follows:

CM1(P
∞)

∆−→ MR
1

α1−→ AR1
Σ−→ A0

x 7−→ (σx)σ∈R (aσ)σ∈R 7→ ∑
χ(σ)aσ

In this decomposition, the second and third maps are algebraic morphisms
defined over F . Moreover: Σ is surjective (this easily follows from the defini-
tions) and α1 is finite (by lemmas 4.15 and 3.9). In some sense, this decom-
position separates the geometrical and arithmetical aspects in the definition
of b(x).

First proof (using a proven case of the André-Oort conjecture).

Suppose that b(x) is a torsion point in A0(K[P∞]) for infinitely many x ∈
CM1(P

∞). We may then find some element a0 in A0(C) such that E =
b−1(a0) is an infinite subset of CM1(P

∞). Since Σ ◦ α1 : MR
1 → A0 is an al-

gebraic morphism, it is continuous for the Zariski topology and (Σ◦α1)
−1(a0)

contains the Zariski closure ∆(E)Zar
of ∆(E) in MR

1 (C). As explained in Re-
mark 3.21 of [5], a proven case of the André-Oort conjecture implies that

∆(E)Zar
contains a connected component of MR

1 (C).

Remark 4.16 The above reference requires E to be an infinite collection of
P -isogenous CM points, where two CM points x and x′ are said to be P -
isogenous if they can be represented by g and g′ ∈ G(Af ) with gv = g′v for all
v 6= P . Now, if a P -isogeny class contains a CM point of conductor P n for
some n ≥ 0, it is actually contained in CM1(P

∞) and any other P -isogeny
class in CM1(P

∞) also contains a point of conductor P n. Since CM1(P
n)
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is finite, we thus see that CM1(P
∞) is the disjoint union of finitely many

P -isogeny classes, and one of them at least has infinite intersection with our
infinite set E .

We thus obtain a collection of connected components (Cσ)σ∈R of M1(C) with
the property that for all (xσ)σ∈R in

∏
σ∈R Cσ,∑

σ∈R
χ(σ)α1(xσ) = a0.

It easily follows that α1 should then be constant on C1. Being defined over
F on the connected curve M1 (cf. remark 3.2), α1 would then be constant
on M1, a contradiction.

Second proof (using a theorem of M. Ratner).

Let U be a nonempty open subscheme of Spec(OF ) such that for every closed
point v ∈ U , v 6= P , Bv ' M2(Fv) and R1,v is maximal. Shrinking U if
necessary, we may assume that M1 has a proper and smooth model M1 over
U , which agrees locally with the models considered in [5], and α1 : M1 → A1

extends uniquely to a finite morphism α1 : M1 → A1, where A1 is the Néron
model of A1 over U . In the Stein factorization

M1
c−→MH1 → U

of the stuctural morphism M1 → U , the scheme of connected component
M1 is then a finite and étale cover of U , and the fibers of c are geometrically
connected. For each closed point v ∈ U , we choose a place v of F ⊂ C above
v, with valuation ring O(v) and residue field F(v), an algebraic closure of the
residue field F(v) of v. We thus obtain the following diagram of reduction
maps

redv : M1(F )
'←− M1(O(v)) −→ M1(F(v))

↓ c ↓ c ↓ c
redv : M1(F )

'←− M1(O(v))
'−→ M1(F(v)).

We denote by C 7→ C(v) the induced bijection between the sets of geometrical
connected components in the generic and special fibers, and we denote by Cx
the connected component of x ∈M1(F ). In particular, Cx(v) = c−1(redvc(x))
is the connected component of redv(x). Inside M1(F(v)), there is a finite col-
lection of distinguished points, namely the supersingular points as described
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in Section 3.1.3 of [5]. We denote by Css(v) the set of supersingular points
inside C(v).

We let d > 0 be a uniform upper bound on the number of geometrical
points in the fibers of α1 : M1 → A1 (such a bound does exist, thanks to the
generic flatness theorem, see for instance [11, Corollaire 6.9.3]). We let t > 0
be the order of the torsion subgroup of A0(K[P∞]). One easily checks that
the order of Css(v) goes to infinity with the order of the residue field F(v) of
v. Shrinking U if necessary, we may therefore assume that for all C and v,

|Css(v)| > td.

Now, let v be a closed point of U which is inert in K (there are infinitely
many such points). Then Lemma 3.1 of [5] states that any CM point x ∈ CM1

reduces to a supersingular point redv(x) ∈ Css
x (v) and we have the following

crucial result.

Proposition 4.17 For all but finitely many x in CM1(P
∞), the following

property holds. For any (zσ)σ∈R in
∏

σ∈R Css
σx(v), there exists some γ ∈ GalabK

such that
∀σ ∈ R : redv(γσ · x) = zσ in M1(F(v)).

Proof. This is a special case of Corollary 2.10 of [5], except that the latter
deals with P -isogeny classes of CM points instead of the set of all CM points
of P -power conductor that we consider here. However, we have already
observed in remark 4.16 that CM1(P

∞) is the disjoint union of finitely many
such P -isogeny classes, and the proposition follows.

Corollary 4.18 For all but finitely many x in CM1(P
∞), the following prop-

erty holds. For any z in Css
x (v), there is a γ ∈ GalabK such that

redv(γ · b(x))− redv(b(x)) = α1(z)− α1(z1)

in A0(F(v)) = A1(F(v))⊗C1 C0, with z1 = redv(x) ∈ Css
x (v).

Proof. Take zσ = redv(σx) for σ 6= 1 in R.

This finishes the proof of Theorem 4.10. Indeed, the Galois orbit of any
torsion point in A0(K[P∞]) has at most t elements, while the above corollary
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implies that for all but finitely many x ∈ CM1(P
∞),∣∣∣GalabK · b(x)

∣∣∣ ≥ ∣∣∣redv

(
GalabK · b(x)

)∣∣∣ ≥ |α1 (Css
x (v))| ≥ 1

d
|Css

x (v)| > t.

5 The definite case

Suppose now that B is a definite quaternion algebra, so that B⊗R ' H[F :Q].
Let K be a totally imaginary quadratic extension of F contained in B. We
put G = ResF/Q(B×), T = ResF/Q(K×) and Z = ResF/Q(F×) as before.

5.1 Automorphic forms and representations

We denote by S2 the space of all weight 2 automorphic forms on G, namely
the space of all smooth (=locally constant) functions

θ : G(Q)\G(Af )→ C.

There is an admissible left action of G(Af ) on S2, given by right translations:
for g ∈ G(Af ) and x ∈ G(Q)\G(Af ),

(g · θ)(x) = θ(xg).

This representation is semi-simple, and S2 is the algebraic direct sum of its
irreducible subrepresentations. An irreducible representation π′ of G(Af ) is
automorphic if it occurs in S2. It then occurs with multiplicity one, and we
denote by S2(π

′) the corresponding subspace of S2, so that

S2 = ⊕π′S2(π
′).

If π′ is finite dimensional, it is of dimension 1 and corresponds to a smooth
character χ of G(Af ). Then χ is trivial on G(Q), S2(π

′) equals C · χ, and
χ factors through the reduced norm G(Af ) → Z(Af ). A function θ ∈
S2 is said to be Eisenstein if it belongs to the subspace spanned by these
finite dimensional subrepresentations of S2. Equivalently, θ is an Eisenstein
function if and only if it factors through the reduced norm (because any such
function spans a finite dimensional G(Af )-invariant subspace of S2).

We say that π′ is cuspidal if its representation space has infinite dimen-
sion. The space of (weight 2) cuspforms S0

2 is the G(Af )-invariant subspace
of S2 which is spanned by its irreducible cuspidal subrepresentations. Thus,
θ = 0 is the only cuspform which is also Eisenstein.
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5.2 The exceptional case

The Jacquet-Langlands correspondence assigns, to every cuspidal represen-
tation π′ of G(Af ) as above, an irreducible automorphic representation π =
JL(π′) of GL2/F , of weight (2, · · · , 2). We say that (π′, K) is exceptional if
(π,K) is exceptional. Thus, (π′, K) is exceptional if and only if π ' π ⊗ η,
where η is the quadratic character attached to K/F . We want now to de-
scribe a simple characterization of these exceptional cases.

Write π = ⊗πv, π
′ = ⊗π′v and let N be the conductor of π. For every

finite place v of F not dividing N ,

πv ' π′v ' π(µ1,v, µ2,v) ' π(µ2,v, µ1,v)

for some unramified characters µi,v : F×
v → C×, i = 1, 2. These characters

are uniquely determined by βi,v = µi,v($v), where $v is any local uniformizer
at v, and by the strong multiplicity one theorem, the knowledge of all but
finitely many of the unordered pairs {β1,v, β2,v} uniquely determines π and
π′. On the other hand, the representation space S(πv) of πv contains a unique
line C ·φv of vectors which are fixed by the maximal compact open subgroup
Hv = GL2(OF,v) of Gv = GL2(Fv) ' B×

v . The spherical Hecke algebra

EndZ[Gv ](Z[Gv/Hv]) ' Z[Hv\Gv/Hv]

acts on C · φv, and the eigenvalues of the Hecke operators

Tv = [Hv ( $v 0
0 1 )Hv] and Sv =

[
Hv

(
$v 0
0 $v

)
Hv

]
are respectively given by

av = (Nv)1/2(β1,v + β2,v) and sv = β1,v · β2,v

where Nv is the order of the residue field of v. Note that sv = ωv($v) where
ωv = µ1,vµ2,v is the local component of the central character ω of π and π′.
Therefore, the knowledge of ω and all but finitely many of the av’s uniquely
determines π and π′.

Proposition 5.1 (π,K) and (π′, K) are exceptional if and only if av = 0 for
all but finitely many of the v’s which are inert in K.

Proof. With notations as above, the v-component of π ⊗ η is equal to
π(µ1,vηv, µ2,vηv) where ηv is the local component of η. Therefore, π ' π ⊗ η
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if and only if {β1,v, β2,v} = {β1,vη(v), β2,vη(v)} for almost all v, where η(v) =
ηv($v) equals 1 if v splits in K, and −1 if v is inert in K. The proposition
easily follows.

Remark 5.2 It is well-known that the field Eπ ⊂ C generated by the av’s
and the values of ω is a number field. Moreover, for any finite place λ of
Eπ with residue characteristic `, there exists a unique (up to isomorphism)
continuous representation

ρπ,λ : GalF → GL2(Eπ,λ)

such that that for every finite place v - `N , ρπ,λ is unramified at v and the
characteristic polynomial of ρπ,λ(Frobv) equals

X2 − avX +Nv · sv ∈ Eπ[X] ⊂ Eπ,λ[X].

See [22] and the reference therein.
Put E = Eπ,λ and let V = E2 be the representation space of ρ = ρπ,λ.

If π ' π ⊗ η, then ρ ' ρ ⊗ η (viewing now η has a Galois character). In
particular, there exists θ ∈ GL(V ) such that

θ ◦ ρ = η · ρ ◦ θ on GalF .

Since ρ is absolutely irreducible (this follows from the proof of Proposition 3.1
in [22]), θ2 is a scalar in E× but θ is not. Let E ′ be a quadratic extension of
E containing a square root c of θ2. Put V ′ = V ⊗E E ′. Then V ′ = V ′

+ ⊕ V ′
−

where θ = ±c on V ′
±, and dimE ′ V

′
± = 1. Moreover,

∀σ ∈ GalF : (ρ⊗ IdE ′)(σ)(V ′
±) = V ′

±η(σ).

It easily follows that ρ ⊗ IdE ′ ' IndGalF
GalK

(α), where α : GalK → E ′× is the
continuous character giving the action of GalK on V ′

+.
Conversely, suppose that the base change of ρ to an algebraic closure E

of E is isomorphic to IndGalF
GalK

(α) for some character α : GalK → E
×
. Then

π ' π ⊗ η by Proposition 5.1, since

av = Tr(ρ(Frobv)) = 0

for almost all v’s that are inert in K.
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5.3 CM points and Galois actions

Given a compact open subgroup H of G(Af ), we say that θ ∈ S2 has level H
if it is fixed by H. The space SH

2 of all such functions may thus be identified
with the finite dimensional space of all complex valued function on the finite
set

MH
def
= G(Q)\G(Af )/H.

In particular, any such θ yields a function ψ = θ ◦ red on

CMH
def
= T (Q)\G(Af )/H,

where red : CMH →MH is the obvious map.
Also, θ is an Eisenstein function if and only if it factors through the map

c : MH → NH which is induced by the reduced norm, where

NH
def
= Z(Q)+\Z(Af )/nr(H)

and Z(Q)+ = nr(G(Q)) is the subgroup of totally positive elements in
Z(Q) = F×. We will need to consider a somewhat weaker condition.

Recall from the introduction that the set CMH of CM points, is endowed
with the following Galois action: for x = [g] ∈ CMH and σ = recK(λ) ∈
GalabK (with g ∈ G(Af ) and λ ∈ T (Af )),

σ · x = [λg] ∈ CMH .

The Galois group GalabF similarly acts on NH , and we thus obtain an action
of GalabK on NH : for x = [z] ∈ NH and σ = recK(λ) ∈ GalabK (with z ∈ Z(Af )
and λ ∈ T (Af )),

σ · x = [nr(λ)z] ∈ NH .

By construction, the composite map

CMH
red−→MH

c−→ NH

is GalabK -equivariant (and surjective).

Definition 5.3 We say that θ : MH → C is exceptional (with respect to K)
if there exists some z0 ∈ NH with the property that θ is constant on c−1(z),
for all z in GalabK · z0.
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Remark 5.4 Since K is quadratic over F , there are at most two GalabK -orbits
in NH . If there is just one, θ : MH → C is exceptional if and only if it is
Eisenstein: this occurs for instance whenever nr(H) is the maximal compact
open subgroup of Z(Af ), provided that K/F ramifies at some finite place.
On the other hand, if there are two GalabK -orbits in NH , there might be
exceptional θ’s which are not Eisenstein.

Lemma 5.5 Let π′ be any cuspidal representation of G(Af ). Suppose that
S2(π

′) contains a nonzero θ which is exceptional with respect to K. Then
(π′, K) is exceptional.

Proof. Let H =
∏

v Hv be a compact open subgroup of G(Af ) such that θ
is right invariant under H. Since π is cuspidal, θ is not Eisenstein and the
above remark shows that there must be exactly two GalabK -orbits in NH , say
X and Y , with θ constant on c−1(z) for all z in X, but θ(x1) 6= θ(x2) for
some x1 and x2 in MH with c(x1) = c(x2) = y ∈ Y .

For all but finitely many v’s, Hv = R×
v where Rv 'M2(OF,v) is a maximal

order in Bv 'M2(Fv). For any such v, we know that

θ|Tv = avθ

where for x = [g] ∈MH with g ∈ G(Af ),

(θ|Tv)(x) =
∑
i∈Iv

θ(xv,i) with xv,i = [gγv,i] ∈MH .

Here, Hv ( $v 0
0 1 )Hv =

∐
i∈Iv

γv,iHv with $v a local uniformizer in Fv. Note
that for x in c−1(y), the xv,i’s all belong to c−1(Frobv · y). If v is inert in K,
Frobv · y belongs to X and θ is constant on its fiber, say θ(x′) = θ(v, y) for
all x′ ∈ c−1(Frobv · y). For such v’s, we thus obtain

avθ(x1) = |Iv| θ(v, y) = avθ(x2).

Since θ(x1) 6= θ(x2) by construction, av = 0 whenever v is inert in K. The
lemma now follows from Proposition 5.1.

5.4 Main results

To prove our main theorems in the definite case, we shall proceed backwards,
starting from the analog of Proposition 4.17, and ending with our target
result, the analog of Theorem 4.1.
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Thus, let R′ ⊂ G0 be the set of representatives for G0/G2 which we
considered in section 4.5. Recall that

R′ = {τσD; τ ∈ R and D | D′}

where R ⊂ G0 is a set of representatives for G0/G1 containing 1, while D′
and the σD’s for D | D′ were defined in Lemma 2.6. Suppose that H = R̂×

for some OF -order R ⊂ B, and consider the following maps:

CMH(P∞) RED // MR
Hand// MR

H
C // NR

H

x � // (red(τ · x))τ∈R (aτ )τ∈R
� // (c(aτ ))τ∈R

If we endow NR
H with the diagonal Galois action, the composite

C ◦ RED : CMH(P∞)→ NR
H

becomes a G(∞)-equivariant map. In particular, for any x ∈ CMH(P∞),

RED(G(∞) · x) ⊂ C−1(G(∞) · C(x)).

The following key result is our initial input from [5].

Proposition 5.6 For all but finitely many x ∈ CMH(P∞),

RED(G(∞) · x) = C−1(G(∞) · C ◦ RED(x)).

Proof. Given the definition of G1, this is just a special case of Corollary
2.10 of [5] except that the latter deals with P -isogeny classes of CM points
instead of the set of all CM points of P -power conductor which we consider
here. Nevertheless, CMH(P∞) breaks up as the disjoint union of finitely
many such P -isogeny classes, cf. remark 4.16. The proposition follows.

Corollary 5.7 Let θ be any non-exceptional function on MH , and let ψ =
θ ◦ red be the induced function on CMH . Let χ be any character of G0.
Then, for any CM point x ∈ CMH(P n) with n sufficiently large, there exists
some y ∈ G(∞) · x such that∑

τ∈R
χ(τ)ψ(τ · y) 6= 0.
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Proof. Replacing x by σ · x for some σ ∈ G(∞), we may assume that
θ(p1) 6= θ(p2) for some p1 and p2 in c−1(c ◦ red(x)). If n is sufficiently large,
the proposition then produces y1 and y2 in G(∞) · x such that red(y1) = p1,
red(y2) = p2 and

red(τ · y1) = red(τ · x) = red(τ · y2)

for any τ 6= 1 in R. If a(y) =
∑

τ∈R χ(τ)ψ(τ · y), we thus obtain

a(y1)− a(y2) = θ(p1)− θ(p2) 6= 0,

and one at least of a(y1) or a(y2) is nonzero.

Suppose now that we are given an irreducible cuspidal representation π′

of G(Af ), with (unramified) central character ω. We still consider a level
structure of the form H = R̂× for some OF -order R ⊂ B, but we now also
require the following condition.

(H2) For any prime Q 6= P of F which ramifies in K, B is split at Q and
RQ is a maximal order in BQ 'M2(FQ).

Our next result is the analog of Theorem 4.10.

Proposition 5.8 Suppose that θ is a nonzero function in S2(π
′)H , and let ψ

be the induced function on CMH . Let χ be any character of G0 such that
χ · ω = 1 on A×

F . Then, for all x ∈ CM(P n) with n sufficiently large, there
exists some y ∈ G(∞) · x such that

a(y)
def
=

∑
σ∈G0

χ(σ)ψ(σ · y) 6= 0.

Proof. Since Z(Af ) acts on S2(π
′) 3 θ through ω, we find that

a(y) = |G2|
∑

σ∈R′
χ(σ)ψ(σ · y).

= |G2|
∑
τ∈R

χ(τ)
∑
D|D′

χ(σD)ψ(σDτ · y).

Using Lemma 5.9 below, we obtain

a(y) = |G2|
∑
τ∈R

χ(τ)ψ1(τ · y1)
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where ψ1 : CMH1 → C is induced by a nonzero function θ1 of levelH1 = R̂×
1 in

S2(π
′), and y 7→ y1 is a Galois equivariant map from CMH(P n) to CMH1(P

n).
Since θ1 is non-exceptional by Lemma 5.5, we may apply Corollary 5.7 to θ1

and x1 ∈ CMH1(P
n), thus obtaining some y1 = γ · x1 in G(∞) · x1 such that∑

τ∈R
χ(τ)ψ1(τ · y1) = |G2|−1 a(y) 6= 0,

with y = γ · x ∈ G(∞) · x.

Lemma 5.9 There exists an OF -order R1 ⊂ R, a nonzero function θ1 of level
H1 = R̂×

1 in S2(π
′), and for each n ≥ 0, a Galois equivariant map x 7→ x1

from CMH(P n) to CMH1(P
n) such that∑

D|D′
χ(σD)ψ(σD · x) = ψ1(x1), (17)

where ψ = θ ◦ red and ψ1 = θ1 ◦ red as usual.

Proof. The proof is very similar to that of Lemma 4.14. We put

R1 = R ∩ αD′Rα−1
D′ ⊂ B

where for any prime divisor Q of D′, ΓQ is the set of elements in RQ '
M2(OF,Q) whose reduced norm (=determinant) is a uniformizer in OF,Q, αQ

is a chosen element in ΓQ, and αD =
∏

Q|D αQ for any divisor D of D′. We
then define

θ1 =
∑
D|D′

χ(σD)(αD · θ).

Thus, θ1 is a function of level H1 = R̂×
1 in S2(π

′).
Consider now some x = [g] ∈ CMH(P n), with g ∈ G(Af ) and n ≥ 0. For

each Q | D′, we know that KQ ∩ gQRQg
−1
Q = OK,Q. If πQ denotes a fixed

generator of the maximal ideal of OK,Q, we thus find that g−1
Q πQgQ belongs

to ΓQ. Since ΓQ = R×
QαQR

×
Q, there exists r1,Q and r2,Q in R×

Q such that

g−1
Q πQgQ = r1,QαQr2,Q. For i ∈ {1, 2}, we put ri =

∏
Q|D′ ri,Q and view it as

an element of H ⊂ G(Af ). One easily checks, as in the proof of Lemma 4.14,
that the CM point x1 = [gr1] in CMH1 has conductor P n, and we claim that

1. the map x 7→ x1 is well-defined and Galois equivariant;
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2. formula (17) holds for all x ∈ CMH(P∞).

For (1), suppose that we replace g by g′ = λgh for some λ ∈ T (Af ) and
h ∈ H. For Q | D′, let r′1,Q and r′2,Q be elements of R×

Q such that

g′
−1
Q πQg

′
Q = r′1,QαQr

′
2,Q.

Since g′Q = λQgQhQ and πQλQ = λQπQ in B×
Q , we find that

r1,QαQr2,Q = g−1
Q πQgQ = hQr

′
1,QαQr

′
2,Qh

−1
Q .

In particular, r−1
1,QhQr

′
1,Q equals αQr2,QhQr

′−1
2,Qα

−1
Q , and thus belongs to R×

1,Q =

R×
Q ∩ αQR

×
Qα

−1
Q . It follows that for r′1 =

∏
Q|D′ r

′
1,Q ∈ H, [g′r′1] equals [λgr1]

in CMH1(P
n), and this finishes the proof of (1).

For (2), we simply have to observe that for any divisor D of D′, if ψD

denotes the function on CMH1 which is induced by αD · θ ∈ S2(π
′),

ψD(x1) = θ(gr1αD) = θ(gr1αDr2) = θ(πDg) = ψ(σD · x)

where πD =
∏

Q|D πQ, so that σD = recK(πD).
To complete the proof of the lemma, it remains to show that θ1 is nonzero.

This may be proved by induction, exactly as in Proposition 5.3 of [24], or
Lemma 4.15 above in the indefinite case. The final step of the argument runs
as follows: if ϑ+ ρ(πQ)(ϑ′) = 0 for some ϑ and ϑ′ in S2(π

′) that are fixed by
R×

Q, then ϑ = −ρ(πQ)(ϑ′) is fixed by the group spanned by R×
Q and πQR

×
Qπ

−1
Q .

This group contains the kernel of the reduced norm B×
P → F×

P , and the strong
approximation theorem then implies that ϑ is Eisenstein, hence zero.

Finally, suppose moreover that the following condition holds.

(H1) RP is an Eichler order in BP 'M2(FP ).

We then have the notion of good CM points. We say that θ ∈ S2(π
′) is P -new

if it is fixed by R×
P , and π′ contains no nonzero vectors which are fixed by

R′
P
× for some Eichler order R′

P ⊂ BP strictly containing RP . The following
is the analog of Theorem 4.1.

Theorem 5.10 Suppose that θ is a nonzero function in S2(π
′)H . Suppose

moreover that θ is P -new, and let ψ be the induced function on CMH . Let
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χ0 be any character of G0 such that χ0 · ω = 1 on A×
F . Then, for any good

CM point x ∈ CMH(P n) with n sufficiently large, there exists a primitive
character χ of G(n) inducing χ0 on G0 such that

a(x, χ)
def
=

∑
σ∈G(n)

χ(σ)ψ(σ · x) 6= 0.

Proof. Since a(γ · x, χ) = χ−1(γ)a(x, χ) for any γ ∈ G(n), it suffices to
show that for some y in the Galois orbit of x, the average of the a(y, χ)’s is
nonzero (with χ running through the set P (n, χ0) of primitive characters of
G(n) inducing χ0 on G0). By Lemma 2.8, this amounts to showing that∑

σ∈G0

χ0(σ)ψ∗(σ · d(y)) 6= 0

for some y ∈ G(∞) · x, where ψ∗ : Z[CMH ] → C is the natural extension of
ψ and

d(y)
def
= q · y − TrZ(n)(y) ∈ Z[CMH ].

Since θ is P -new, ψ∗ factors through the P -new quotient Z[CMH ]P−new of
Z[CMH ]. In the latter, the image of d(y) may be computed using the distri-
bution relations of the appendix, provided that y (or x) is a good CM point
of conductor P n with n sufficiently large. We find that

ψ∗(d(y)) = ψ+(y+)

where H+ = R̂+
×

for some OF -order R+ ⊂ B, θ+ is a function of level H+ in
S2(π

′), ψ+ is the induced function on CMH+ , and y+ belongs to CMH+(P n).
Moreover, the map y 7→ y+ commutes with the action of GalabK , so that y+

belongs to G(∞) · x+ ⊂ CMH1(P
n) and

ψ∗(σ · d(y)) = ψ∗(d(σy)) = ψ+((σy)+) = ψ+(σ · y+)

for any σ ∈ G0. We now have to show that

a(y+)
def
=

∑
σ∈G0

χ0(σ)ψ+(σ · y+) 6= 0

for some y+ ∈ G(∞) · x+, provided that n is sufficiently large.
When δ ≥ 2, R+ = R, x+ = x and θ+ = q ·θ with q = |OF/P |. Otherwise,

R+ is the unique OF -order in B which agrees with R outside P , and whose
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localization R+
P at P is the Eichler order of level P 2 constructed in section 6.5.

In particular, R+ satisfies to (H2). Moreover:

θ+ =

{
b0 · θ0 + b1 · θ1 + b2 · θ2 if δ = 0
b01 · θ01 + b12 · θ12 if δ = 1

where the b∗’s are the elements of B×
P defined in section 6.5, while the θ∗’s

are the elements of S2(π
′)H which are respectively given by

(θ0, θ1, θ2) = (q · θ,−T · θ, γ · θ) if δ = 0
and (θ01, θ12) = (q · θ, γ−1 · θ)
or (θ01, θ12) = (γ · θ, q · θ) if δ = 1.

In the above formulas, T and γ are certain Hecke operators in TH , with
γ ∈ T×

H . The argument that we already used several times shows that
θ+ 6= 0 in all (four) cases, and we may therefore apply Proposition 5.8 to
conclude the proof of our theorem.

6 Appendix: Distribution Relations

Fix a number field F , a quadratic extension K of F and a quaternion algebra
B over F containing K. Let OF and OK be the ring of integers in F and
K. Let H be a compact open subgroup of B̂× and put CMH = K×

+\B̂×/H
where K×

+ is the subgroup of K× which consists of those elements which are
positive at every real place of K.

The Galois group GalabK ' K×
+\K̂× acts on CMH by σ · x = [λεb] for

σ = recK(λ) and x = [b] (λ ∈ K̂×, b ∈ B̂×). Here, ε is a fixed element in
{±1}. We extend this action by linearity to the free abelian group Z[CMH ]
generated by CMH . On the latter, we also have a Galois equivariant left
action of the Hecke algebra

TH
def
= End

Z[B̂×]
(Z[B̂×/H]) ' Z[H\B̂×/H].

An element [α] ∈ H\B̂×/H acts on Z[B̂×/H] or Z[CMH ] by

[b] 7→
n∑

i=1

[bαi] for HαH =
n∐

i=1

αiH and b ∈ B̂×.

A distribution relation is an expression relating these two actions. The aim
of this section is to establish some of these relations when H = HPR×

P where
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P is a prime of F where B is split, HP is any compact open subgroup of
(B̂×)P = {b ∈ B̂; bP = 1} and RP ⊂ BP is an Eichler order of level P δ for
some δ ≥ 0.

More precisely, we shall relate the action of the “decomposition group at
P” to the action of the local Hecke algebra

T(R×
P ) = EndZ[B×P ](Z[B×

P /R
×
P ]) ' Z[R×

P \B×
P /R

×
P ] ⊂ T(H)

on CMH . This naturally leads us to the study of the left action of K×
P and

T(R×
P ) on B×

P /R
×
P . For any x = [b] ∈ B×

P /R
×
P , the stabilizer of x in K×

P

equals O(x)× where O(x) = KP ∩ bRP b
−1 is an OF,P -order in KP . On the

other hand, any OF,P -order O ⊂ KP is equal to

On
def
= OF,P + P nOK,P

for a unique integer n = `P (O) (cf. section 6.1 below). For x as above, we

put `P (x)
def
= `P (O(x)). This function on B×

P /R
×
P obviously factors through

K×
P \B×

P /R
×
P . Using the decomposition

GalabK \CMH ' K̂×\B̂×/H ' (K̂×)P\(B̂×)P/HP ×K×
P \B×

P /R
×
P

we thus obtain a Galois invariant fibration `P : CMH → N with the property
that for any x ∈ CMH with n = `P (x), x is fixed by the closed subgroup
recK(O×n ) of GalabK . If n ≥ 1, we put

Tr(x)
def
=

∑
λ∈O×n−1/O×n

recK(λ) · x ∈ Z[CMH ].

This is, on the Galois side, the expression that we will try to compute in
terms of the action of the local Hecke algebra.

When δ ≥ 1 (so that RP is not a maximal order), our formulas simplify in
the P -new quotient Z[CMH ]P−new of Z[CMH ]. The latter is the quotient of
Z[CMH ] by the Z-submodule which is spanned by the elements of the form∑

[bαi] where b ∈ B̂× and {αi} ⊂ B×
P is a set of representatives of R′×

P/R
×
P

for some Eichler order RP ⊂ R′
P ⊂ BP of level P δ′ with δ′ < δ.

We start this section with a review on the arithmetic of On. The next
three sections establish the distribution relations for Tr(x) when δ = 0, δ = 1
and δ ≥ 2 respectively. The final section explains how the various points that
are involved in the formulas for δ = 0 or δ = 1 may all be retrieved from a
single CM point of higher level δ = 2.
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To fix the notation, we put F = OF/P ' OF,P/POF,P and let F[ε] =
F[X]/X2F[X] be the infinitesimal deformation F-algebra. We choose a local
uniformizer $P of F at P . We set εP = −1, 0 or 1 depending upon whether
P is inert, ramifies or splits in K. We denote by P (resp. P and P∗) the
primes of K above P and let σP (resp. σP and σP∗) be the corresponding
geometric Frobeniuses.

6.1 Orders.

Since OK,P/OF,P is a torsionfree rank one OF,P -module, we may find an
OF,P -basis (1, αP ) of OK,P . Let O be any OF,P -order in KP . The projection
of O ⊂ OK,P = OF,P ⊕OF,PαP to the second factor equals P nOF,PαP for a
well-defined integer n = `P (O) ≥ 0. Since OF,P ⊂ O,

O = OF,P ⊕ P nOF,PαP = OF,P + P nOK,P .

Conversely, ∀n ≥ 0, On
def
= OF,P + P nOK,P is an OF,P -order in KP .

Since any On-ideal is generated by at most two elements (it is already
generated by two elements as an OF,P -module), On is Gorenstein ring for
any n ≥ 0 [1]. For n = 0, O0 = OK,P and the F-algebra O0/PO0 is a
degree 2 extension of F if εP = −1, is isomorphic to F[ε] if εP = 0 and to
F2 if εP = 1. For n > 0, On is a local ring with maximal ideal POn−1 and
On/POn is again isomorphic to F[ε].

Lemma 6.1 For any n ≥ 0, the left action of O×n on P1(On/POn) factors
through O×n /O×n+1. Its set of fixed points is given by the following formula

P1(On/POn)O
×
n =


∅ if n = 0 and εP = −1,
{PO0/PO0} if n = 0 and εP = 0,
{PO0/PO0,P∗O0/PO0} if n = 0 and εP = 1,
{POn−1/POn} if n > 0.

The remaining points are permuted faithfully and transitively by O×n /O×n+1.

Proof. This easily follows from the above discussion together with the ob-
servation that the quotient map On → On/POn induces a bijection between
O×n /O×n+1 and (On/POn)×/F×.
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6.2 The δ = 0 case

Let V be a simple left BP -module, so that V ' F 2
P as an FP -vector space.

The embedding KP ↪→ BP endows V with the structure of a (left) KP -
module for which V is free of rank one. Let L be the set of OF,P -lattices
in V and pick L0 ∈ L such that {α ∈ BP ;αL ⊂ L} = RP . Then b 7→ bL0

yields a bijection between B×
P /R

×
P and L. The induced left actions of K×

P

and T(R×
P ) on Z[L] are respectively given by

(λ, L) 7→ λL and [R×
PαR

×
P ](L) =

n∑
i=1

bLi

for λ ∈ K×
P , L = bL0 ∈ L, α ∈ B×

P , R×
PαR

×
P =

∐n
i=1 αiR

×
P and Li = αiL0.

The function `P on L maps a lattice L to the unique integer n = `P (L) such
that {x ∈ K×

P ; xL ⊂ L} equals On.

Lemma 6.2 The function `P defines a bijection between K×
P \B×

P /R
×
P ' K×

P \L
and N.

Proof. Fix a KP -basis e of V . For any n ≥ 0, `P (One) = n – this shows
that `P is surjective. Conversely, let L be a lattice with `P (L) = n. Then L
is a free (rank one) On-module by [1, Proposition 7.2]. In particular, there
exists an element λ ∈ K×

P such that L = Onλe = λOne. This shows that
`P : K×

P \L → N is also injective.

Definition 6.3 Let L ⊂ V be a lattice.

1. The lower (resp. upper) neighbors of L are the lattices L′ ⊂ L (resp.
L ⊂ L′) such that L/L′ ' F (resp. L′/L ' F).

2. The lower (resp. upper) Hecke operator T l
P (resp. T u

P ) on Z[L] maps L
to the sum of its lower (resp. upper) neighbors.

3. If n = `P (L) ≥ 1, the lower (resp. upper) predecessor of L is defined
by

prl(L)
def
= POn−1L (resp. pru(L)

def
= On−1L).

Remark 6.4 T l
P and T u

P are the local Hecke operators corresponding to re-
spectively R×

PαR
×
P and R×

Pα
−1R×

P where α is any element of RP 'M2(OF,P )
whose reduced norm (= determinant) is a uniformizer in FP .

63



Lemma 6.5 Let L be a lattice in V and put n = `P (L).

1. If n = 0, there are exactly 1 + εP lower neighbors L′ of L for which
`P (L′) = 0, namely L′ = PL if εP = 0 and L′ = PL or P∗L if εP = 1.

2. If n > 0, there is a unique lower neighbor L′ of L for which `P (L′) ≤ n,
namely L′ = prl(L) for which `P (L′) = n− 1.

3. In both cases, the remaining lower neighbors have `P = n+1. They are
permuted faithfully and transitively by O×n /O×n+1 and L is their common
upper predecessor.

Proof. This is a straightforward consequence of Lemma 6.1, together with
the fact already observed in the proof of Lemma 6.2 that any lattice L with
n = `P (L) is free of rank one over On.

We leave it to the reader to formulate and prove an “upper” variant of this
lemma. The function L 7→ prl(L) (resp. pru(L)) commutes with the ac-
tion of K×

P , and so does the induced function on {[b] ∈ B×
P /R

×
P , `P (b) ≥

1}. The latter function extends to a K̂×-equivariant function on {[b] ∈
B̂×/H, `P (bp) ≥ 1} with values in B̂×/H (take the identity on (B̂×)P/HP ).
Dividing by K×

+ , we finally obtain Galois equivariant functions prl and pru

on {x ∈ CMH , `P (x) ≥ 1} with values in CMH . These functions do not
depend upon the various choices that we made (V and L0).

Corollary 6.6 For x ∈ CMH with `P (x) = n ≥ 1,

Tr(x) = T l
P (x′)− x′′

where x′ = pru(x), x
′′ = prl(x

′) if n ≥ 2 and

x′′ =


0 (εP = −1)
σε
Px

′ (εP = 0)
(σε
P + σε

P∗)x
′ (εP = 1)

if n = 1.

Note that if `P (x) = 1, `P (x′) = 0 and x′ is indeed defined over an abelian
extension of K which is unramified above P .
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6.3 The δ = 1 case

With V as above, B×
P /R

×
P may now be identified with the set L1 of all pair

of lattices L = (L(0), L(1)) ∈ L2 such that L(1) ⊂ L(0) with L(0)/L(1) ' F.
Indeed, B×

P ' GL(V ) acts transitively on L1 and there exists some L0 =
(L0(0), L0(1)) ∈ L1 whose stabilizer equals R×

P .
To each L ∈ L1, we may now attach two integers, namely

`P,0(L) = `P (L(0)) and `P,1(L) = `P (L(1)).

For L ∈ L1, `P (L) = max(`P,0(L), `P,1(L)) and exactly one of the following
three situations occurs (see Lemma 6.5).

Definition 6.7 We say that

• L is of type I if `P,0(L) = n − 1 < `P,1(L) = n. The leading vertex of
L equals L(1) and if n ≥ 2, we define the predecessor of L by

pr(L) = (L(0), prlL(0)) = (L(0), POn−2L(0)).

• L is of type II if `P,0(L) = n > `P,1(L) = n − 1. Then L(0) is the
leading vertex and for n ≥ 2, the predecessor of L is defined by

pr(L) = (pruL(1), L(1)) = (On−2L(1), L(1)).

• L is of type III if `P,0(L) = n = `P,1(L) (in which case n = 0, εP = 0
or 1 and L(1) = PL(0) or L(1) = P∗L(0)). As a convention, we define
the leading vertex of L to be L(0).

Remark 6.8 The type of L together with the integer n = `P (L) almost de-
termines the K×

P -homothety class of L. Indeed, Lemma 6.2 implies that we
can move the leading vertex of L to One ({e} is a KP -basis of V ). Then
L = (On−1e,One) if L is of type I, L = (One, POn−1e) if L is of type II and
L = (One,POne) or (One,P∗One) if L is of type III (in which case n = 0).

Definition 6.9 The lower (resp. upper) Hecke operator T l
P (resp. T u

P ) on
Z[L1] maps L ∈ L1 to the sum of all elements L′ ∈ L1 such that L′(1) = L(1)
but L′(0) 6= L(0) (resp. L′(0) = L(0) but L′(1) 6= L(1)).
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The P -new quotient Z[L1]
P−new of Z[L1] is the quotient of Z[L1] by the

Z-submodule which is spanned by the elements of the form
∑

L′(0)=M L′ or∑
L′(1)=M L′ with M a lattice in V . By construction,

T l
P ≡ T u

P ≡ −1 on Z[L1]
P−new.

Remark 6.10 For i ∈ {0, 1}, put R(i) = {b ∈ BP ; bL0(i) ⊂ L0(i)} so that
RP = R(0)∩R(1). Then T l

P and T u
P are the local Hecke operators correspond-

ing to respectively R×
PαR

×
P and R×

PβR
×
P , for any α in R(1)×\R(0)× and β in

R(0)× \R(1)×. Also, R(0)× = R×
P

∐
R×

PβR
×
P and R(1)× = R×

P

∐
R×

PαR
×
P .

For L ∈ L1 and λ ∈ K×
P , L and λL have the same type and pr(λL) = λpr(L)

(if `P (L) ≥ 2). We thus obtain a Galois invariant notion of type on CMH

and a Galois equivariant map x 7→ pr(x) on {x ∈ CMH ; `P (x) ≥ 2} with
values in CMH . The following is then an easy consequence of Lemma 6.5.

Lemma 6.11 For x ∈ CMH with `P (x) ≥ 2,

Tr(x) =

{
T u

P (pr(x)) if x is of type I
T l

P (pr(x)) if x is of type II

In the P -new quotient of Z[CMH ], these relations simplify to:

Tr(x) = −pr(x).

Remark 6.12 In contrast to the δ = 0 case, the above constructions do
depend upon the choice of L0. More precisely, our definition of types on
CMH are sensible to the choice of an orientation on RP : changing L0 =
(L0(0), L0(1)) to L′0 = (L0(1), PL0(0)) exchanges type I and type II points.

6.4 The δ ≥ 2 case

We now have B×
P /R

×
P ' Lδ where Lδ is the set of all pairs of lattices L =

(L(0), L(δ)) in V such that L(δ) ⊂ L(0) with L(0)/L(δ) ' OF/P
δ. We refer

to such pairs as δ-lattices. To each L ∈ Lδ, we may attach the sequence of
intermediate lattices

L(δ) ( L(δ − 1) ( · · · ( L(1) ( L(0)
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and the sequence of integers `P,i(L)
def
= `P (L(i)), for 0 ≤ i ≤ δ. The function

`P corresponds to

`P (L) = max(`P,i(L)) = max(`P,0(L), `P,δ(L)).

Using Lemma 6.5, one easily checks that the sequence `P,i(L) satisfies the
following property: there exists integers 0 ≤ i1 ≤ i2 ≤ δ such that `P,i+1(L)−
`P,i(L) equals −1 for 0 ≤ i < i1, 0 for i1 ≤ i < i2 and 1 for i2 ≤ i < δ.
Moreover, `P,i(L) = 0 for all i1 ≤ i ≤ i2 if i2 6= i1 in which case εP = 0 or
1, and i2 − i1 ≤ 1 if εP = 0. For our purposes, we only need to distinguish
between three types of δ-lattices.

Definition 6.13 We say that L ∈ Lδ is of type I if `P,0(L) < `P,δ(L), of type
II if `P,0(L) > `P,δ(L) and of type III if `P,0(L) = `P,δ(L).

The P -new quotient Z[Lδ]
P−new of Z[Lδ] is the quotient of Z[Lδ] by the

Z-submodule which is spanned by the elements of the form∑
(L′(1),L′(δ))=ML

′ or
∑

(L′(0),L′(δ−1))=ML
′

with M ∈ Lδ−1. It easily follows from Lemma 6.5 that for any L ∈ Lδ which
is not of type III, Tr(L) = 0 in Z[Lδ]

P−new where Tr(L) =
∑

λ∈O×n−1/On
λL for

n = `P (L). Indeed,

Tr(L) =

{ ∑
(L′(0),L′(δ−1))=(L(0),L(δ−1)) L

′ if L is of type I,∑
(L′(1),L′(δ))=(L′(1),L′(δ)) L

′ if L is of type II.

Extending the notion of types to CMH as in the previous section, we obtain:

Lemma 6.14 For any x ∈ CMH which is not of type III,

Tr(x) = 0 in Z[CMH ]P−new.

Remark 6.15 If δ is odd, `P is bounded on the set of type III points in Lδ or
CMH . If δ is even, there are type III points with `P = n for any n ≥ δ/2. In
both cases, there are type I and type II points with `P = n for any n > δ/2.

6.5 Predecessors and degeneracy maps.

Suppose first that δ = 0 and let L0(0) be a lattice in V such that RP =
{α ∈ BP ; αL0(0) ⊂ L0(0)}. Choose a lattice L0(2) ⊂ L0(0) such that
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L0 = (L0(0), L0(2)) is a 2-lattice and let

R+
P = {α ∈ BP ; αL0(0) ⊂ L0(0) and αL0(2) ⊂ L0(2)} (18)

be the corresponding Eichler order (of level P 2). Put H+ = HP (R+
P )×.

To a 2-lattice L, we may attach three lattices:

d0(L) = L(2), d1(L) = L(1) and d2(L) = L(0).

Conversely, to each lattice L with n = `P (L) ≥ 2, we may attach a unique
2-lattice L+ = (On−2L,L) with the property that

(d0, d1, d2)(L
+) = (L, pruL, pru ◦ pruL) = (L,L′, P−1L′′)

where L′ = pruL and L′′ = prlL
′. Being K×

P -equivariant, these constructions
have Galois equivariant counterparts on suitable spaces of CM points. More
precisely:

• Choose bi ∈ B×
P such that biL0(0) = L0(2− i).

• Define di : CMH+ → CMH by di([b]) = [bbi] for b ∈ B̂×.

• Define ϑ : CMH → CMH by ϑ([b]) = [b$P ] for b ∈ B̂×.

• Use the identifications B×
P /R

×
P ↔ L and B×

P /(R
+
P )× ↔ L2 to define

the K×
P -equivariant map x 7→ x+ on {[b] ∈ B×

P /R
×
P ; `P (bL0(0)) ≥ 2}

with values in B×
P /(R

+
P )× which corresponds to L 7→ L+ on the level of

lattices.

• Using the decomposition B̂×/H = (B̂×)P/HP ×B×
P /R

×
P (and similarly

for B̂×/H+), extend x 7→ x+ to a K̂×-equivariant map defined on the
suitable subset of B̂×/H with values in B̂×/H+ (take the identity on
(B̂×)P ).

• Dividing out by K×
+ , we thus obtain a Galois equivariant map x 7→ x+

on {x ∈ CMH ; `P (x) ≥ 2} with values in CMH+ .

By construction:

Lemma 6.16 (δ = 0) For any x ∈ CMH with `P (x) ≥ 2,

(d0, d1, d2)(x
+) = (x, x′, ϑ−1x′′) in CM3

H

where x′ = pru(x) and x′′ = prl(x
′).
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The δ = 1 case is only slightly more difficult. Fix a 1-lattice (L0(0), L0(1))
whose stabilizer equals R×

P and let L0(2) be a sublattice of L0(1) such that
L0 = (L0(0), L0(2)) is a 2-lattice. Define R+

P by the same formula (18), so
that R+

P is again an Eichler order of level P 2. Put H+ = HP (R+
P )×.

To each 2-lattice L we may attach two 1-lattices, namely d01(L) = (L(0), L(1))
and d12(L) = (L(1), L(2)). Conversely suppose that L is a 1-lattice with
n = `P (L) ≥ 2. If L is of type I, L+ = (On−2L(0), L(1)) is a 2-lattice and

(d01, d12)(L
+) = (ϑ−1pr(L), L)

where ϑ is now the permutation of L1 which maps (L(0), L(1)) to (L(1), PL(0)).
If L is of type II, L+ = (L(0), POn−2L(1)) is a 2-lattice and

(d01, d12)(L
+) = (L, ϑpr(L)).

These constructions are again equivariant with respect to the action of K×
P ,

and may thus be extended to GalabK -equivariant constructions on CM points.
More precisely,

• Choose b01 = 1 and b12 ∈ B×
P such that b12(L0(0), L0(1)) = (L0(1), L0(2)).

Define d01 and d12 : CMH+ → CMH by d01([b]) = [bb01], d12([b]) = [bb12]
for b ∈ B̂×.

• Choose ω in B×
P such that ω(L0(0), L0(1)) = (L0(1), PL0(0)) and define

ϑ : CMH → CMH by ϑ([b]) = [bω] for b ∈ B̂×.

• Proceeding as above in the δ = 0 case, extend L 7→ L+ to a Galois
equivariant function x 7→ x+ defined on {x ∈ CMH ; `P (x) ≥ 2} with
values in CMH+ .

With these notations, we obtain:

Lemma 6.17 (δ = 1) For any x ∈ CMH with `P (x) ≥ 2,

(x, pr(x)) =

{
(d12, ϑd01)(x

+) if x is of type I,
(d01, ϑ

−1d12)(x
+) if x is of type II.

69



References

[1] H. Bass. On the ubiquity of Gorenstein rings. Math. Z., 82:8–28, 1963.

[2] H. Carayol. Sur la mauvaise réduction des courbes de Shimura. Com-
positio Math., 59(2):151–230, 1986.

[3] W. Casselman. On some results of Atkin and Lehner. Math. Ann.,
201:301–314, 1973.

[4] C. Cornut. Mazur’s conjecture on higher Heegner points. Invent. Math.,
148(3):495–523, 2002.

[5] C. Cornut and V. Vatsal. CM points on quaternion algebras. Preprint,
2004.

[6] F. Diamond and J. Im. Modular curves and modular forms. In K. Murty,
editor, Seminar on Fermat’s last theorem, Toronto, 19993, C.M.S. Con-
ference Proceedings, pages 39–133. Amer. Math. Soc., 1995.

[7] B. Gross. Heights and the special values of L-series. In H. Kisilevsky
and J. Labute, editors, Number Theory, volume 7 of CMS Conference
Proceedings, pages 115–189. Amer. Math. Soc., 1987.

[8] B. Gross. Local orders, root numbers, and modular curves. Am. J.
Math., 110:1153–1182, 1988.

[9] B. Gross. Heegner points and representation theory. In Heegner points
and Rankin L-series, pages 37–66. MSRI Publications, 2004.

[10] B. Gross and D. Prasad. Test vectors for linear forms. Math. Ann.,
291:343–355, 1991.
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