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1. Introduction

The original intent of this article was to survey the results of the author on the
nonvanishing of p-adic families of anticyclotomic twists of modular L-functions of
GLs, and in particular, the introduction of Ratner’s theorems in ergodic theory
to this domain. However, in preparing the article, it soon became evident that
the use of Ratner’s theorem is an instance of an apparently general phenomenon
— namely, that every result thus far known (to the author, at least) about non-
vanishing of L-functions in p-adic families seems to ultimately rely on some kind of
ergodic principle about the closure of certain group action orbits, of which Ratner’s
theorem is a sophisticated example. Since the particular subject of anticyclotomic
twists has been amply described elsewhere (notably in the introduction to [7]), the
present article will focus instead on surveying the general issue of nonvanishing of
p-adic families of twists in variety of different settings, with the goal of exposing
the common theme of rigidity which seems to underpin the whole subject. This
approach may perhaps be interesting to a wider audience, and in any case may
have historical legitimacy since it is the observation that orbit closures of group
actions played a key role in the classical theorems of Ferrero and Washington that
led the author to introduce ergodic theory in the more general setting.

1.1. Non-vanishing of twists in general. Let ((s) =) ., n~* denote
the Riemann zeta function. This series is convergent when the real part of s is
greater than 1, and admits a meromorphic continuation to s € C, with a simple
pole at s = 1. Furthermore, ((s) satisfies the functional equation

77T (s/2)G(s) = 7~ 2T - 8)/2)¢(1 — s), (1)

It follows trivially from this functional equation that ((k) = 0 whenever k is a
negative even integer. On the other hand, it was known to Euler that the value of



2 The author(s)’s name(s)

¢(k) is rational when k is negative and odd. For instance, the well-known formulae
¢(2)=>,1/n*=72/6 and ((4) = > 1/n* = 71/90, together with the functional
equation, show that

((-1) = ~1/12, (2)
¢(~3) = 1/60. (3)

More generally, it can be shown that if k is a positive integer, then
C(1 —2k) = —Bi/k (4)

where By, is the Bernoulli number defined by the Taylor expansion
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The Bernoulli numbers By, are closely related to the arithmetic of the cyclotomic
fields Q(¢,), where ¢, = ¢*>7"/P. In fact, one has the following

Theorem 1.1 (Kummer). Let p denote an odd prime number. Then the class
number of the cyclotomic field Q((p) is divisible by p if and only if p divides the
numerator of some By, for k=2,4,6,...,p— 3.

More generally, let N > 2 denote an integer, and let x : (Z/NZ)* — C*
denote a primitive Dirichlet character modulo N. Then it can be shown that if
n > 1 is an integer, then

L =n,x) = =Buy/n (5)

where the twisted Bernoulli number B, , is the algebraic number defined by the

formula N
x(a)te™ tm
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Furthermore, the class number formula, due to Dirichlet, relates the quantities
B, with the class number of certain cyclotomic fields. For instance, suppose that
X = Xp is the quadratic residue character associated to the imaginary quadratic

field Q(\/—p), where p > 3 is a prime . Then one can show that the class number
h(Q(v=p)) is given by

wQ ) = 2101, x).

In this article, we will consider the general issue of determining whether some
fixed prime p divides the special values of L-functions as above. In view of the class
number formulae, this gives information on whether or not certain class numbers
are divisible by p. For any given character, this is of course a hopeless problem,
so one is naturally led to pose the following question: Suppose that S is a family
of Dirichlet characters, and that n is a positive integer. Then how often is the
number L(1 — n, x) divisible by a fixed prime p of Q?
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Example 1.2. Suppose that S = Squaq is the family of quadratic characters
associated to imaginary quadratic fields. Then Gauss showed that the 2-primary
subgroup of the class group of Q(v/—D) has order 297!, where g is the number of
distinct primes dividing the discriminant of Q(y/—D). In particular, h(Q(v/—D))
is even unless D is a prime congruent to 1 mod 4.

What about other primes? If p = 3, Davenport and Heilbronn showed that
h(Q(v/—D)) is prime to 3 for a positive proportion of D. For p > 3 it is known
that there are infinitely many D with (h(yv/=D),p) = 1, and also infinitely many
D with (h(v/—D),p) = p.

Example 1.3. Recent work of Bhargava shows that at least 75% of totally real
cubic fields and 50% of complex cubic fields have odd class number. For more in
this direction, we refer to [2].

The examples cited above give information on the p-divisibility of various class
numbers, and in view of the class number formulae, may be translated into state-
ments about L-functions. However, it is to be noted that the proofs of these results
are based essentially on the study of homogeneous forms of various degree, and
make no reference to the L-functions as such. In the rest of this paper, we will
restrict our attention to examples where one can study the L-functions directly.
Specifically, we will consider the divisibility by a prime £ of L-functions varying in
certain p-adic families. Here ¢ may or may not be the same as p.

2. p-adic families

2.1. Cyclotomic Dirichlet characters and the work of Ferrero-
Washington.

Example 2.1. Thus, for a different kind of example, we now take S = S,_cyc to
denote the set of Dirichlet characters of conductor p™, for n > 0. Such charac-
ters are in bijective correspondence with characters of the group Gal(Q(up=)/Q),
where Q(up) is the field obtained by adjoining to Q all p-power roots of unity.
Thus Q(ppe ) is the union of the fields K,, = Q(pn ), where (pn is a primitive p”-th
root of unity. Let h(K,,) denote the class number of K,,. Then one can ask how
often h(K,) is divisible by a fixed prime ¢. It turns out that the behavior depends
basically on whether or not £ = p.

We consider first the case that £ = p. In this case, it was shown by Iwasawa
that if p denotes the exact power of ¢ = p dividing the class number h(K,,), then
there exist integers A, u, and v, such that

en = An + up" + v.

for all n sufficiently large. Iwasawa conjectured further that in fact u = 0, so that
en is a linear function of n, which is constant if and only if A = 0. On the other
hand, experimental evidence suggests that ord,(h(K,)) is bounded if ¢ # p. Both
these phenomena were confirmed by Ferrero and Washington.
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Theorem 2.2 (Ferrero-Washington). Suppose that p is a prime number. Then
the invariant p vanishes, so we have e, = An+ v, for sufficiently large n. If £ # p
is a fized prime, then ordy(h(K,)) is bounded as n tends towards infinity.

We now want to make some remarks about the proof of the Ferrero-Washington
theorems, since this will be the first appearance in the subject of ideas from ergodic
theory.

As we have remarked above, the first step in Ferrero-Washington is to express
the class numbers in terms of L-values. In view of the formula (5), the problem
becomes one of determining the divisibility properties of the numbers B, , defined
in (6). In the original papers [11] and [36], the authors use an ingenious formula
(apparently due to Iwasawa) which expresses the numbers B,, , in terms of the
p-adic digits of certain p-adic numbers related to the p — 1-st roots of unity. The
calculation is somewhat involved, and we will not reproduce it here. But the central
point may be succintly described: to obtain the properties stated in Theorem 2.2,
one needs to show that the digits of certain r-tuples of p-adic numbers behave like
independent random variables.

To state this precisely, recall that 8 € Z,, is called normal if the digits in the
p-adic expansion of 3 contain every random string of length k with asymptotic
frequency p~*. It is not hard to see that 3 is normal in this sense if and only if
the sequence of numbers z,, () = p~"s,(8) is uniformly distributed mod 1, where
sn(B) denotes the unique integer in the range [0,p™ — 1] such that s,(8) =
(mod p™).

Now the main lemma in Ferrero-Washington may be stated as follows:

Lemma 2.2.1 ([11]). Suppose that v1,%2, ..., € Zy are linearly independent
over Q. Then for almost all B € Z,, the sequence of vectors

Xn(ﬂ) = (In(B'Yl)a cee axn(B'Yr)) € [Oa 1)T

1s uniformly distributed mod 1.

In practice, the numbers 71, ...,7, are taken to be a maximal set of linearly
independent p — 1-st roots of unity. The connection with ergodic theory comes by
analogy with the classical result of Kronecker:

Theorem 2.3 (Kronecker). Suppose that that 1, ...,7, are real numbers, linearly
independent over Q. Then the image of the 1-parameter group (tyi,...,tv,) for
t € R is dense in the torus R"/Z". More generally, for arbitrary ~;, the closure
of the group (ty1,...,1ty) is a subtorus of rank equal to the Q-rank of the vector
space spanned by the ; over Q.

Another view of the Ferrero-Washington theorems was given by Sinnott in
[31] and [32], where it was observed that one can relate the Bernoulli numbers to
the derivatives of certain rational functions. (This was already known to Euler.)
Letting F,, denote the finite field with p elements, and letting F((T'— 1)) denote
the field of Laurent expansions in the variable T — 1, the key lemma takes the
following form:
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Lemma 2.3.1 (Sinnott). Suppose that y1,%2, ..., € Z, are linearly independent
over Q. Then the power series TV, T ..., T are algebraically independent in
Fp((T - 1)).

Here we understand that T = >0 (¢)(T' — 1)" for any a € Z,, where (¢) =
a-(a—1)...(a—n+1).

Remark 2.4. We would like to point out here that the main ingredient in the
proof of Sinnott’s lemma is quite elementary and amounts to an application of
Artin’s theorem on the linear independence of characters. In particular, the use
of explicit ergodic theory is completely absent. However, the statement that the
the T, are algebraically independent may be rephrased as stating that the ring
F,[T7,..., 77 C Fp[[T — 1]] is isomorphic to a polynomial ring in r variables.
Since F,[[T — 1]] is complete along the ideal (T — 1), and Specf(F,[[T —1]] is a
formal torus, this statement is formally analogous to Kronecker’s theorem above
in the sense that the image of the 1-parameter formal torus is Zariski dense in the
r-dimensional variety Spec(F,[T7,...,T7]).

2.2. CM L-functions. In this section we discuss the case of Hecke L-series
associated to imaginary quadratic and more general CM fields. Thus let F' denote
a totally real field, and let M/F denote a totally imaginary quadratic extension
of F. Let A : M*\Aj}, — C denote an arithmetic idele class character of M. Let
Moo denote the restriction of A to (M ® R)* and write

Aco (x) = H U(x)m

where the product is taken over all embeddings ¢ : M — C. The formal sum
K = Y Ko -0 is called the infinity type of A\. Let { denote the conductor of A,
so that f is the largest ideal of the ring of integers Ojs with the property that
Az) =1 for all 2 € Oy ® Z such that z =1 (mod f).

Now let L(s,A) denote the L-function associated to the idele class character
A. It is well-known that the values L(0, A) are critical in the sense of Deligne [9],
under some suitable condition on the infinity type of A (see [8] for the case F' = Q,
or [30] in general). In other words, there exists a period {2y associated to A such
that the number
L(0,\)

95

is an algebraic number. If we fix embeddings in, and i, of Q in to C and C,
respectively, we may regard the complex number L*8(0, \) as being an element of
C,, via the map i, o iz!. Furthermore, if one normalizes the period €, in some
canonical way, one can even show that the number L is p-adically integral in
C,, and one can then ask whether these numbers are p-adic units, as A varies over
the members of some family. This problem was first studied by Gillard [13], [14],
and Schneps [29], in the case of F' = Q using a generalization of Sinnott’s method,
and the connection between the L-values and explicit elliptic units. Further results
in the case F' = Q were given by Finis in [12]. Recently the subject was taken

L¥E(0, ) =
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up by Hida in a series of deep papers (see [19], [20], for example) which treat the
subject in great generality. For a sample of Hida’s results, we restrict ourselves to
a (relatively) simple statement. But to state even this, we need to introduce some
notation. Here we follow [20]

Let X denote a finite set of embeddings M — C of cardinality [F' : Q], such
that X NcX = (), where cX denotes the set {co,0 € X}, and ¢ denotes complex
conjugation. We say that X is a p-ordinary CM-type of M if the set {i,0i )00} rex
consists of [F' : Q] distinct p-adic places of M. Then we consider a character \ as
above whose infinity type is given by

kZo—l—m(l—c)

ceX

where k = )y ko0 With K, > 0 for 0 € X, and 0 < k € Z. Then to define
the transcendental factor €2, we can proceed as follows. Pick an abelian variety
A of CM type such that A(C) = ClF*Ql/q, where the product is indexed by the
[F : Q] places in X, and the fractional ideal a C Oy, is embedded diagonally via the
corresponding places of X. Let R C Q denote the Witt ring of Oy, with respect to
the place induced by 4,. Then A can be defined over R, and we can pick a Néron
differential w on A such that w generates {24 over R. Picking an isomorphism
¢ : A(C) = CIFQl/a, we define a vector Qu, € CIFQl via ¢*([[(duy)) = Qoow.
Here u, is the standard complex variable on the copy of C indexed by o. Writing
the components of Q, as Q, for ¢ € X, we have that 2, # 0, and

HUEX WKUF(]{I + K’U)L(Oa A)

k+2k
HUEX Qo 7

Then the problem is to study p-divisibility properties of the numbers L*8(0, \)
as defined above, as \ varies over some prescribed set. Recall therefore that the
character x : Ay, — C* is called anticyclotomic if x o 7 = x~ ', where 7 is the
nontrivial automorphism of M/F. Then we let A denote a fixed Hecke character,
and consider the values L*'#(0, Ay), as x varies over the set of anticyclotomic char-
acters of M of conductor [", for some fixed prime [ of K with residue characteristic
{ # p, and an integer n. The principal result in this direction is due to Hida.
To state the theorem, let us write L?lg(O, Ax) = L8(0, \x) - (1 — Ax(l)) for the
algebraic part of the [-imprimitive L-function.

LY8(0,\) = €ER (7)

Theorem 2.5 ([20], Theorem 1.1). Suppose that p > 2 is an unramified prime in
M/Q and that (M, X) is a p-ordinary CM type. Fiz a character X of conductor 1
with infinity type k) . x 0 + k(1 —c) as above. Then we have

L4900, Ax)]p = 1

for almost all anticyclotomic characters of [-power conductor, unless the following
three conditions are satisfied simultaneously:

1. M/F is unramified at all finite places,
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2. The Artin symbol (%) has the value —1, for the polarization ideal ¢ of A,

and

3. For all ideals a prime to p, we have AN (a) = (MT/F) (mod m).

If all these conditions are satisfied simulaneously, then [L%9(0,A\x)|, < 1 for all x.

Here we understand that “almost all” means ‘a Zariski dense subset’ in general,
and “all but finitely many” if Fi has dimension 1 over Q.

The proof of this theorem is long and intricate, and we will not discuss it here,
except to remark that the proof is a generalization of Sinnott’s method mentioned
above. Essentially, one has to relate the values of the L-function to the values of
certain Hilbert modular Eisenstein series at CM points, and prove a basic result
on the linear independence of certain of these series in char p. For our purposes, it
will suffice to observe that key ingredient is a rigidity theorem of C-L Chai, which
enables one to prove that under some condition, schemes fixed by torus actions
tend to be rather big. For comparison with the results from ergodic theory that
were cited above, we state a precise theorem, as follows.

Suppose that k is an algebraically closed field of characteristic p > 0 and let X
be a finite dimensional smooth formal p-divisible group over k. Let Ez, = End(X)
and set £ = Fz, ®z, Qp. Then E is a finite dimensional vector space over Q,.
We let E denote the linear algebraic group over Q,, such that E(R) = (£ ®q, R)*
for any commutative Qp-algebra R.

If G is any connected algebraic group over Q,, and p : G — E is a homomor-
phism of algebraic groups, then we may regard p as a linear representation of G
on the vector space F via the canonical map E C Aut(FE). Then Chai has proven
the following striking result. (The notation is as above.)

Theorem 2.6 (Chai). Suppose that the trivial representation is not a subquotient
of the representation p of G on E. Suppose also that Z is a reduced and irreducible
closed formal subscheme of X which is closed under the action of an open subgroup
of G(Zy). Then Z is closed under the group law of X and is a p-divisible subgroup
scheme of X.

2.3. Anticyclotomic L-functions. Finally, we treat the applications of
ergodic theory to anticyclotomic L-functions associated to Hilbert modular forms
over totally real fields.

To describe the results, let F' denote a totally real field, and let K/F denote
an imaginary quadratic extension. Let 7 denote a cuspidal automorphic repre-
sentation of GLy(F). We assume thoughout that the data of 7 and K are non-
exceptional, meaning that the representations m and m ® n are distinct, where n
denotes the quadratic character associated to the extension K/F.

Let x : Ax/K* — C be a quasi-character of K, and write L(,y,s) for
the Rankin-Selberg L-function associated to 7 and 7w (). Here m(x) denotes the
automorphic representation of G L2 attached to x. (For the definitions, we refer the
reader to [22] and [21].) Then this L-function, which is first defined as a product of
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Euler factors over all places of F', may be shown to have a meromorphic extension
to C with functional equation

L(m, x,s) = e(m, x, s)L(7, x 51— s)

where 7 is the contragredient of m and €(m, x, s) is the e-factor.
Let w: Af/F* — C* be the central quasi-character of 7. We will make the
following assumption on the quasi-characters w and x:

x-w=1 on AjCAX. (8)

This assumption implies that L(m, Y, s) is entire and equal to L(7,x~!,s). Thus
the functional equation of L(m, x, s) may be restated as

L(?T, X S) = 6(7T, X S)L(Tra e 1- S)

and the parity of the order of vanishing of L(m,x,s) at s = 1/2 is determined by
the value of

e(m, x) def e(m, x,1/2) € {£1}.
Following [6] and [7], we say that the pair (m,x) is even or odd, depending upon
whether e(r, x) is +1 or —1. According to the conjectures introduced by Mazur
in [24], it is expected that the order of vanishing of L(m,x,s) at s = 1/2 should
‘usually’ be minimal, meaning that either L(w, x,1/2) or L'(m,x,1/2) should be
nonzero, depending upon whether (7, x) is even or odd.

Results of this kind were first proven by Rohrlich [28], for the case where
F = Q, and m and K are exceptional in the sense that m = 7 ® 7, using results
from transcendence theory, notably p-adic cases of Roth’s theorems. However,
nothing was known for non-exceptional 7 and K until the introduction of ergodic
theory in [33] and [34], which treated the case of F' = Q. The ideas from ergodic
theory were quickly assimilated and extended in [5], and the generalization to the
case of general F' was given in [6] and [7].

To proceed, we need to introduce some notation. Thus let n denote the con-
ductor of the representation w. Let p denote a fixed prime of F', and let x denote a
ring class character of p-power conductor. Here we recall that the quasi-character
x of K is called a ring class character, or an anticyclotomic character, if the re-
striction of x to A is everywhere unramified. Then we propose to study the order
of vanishing of L(m, x,s) at s = 1/2 as x varies over the set S = S;mticyc of ring
class characters of p-power conductor.

In view of equation (8), it makes sense to require that the central character w
of w is everywhere unramified. We assume also that 7 corresponds to a Hilbert
modular form of parallel weight (2,...,2) and that the discriminant ® of K/F is
relatively prime to the prime-to-p part n’ of n. Under these conditions, it may be
shown that for all n > 0, and all x of conductor p™, the root number e(r, x) is
given by the formula

e(m,x) = (=1)** (9)
where S denotes the set of real places of F, together with those finite primes of F’
which do not divide p, are inert in K, and divide n to an odd power. In particular,
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the root number € = e(m,x) = 1 depends only on 7 and K and p, once the
conductor of x is sufficiently divisible. Thus one expects the order of vanishing of
L(m, x,1/2) to be equal to either 0 or 1, for ‘generic’ x, depending only on the sign
of e. That this is indeed the case was confirmed by the main results in [6] and [7],
and we refer the reader to the introduction of [6] for a very detailed discussion.

In the present paper, we will focus on the non-vanishing of L(, x, 1/2) modulo
a prime of Q. The basic results in this direction were given in [34], for the case
F = Q, and we now proceed to state them.

Thus, let us assume that ' = Q. Let N = n denote the level of 7, let D =2
denote the discriminant of the imaginary quadratic field K = Q(v/D), and let
p = p denote a rational prime. We assume further that the numbers N, D, p are
pairwise co-prime. We let f denote the primitive form of level N associated to ;
since the central character w of 7 is unramified and Q has class number 1, we see
that f is a primitive form on the group I'g(N). We assume further that we are in
the even case, so that there are an even number of places in S. We let {1, = Qf
denote the canonical integral period for f, as defined by Hida in [18]. Then the
number
L(m,x,1/2)

L8(m, x) = aQ

Oy

is an algebraic integer. Here C, = Dp*", where p™ denotes the conductor of y. Let
A denote a fixed prime of Q, and consider the M-adic absolute value |L*2(7, x)|x.
We want to study the general question of how |L*&(7, x)|x varies as a function
of x, and the result depends on whether or not A has residue characteristic p. In
either case, let us define two constants Cesp and Cris associated to 7, as in [34],
Section 2.4. !

Then one has the following result:

Theorem 2.7 ([34]). Suppose that A has residue characteristic £ # p. Then we
have

|Lalg(7T7X)|>\ = |O§spOEiS|>\
for all but finitely many A of conductor p™.

Actually, the theorem above was stated in [34] under some mild assumptions
on ¢, but these restrictions are easily removed, for example with the improved
formalism introduced in [7], or by a slightly more detailed analysis of the original
proof. We remark here that the numbers Ccg, and Crgis are not neccesarily A-adic
units.

As for the case where A\ has residue characteristic p, the result is in the same
vein, provided one assumes that the local component , is ordinary at A, in the
sense that the Hecke eigenvalue a,(7) is a A-adic unit.

1 The definition of these constants is rather technical, and we prefer not to reproduce it. The
significance of these numbers, in particular the relationship to congruences, is elucidated in the
paper [25].
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Theorem 2.8 ([34]). Suppose that \ has residue characteristic £ = p and that m,
18 ordinary at A. Then we have

lif(n |Lalg(7rv X)|>\ = |CgspCEiS|>\7

where the limit is taken over characters x of conductor p™, as n — oo.

Remark 2.9. In view of recent results in the Iwasawa theory of elliptic curves, our
results on L-functions may be formulated in terms of the growths of certain Selmer
groups, which are generalizations of the Iwasawa ideal class groups occuring in our
discussion of the Ferrero-Washington theorem above. For more details, we refer
the reader to [1] and [25]. We remark also that our results above have not yet been
extended to general F', but it seems likely that such generalizations would follow
without difficulty from the techniques of [7].

Remark 2.10. We point out also that there are results analogous to those above
in the case that the sign in the functional equation is —1. However, in these cases,
one is dealing with derivatives of L-functions, and there is no general notion of
what it means for a derivative of an L-function to be nonzero modulo p. In the
case at hand one has an ad hoc definition in terms of p-divisiblity of certain Heegner
points arising from the Gross-Zagier formula for derivatives, and it is this kind of
result that is proven. For details we refer the reader to [34] and [5].

In keeping with the general theme of this article, we wish now to elaborate on
the role of ergodic theorems in the proofs of our results. A detailed description
of the strategy may be found in the introductions to [33] and [7], and we will not
cut and paste from those articles here. For the present, we simply note that the
starting point comes from the formulae of Gross, Zagier, and Zhang, which relate
the values of the L-functions in question to the heights of certain special points
on quaternion algebras. (See [17], [15], and [37] for the theorems, which were then
reframed in the article [16]. A more elementary perspective may be found in [35].)
In view of these special value formulae, the essential point in proving that the
L-values are non-zero modulo p boils down to showing that certain vectors whose
components are formed by the special points and their conjugates, are uniformly
distributed in the appropriate sense on certain Shimura varieties. The necessary
uniform distribution is then deduced by applying deep theorems in ergodic theory
due to M. Ratner [27].2

The reduction of our number theoretic results to Ratner’s theorem has been
amply documented elsewhere, so we will just state some of Ratner’s key results,
in a manner that we hope will make clear the analogy with the results of Ferrero-
Washington, Sinnott, and Chai. It is perhaps germane to remark here that the
introduction of Ratner’s theorem in [33] was inspired by direct analogy with the
use of Kronecker’s theorem by Ferrero and Washington.

2In [6] and [7], appeals were made to results of Margulis and Tomanov [23], since these results
were formulated in a manner convenient for our applications there. The author has since been
informed by Ratner that the results we quoted from [23] can in fact be deduced from those given
earlier in [26].
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Thus let G denote the p-adic Lie group SLs(Q,), and let I'; C G, i = 1,2 denote
discrete and cocompact subgroups. We say that I'y and I's are commensurable if
I'y N T, has finite index in I'; and I';. Then the following remarkable result is a
very simple consequence of the main results in [27]:

Theorem 2.11 (Ratner). The set 'y -T's = {y1 - 72,71 € '1,72 € T2} is dense in
G if and only if the subgroups T'1 and 'y are not commensurable.

Remark 2.12. Note that it is obvious that the product I'; - 'y cannot be dense if
I'y and I's are commensurable. But the reverse implication is extremely deep, and
seems to admit no elementary proof.

Remark 2.13. For an analogy, let H denote the additive group R of real numbers,
and let X;,7 = 1,2 denote discrete subgroups of G. Then each X; is abstractly
isomorphic to the additive group of Z. If z; is a generator of X;, then the groups
X,; are commensurable if and only if the z; are linearly dependent over Q. In this
case the product X7 - X5 is discrete in G. On the other hand, Kronecker’s theorem
implies that the product X - X5 is dense if the z; are independent over Q, which
is to say, if the groups X; fail to be comensurable. Thus Ratner’s theorem above
is a p-adic and non-abelian analogue of Kronecker’s theorem.

Actually, one requires a slightly more refined theorem for the applications to
number theory. As above, let write G for the p-adic Lie group SL2(Qp). Let r
denote a positive integer, and for each ¢ with 1 < ¢ < r; we let I'; denote a discrete
and cocompact subgroup of G. Then

F:ﬁl}- C ﬁG
=1 =1

is a discrete and cocompact subgroup of the product G of r copies of G. We may
then formulate the following result:

Theorem 2.14 (Ratner). Suppose that the groups T'; are pairwise non-commensurable.
Then the image of the diagonal A(G) ={(g,...,9),9 € G} C G" has dense image
in the quotient T\G".

Finally, we give a rigidity result which implies the two above as special cases.

Theorem 2.15 (Ratner). Let G denote a p-adic Lie group, and let T' C G be such
that T\G has finite volume with respect to the unique G-invariant measure. Let
U C G denote any subgroup generated by 1-parameter subgroups, namely, by the
image of (additive) homomorphisms u; : Q, — G. Then the closure U of the orbit
of U in T\G is homogenous, in the sense that there exists a subgroup H of G such
that the orbit of H is closed in T\G and U coincides with the orbit of H.

Remark 2.16. We would like to point out here that for the purposes of the results
in [5] and some of the results in [7] (namely, the indefinite case), one can get by
with yet another kind of rigidity principle, namely certain cases of the André-
Oort conjecture. For more on this subject, we refer the reader to [5] and also
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to forthcoming work of Cornut, Nekovar, and Mauger. For the relationship with
Chai’s theorem, see [3]. Further discussion of this and related topics may be found
in [10] and [4].

To conclude, we would hope that the analogy between the theorems of Kro-
necker, Sinnott, Chai, and Ratner is now evident. Namely, in every case, we are
asserting that the closure of rather small group orbits, (the diagonal, in Ratner’s
case, or a l-parameter group in Kronecker’s theorem) is forced, by rigidity, to be
rather big. In the Ferrero-Washington and anticyclotomic cases, the orbit of a
small group inside an r-dimensional object turns out to be dense, and in every
case, including the theorem of Chai, the key statement is a rigidity principle of the
form that the closures of the relevant orbits coincide with the orbits of subgroups.
Is there a general ergodic or rigidity principle that accounts for all of these results?
We hope that the answer is affirmative, but at present we seem to be far from
finding it.
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