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1 Introduction

Suppose that E is an elliptic curve defined over Q, and that p is a prime where E
has good ordinary reduction. Under the assumption that E is modular, one can define
nonnegative integers λalgE , µalgE , λanalE , and µanalE . The “algebraic” Iwasawa invariants λalgE and
µalgE are defined in terms of the structure of the p-primary subgroup SelE(Q∞)p of the Selmer
group for E over the cyclotomic Zp-extension Q∞ of Q. The definition of the “analytic”
invariants µanalE and λanalE is in terms of the p-adic L-function for E constructed by Mazur
and Swinnerton-Dyer [MSD74]. We will recall these definitions below. Our purpose in this
article is to prove in certain cases that µalgE = µanalE = 0 and that λalgE = λanalE . These equalities,
together with a deep theorem of Kato, imply the main conjecture for E over Q∞. In this
introduction, we will discuss the nature of our results and give an outline of the proofs for
the case of modular elliptic curves. We want to point out, however, that the theorems proven
in the text apply to modular forms, as well as to elliptic curves with multiplicative reduction
at p. We will not attempt to state the most general versions here.

If K is any algebraic extension of Q, then the Selmer group for E over K is a certain
subgroup of H1(GK , E(Q)tors), where GK = Gal (Q/K). The Selmer group fits into an exact
sequence

0→ E(K)⊗ Q/Z → SelE(K)→ XE(K)

where XE(K) denotes the Shafarevich-Tate group for E over K. Let K = Q∞. Then
Γ = Gal (Q∞/Q) acts on SelE(Q∞). Its p-primary subgroup SelE(Q∞)p (to which we give
the discrete topology) can be regarded as a Λ-module, where Λ = Zp[[Γ]] is the completed
group algebra for Γ over Zp. Kato has proven that SelE(Q∞)p is Λ-cotorsion, as Mazur
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conjectured in [Maz72]. That is, the Pontrjagin dual XE(Q∞) of SelE(Q∞)p is a torsion
Λ-module. It is an easy result that XE(Q∞) is finitely generated as a Λ-module, and so the
classification of finitely generated Λ-modules asserts that one has a pseudo-isomorphism

XE(Q∞) ∼
( n⊕

i=1

Λ/(fi(T )
ai)

) ⊕( m⊕
j=1

Λ/(pµj)

)
,

where one identifies Λ with the formal power series ring Zp[[T ]] in the usual way: T = γ− 1,
where γ is a fixed topological generator of Γ. The fi(T )’s are irreducible distinguished
polynomials in Λ. The ai’s and the µj’s are positive integers. One can then define the
algebraic Iwasawa invariants by

λalgE =
n∑

i=1

aideg(fi(T )), and µalgE =
m∑
j=0

µj. (1)

For the formulation of the Main Conjecture, it is also necessary to define the “characteristic
polynomial” for the Λ-module XE(Q∞); it is given by

f algE (T ) = pµalg
E ·

n∏
i=1

fi(T )
ai. (2)

Thus pµalg
E is the exact power of p dividing f algE (T ) in Λ, and λalgE = deg(f algE (T )).

One can also describe λalgE in the following group-theoretic way:

(
SelE(Q∞)p

)
div

∼= (Qp/Zp)
λalg

E .

To deduce this fact from the above definitions, one uses the fact that Λ/(f(T )) is a free
Zp-module of rank equal to deg(f(T )), for any distinguished polynomial f(T ). The roots of

f algE (T ) (counting multiplicities) are the eigenvalues of γ − 1 = T acting on the vector space
XE(Q∞) ⊗Zp Qp, which has dimension λalgE . The invariant λalgE can be quite large, as some

of our later examples and remarks will show. On the other hand, it is expected that µalgE is
usually zero. But this is not always the case. Indeed, Mazur showed in [Maz72] that µalgE

can be positive for certain E and p. Here are some of the known results concerning µalgE :

A. Suppose that E1 and E2 are elliptic curves defined over Q. Let p be an odd prime where
E1 and E2 have good ordinary reduction. Assume that E1[p] ∼= E2[p] as Galois modules.
Then SelE1(Q∞)[p] is finite if and only if SelE2(Q∞)[p] is finite. Consequently, if SelE1(Q∞)p
is Λ-cotorsion and µalgE1

= 0, then SelE2(Q∞)p is Λ-cotorsion and µalgE2
= 0.

2



B. Suppose that E is an elliptic curve over Q, and that p is an odd prime of good ordinary
reduction. Assume that E admits a cyclic Q-isogeny of degree pt with kernel Φ. Assume
that the action of GQ on Φ is ramified at p and odd. (That is, the action of an inertia group
Ip is nontrivial, and the action of complex conjugation is by −1.) Then µalgE ≥ t.

C. Suppose that E is an elliptic curve defined over Q with good ordinary reduction at an odd
prime p. Assume that E admits a Q-isogeny of degree p with kernel Φ, and that the action
of GQ on Φ is either ramified at p and even, or unramified at p and odd. Then µalgE = 0.

The first result is rather easy to prove, and can be generalized to elliptic curves over
any number field K. Let K∞ = KQ∞, the cyclotomic Zp-extension of K. If E is an elliptic
curve over K, then Mazur conjectured that SelE(K∞) should be Λ-cotorsion. The only really
general result in this direction is due to Kato, who showed that SelE(K∞)p is Λ-cotorsion if
E is defined over Q and is modular and K/Q is an abelian extension. The second result can
be proven by using results of Poitou and Tate on the local and global Euler characteristics
for the Galois cohomology of Φ. It can also be generalized (with a rather more complicated
statement) to any number field K. The proof of the third result is based on the well-known
theorem of Ferrero and Washington on the vanishing of the classical µ-invariant for abelian
extensions of Q. In this case one can prove that the µ-invariant of SelE(K∞) vanishes if E
satisfies the hypotheses of C and if K is a totally real abelian number field. One can find a
rather thorough discussion of these results in [Gre99], where the case p = 2 is also treated.
Also, the above results are valid if E has multiplicative reduction at p.

We now define the analytic invariants. Suppose that E is a modular elliptic curve over
Q, and that p is a prime of good ordinary reduction. For any Dirichlet character ρ, we let
L(E/Q, ρ, s) denote the the Hasse-Weil L-series for E, twisted by the character ρ. Let ΩE

denote the real Néron period for E. If ρ is even, then it is known that L(E/Q, ρ, 1)/ΩE ∈ Q,
where we have fixed an embedding of Q into C. We also fix an embedding of Q into Qp.
Mazur and Swinnerton-Dyer have constructed an element L (E/Q, T ) ∈ Λ ⊗ Qp satisfying
a certain interpolation property which we now describe. Suppose that ρ ∈ Hom (Γ, µp∞)
is a character of finite order. Since γ is a topological generator of Γ, ρ is determined by
ρ(γ) = ζ ∈ µp∞. One can view ρ as a Dirichlet character of p-power order and conductor.
Assuming that ρ is nontrivial, its conductor is of the form pm, and, assuming that p is odd,
ζ has order pm−1. Then L (E/Q, T ) is characterized by

L (E/Q, ζ − 1) = τ(ρ−1) · α−m
p · L(E/Q, ρ, 1)

ΩE
. (3)

where ρ runs over the set of all nontrivial characters of Γ. Here τ(ρ−1) denotes the usual
Gauss sum, and αp denotes the eigenvalue for Frobenius acting on the maximal (1-dimensional)
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unramified quotient of the p-adic Tate module of E. Alternatively, αp is the unit solution of

the equations αpβp = p and αp + βp = 1 + p − #Ẽ(Fp), where Fp is the finite field with p

elements and Ẽ is the reduction of E at p. The power series L (E/Q, T ) is determined by
this property because a nonzero element of Λ⊗Qp has only finitely many zeroes. Now a the-
orem of Rohrlich [Roh89] states that L(E/Q, ρ, 1) �= 0 for all but finitely many ρ of p-power
conductor. Thus the element L (E/Q, T ) is nonzero. Using the Weierstrass preparation
theorem, we define the invariants µanalE and λanalE by writing

L (E/Q, T ) = pµanal
E · u(T ) · f(T )

where f(T ) is a distinguished polynomial of degree λanalE , and u(T ) is an invertible power
series. We define f analE (T ) = pµanal

E ·f(T ), where f(T ) is as above. One should have µanalp ≥ 0.
That is, f analE (T ) should be in Zp[T ]. This is known when E[p] is irreducible as a Galois
module and also when E[p] is reducible under certain additional hypotheses. The integrality
of L (E/Q, T ) is discussed in Theorem 3.7.

If p is odd, one can identify Γ with Gal (Q(µp∞)/Q(µp)). Let χ denote the cyclotomic
character giving the action of Gal (Q(µp∞)/Q) on µp∞. We let κ = χ|Γ, which induces an
isomorphism Γ ∼= 1 + pZp. Then the p-adic L-function Lp(E/Q, s) is defined by

Lp(E/Q, s) = L (E/Q, κ(γ)1−s − 1).

Even though the power seriesL (E/Q, T ) depends on the choice of γ, the function Lp(E/Q, s)
is independent of this choice. Also, Lp(E/Q, 1) = L (E/Q, 0), which was not specified above.
If E has good reduction at p, it turns out that one has

Lp(E/Q, 1) = L (E/Q, 0) = (1− α−1
p )

2L(E/Q, 1)

ΩE

,

where αp is as above. Note that (1− α−1
p ) = (1− βpp

−1) is part of the Euler factor for p in
L(E/Q, s), evaluated at s = 1. Now the Main Conjecture can be stated as follows:

Conjecture (1.1) (Mazur) We have falg
E (T ) = fanal

E (T )

Obviously, this would imply that µalgE = µanalE , and that λalgE = λanalE . Kato has proven the
following weaker statement:

Theorem (1.2) (Kato) The polynomial falg
E (T ) divides fanal

E (T ) in Qp[T ].

As a consequence, it is clear that the equality λalgE = λanalE implies that f algE (T ) and f analE (T )
differ by multiplication by a power of p. The further equality µalgE = µanalE then implies the
Main Conjecture.
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A proof of Kato’s theorem in the form just stated (for modular elliptic curves with good,
ordinary reduction at a prime p > 2) has been presented by Scholl and Rubin. (See [Sch98]
and [Rub98].) A more general version is contained in [Kat] which applies also to cusp forms
where p divides the level and of arbitrary weight. Under certain hypotheses, Kato even
proves the divisibility in Zp[T ].

Our results may be stated as follows.

Theorem (1.3) Assume that E is a modular elliptic curve over Q, and that p is an odd
prime where E has good ordinary reduction. Assume also that E admits a Q-isogeny of
degree p with kernel Φ, and that the action of GQ on Φ is either ramified at p and even, or
unramified at p and odd. Then λalg

E = λanal
E and µalg

E = µanal
E = 0.

Theorem (1.4) Assume that E1 and E2 are modular elliptic curves over Q. Let p be an
odd prime where E1 and E2 have good ordinary reduction. Assume also that E1[p] ∼= E2[p]
as Galois modules, and that these are irreducible. If the equalities µalg

E1
= µanal

E1
= 0 and

λalg
E1
= λanal

E1
hold, then so do the equalities µalg

E2
= µanal

E2
= 0 and λalg

E2
= λanal

E2
.

The set of primes where these theorems apply is rather limited. The hypotheses in
theorem (1.3) can hold only when p = 3, 5, 7, 13, or 37. However, for the first four of these
primes, there are infinitely many distinct j-invariants jE which can occur. The hypotheses are
also preserved by even quadratic twists of conductor prime to p. If one is willing to consider
more general modular forms, then one can prove a similar theorem for any p dividing certain
Bernoulli numbers.

As an illustrative example of theorem (1.3), take p = 5, and let J denote any of the
three nonisomorphic elliptic curves of conductor 11. It is known that the GQ-module J [5] is
reducible and has composition factors isomorphic to µ5 and Z/5Z as GQ-modules. Let ψ be
an odd quadratic character such that ψ(5) �= 0, corresponding to the imaginary quadratic
field Q(

√
−c), and let E = J−c denote the associated quadratic twist. The curve E has

a cyclic Q-isogeny of degree 5 with kernel isomorphic to either µ5 ⊗ ψ or (Z/5Z) ⊗ ψ,
so that theorem (1.3) clearly applies. Thus µalgE = µanalE = 0, and, as we will later prove,
λalgE = λanalE = 2λψ+εψ, where λψ denotes the classical λ-invariant for the imaginary quadratic
field Q(

√
−c) and for the prime p = 5, and εψ = 0 if 11 is inert or ramified in this field,

εψ = 1 if 11 splits. There are examples (found by T. Fukuda) where λψ is quite large. The
record so far is λψ = 10 for c = 3, 624, 233. In this case λanal = λalg = 21. As we have
remarked above, the Main Conjecture is valid for E. Unfortunately, if E is a quadratic twist
of J by an even character, we can prove very little. If J = X0(11), then both µalgE and µanalE

are positive. If J is the curve 11C in Cremona [Cre92], then we would expect µalgE and µanalE

to be equal to zero. We can prove neither equality. Even if this were true, we don’t know
how to prove the equality λalgE = λanalE .
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As an example for theorem (1.4), consider the two elliptic curves

E1 : y
2 = x3 + x− 10, E2 : y

2 = x3 − 584x+ 5444.

Then E1 and E2 are modular, and have conductors 52 and 364 respectively. We will take
p = 5. We find that E1[p] ∼= E2[p] by comparing the q-expansions of the associated modular
forms, and by observing that neither curve admits a rational 5-isogeny. Both curves have
good, ordinary reduction at 5. Now one has L(E1/Q, 1)/ΩE1 = 1/2 ∈ Z×

5 . Also, #Ẽ1(F5) =
4, and α5 ≡ 2 (mod 5Z5). Thus 1− β55

−1 = 1− α−1
5 �≡ 0 (mod 5Z5), so that L (E1/Q, T )

must be in Λ×. This means that f analE1
(T ) = 1 and µanalE1

= λanalE1
= 0. On the other hand,

a well-known result of Kolyvagin shows that SelE1(Q)5 = 0. One can deduce from this fact
(together with the facts that #E1(F5) = 4, and that the Tamagawa factors c2 = 1, c3 = 2, are
all 5-adic units) that SelE1(Q∞)

Γ = 0. This implies that SelE1(Q∞) = 0, and so f algE1
(T ) = 1,

λalgE1
= µalgE1

= 0. Thus the hypotheses of theorem (1.4) are satisfied, and we can conclude

that µalgE2
= µanalE2

= 0, and that λalgE2
= λanalE2

. The proof of Theorem (1.4) will show that λalgE2

and λanalE2
are both equal to 5. More precisely, it turns out that we have

0→ E2(Q∞)⊗ Q5/Z5 → SelE2(Q∞)5 → XE2(Q∞)5 → 0

with E2(Q∞)⊗Q5/Z5 = Q5/Z5 andXE2(Q∞)5 = (Q5/Z5)
4. The Mordell-Weil group E2(Q)

has rank one, and the first group above is just the image of E2(Q) ⊗ Q5/Z5 under the
restriction map SelE2(Q)5 → SelE2(Q∞)5.

In [RS93], Rubin and Silverberg have shown that there are infinitely many elliptic curves
E/Q such that E[3] or E[5] has a given structure as GQ-modules (assuming that at least
one such curve exists). They describe the family of such curves in terms of a rational
parametrization. In particular, the curves E such that E[5] ∼= E1[5], where E1 is as above,
are given by

E : y2 = x3 + a(t)x+ b(t),

where a(t) and b(t) are explicitly specified polynomials over Q (of degree 20 and 30 respec-
tively) and t ∈ Q satisfies ∆(t) = 4a(t)3+27b(t)2 �= 0. One can then verify that each of these
curves is modular and has good ordinary reduction at p = 5. Theorem (1.4) then implies
that µanalE = µalgE = 0, and that λanalE = λalgE . The Main Conjecture also holds for each such
E and p = 5. Interestingly, it can be shown that the λ-invariant is unbounded in the family.

We will now outline the structure of the proofs. Let E be an elliptic curve over Q and
let p be a prime of good ordinary reduction for E. The Selmer group SelE(Q∞)p is defined
as the kernel of the following “global-to-local” map

H1(QΣ/Q∞, E[p∞])→
∏
�∈Σ

H�(Q∞), (4)
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where Σ denotes any finite set of primes containing p,∞, and the primes of bad reduction
for E. For each finite prime & ∈ Σ, the group H�(Q∞) is defined by

H�(Q∞) =
∏
η|�

H1((Q∞)η, E[p
∞])/im (κη).

Here η runs over the finite set of places of Q∞ over &, and (Q∞)η denotes the union of the
completions of the finite layers Qn at η. Also, κη denotes the local Kummer map

κη : E((Q∞)η)⊗ Qp/Zp → H1((Q∞)η, E[p
∞]).

If & = ∞ and p is odd, then we simply take H�(Q∞) = 0. (A more careful definition would
be necessary if p = 2, especially because ∞ splits completely in Q∞/Q. We will not go into
this here.) For each & ∈ Σ, the group H�(Q∞) is a cofinitely generated Λ-module. The group
Hp(Q∞) has Λ-corank 1. For & �= p, it can be shown that H�(Q∞) is Λ-cotorsion, and has
µ-invariant 0. Its structure is not hard to study. A helpful and easily verified fact is that
E((Q∞)η)⊗Qp/Zp = 0 when η is prime to p, so that the image of κη is zero. HenceH�(Q∞) is

simply the product
∏

η|� H
1((Q∞)η, E[p

∞]). It turns out in fact that H�(Q∞) ∼= (Qp/Zp)
σ

(�)
E ,

where σ
(�)
E is a non-negative integer which is easily determined from the Euler factor for & in

L(E/Q, s). Let h
(�)
E (T ) ∈ Λ denote the characteristic polynomial for the Λ-module H�(Q∞)̂ ,

where the hat indicates the Pontrjagin dual. This polynomial has degree σ
(�)
E .

Let Σ0 be any subset of Σ which does not contain p. We define the corresponding “non-
primitive” Selmer group by

SelΣ0
E (Q∞)p = ker

(
H1(QΣ/Q∞, E[p∞])→

∏
�∈Σ−Σ0

H�(Q∞)
)
.

This group will play a crucial role in our arguments. Its main advantage is that if Σ0
is chosen to contain all primes of bad reduction, and if p is odd, then SelΣ0

E (Q∞)p[p] is
determined completely by the GQ-module E[p]. We will be more precise about this later.
Assuming that SelE(Q∞)p is Λ-cotorsion (which has been proven by Kato when E is modular
and has good or multiplicative reduction at p), one can show that the map (4) defining the
Selmer group is surjective. It follows that

SelΣ0
E (Q∞)p/ SelE(Q∞)p ∼=

∏
�∈Σ0

H�(Q∞). (5)

Consequently, if we denote the characteristic polynomial of the Λ-module SelΣ0
E (Q∞)p̂ by

f algE,Σ0
(T ), then we have

f algE,Σ0
(T ) = f algE (T )

∏
�∈Σ0

h
(�)
E (T ), (6)
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and the λ-invariant of SelΣ0
E (Q∞)p, which we denote by λalgE,Σ0

, is given by

λalgE,Σ0
= λalgE +

∑
�∈Σ0

σ
(�)
E . (7)

As for the µ-invariant, it is obvious that µalgE = µalgE,Σ0
. If µalgE = 0, then, as we will explain

later, it turns out that SelΣ0
E (Q∞)p is a divisible group if Σ0 is chosen as above. In particular,

SelΣ0
E (Q∞)p ∼= (Qp/Zp)

λalg
E,Σ0 ,

and therefore we find that λalgE,Σ0
= dimFp (Sel

Σ0
E (Q∞)p[p]).As we mentioned above, Sel

Σ0
E (Q∞)[p]

is determined by the Galois module E[p] if Σ0 is chosen suitably. Thus E[p] determines λ
alg
E,Σ0

and we can then recover λalgE from (7). Note that E[p] does not determine λalgE . This is clear
from the example of E1 and E2 given previously.

There is a similar story for the p-adic L-functions Lp(E/Q, s). We assume that E is
modular, and that it has good ordinary reduction at p. Let Σ0 again be any finite set of
primes not containing p. For any Dirichlet character ρ, we denote by LΣ0(E/Q, ρ, s) the
nonprimitive complex L-function formed from L(E/Q, ρ, s) by simply omitting the Euler
factors for the primes in Σ0. If & is any prime, we denote the corresponding Euler factor by
P�(E/Q, ρ, &−s), where

P�(E/Q, ρ,X) = (1− ρ(&)α�X)(1− ρ(&)β�X),

for the usual quantities α� and β�. (Possibly one or both of αl, βl are zero.) Then

LΣ0(E/Q, ρ, s) = L(E/Q, ρ, s)
∏
�∈Σ0

P�(E/Q, ρ, &−s).

It is easy to modify L (E/Q, T ) to construct a nonprimitive p-adic L-function. We want to
define an element L Σ0(E/Q, T ) ∈ Λ⊗ Qp by requiring that

L
Σ0(E/Q, ζ − 1) = τ(ρ−1) · α−m

p · L
Σ0(E/Q, ρ, 1)

ΩE

for each nontrivial character ρ ∈ Hom (Γ, µp∞), with the notation as in (3). For & ∈ Σ0, let
γ� denote the Frobenius automorphism for & in Γ = Gal (Q∞/Q). (Note that & is unramified
in Q∞/Q, since & �= p.) Consider the element

P� = (1− α�&
−1γ�)(1− β�&

−1γ�) ∈ Zp[[Γ]].
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We will write the element P� of Zp[[Γ]] as a power series P�(T ). To do this we replace γ�

by (1 + T )f�, where f� ∈ Zp is determined by γf� = γ�. Since ρ(γ�) = ρ(&) when ρ is viewed
as a Dirichlet character, it follows that

P�(ζ − 1) = P�(E/Q, ρ, &−1).

Thus we simply define

L
Σ0(E/Q, T ) = L (E/Q, T )

∏
�∈Σ0

P�(T ).

Note thatP�(T ) is a nonzero element of Λ which is not divisible by p. We will show later that
P�(T ) generates the characteristic ideal of the module H�(Q∞)̂ . If we define the polynomial
f analE,Σ0

(T ) in the same way as in the primitive case, it follows that

f analE,Σ0
(T ) = f analE (T )

∏
�∈Σ0

h
(�)
E (T ). (8)

The degree λanalE,Σ0
of f analE,Σ0

(T ) is given by

λanalE,Σ0
= λanalE +

∑
�∈Σ0

σ
(�)
E . (9)

One can also define the µ-invariant µanalE,Σ0
in the obvious way. One clearly has µanalE,Σ0

= µanalE .
Combining the above observations with the previous considerations yields the following

result.

Theorem (1.5) Assume that E is a modular elliptic curve with good ordinary reduction at
p. Let Σ0 be any finite set of nonarchimedean primes not containing p. Then the following
equivalences hold:

1. µalg
E = µanal

E ⇐⇒ µalg
E,Σ0

= µanal
E,Σ0

2. λalg
E = λanal

E ⇐⇒ λalg
E,Σ0

= λanal
E,Σ0

.

3. falg
E (T ) = fanal

E (T ) ⇐⇒ falg
E,Σ0

(T ) = fanal
E,Σ0

(T ).

This theorem is crucial to our arguments because it is only the nonprimitive p-adic L-
functions and the nonprimitive Selmer groups corresponding to a suitable choice of the set
Σ0 which behave well under congruences. The observation that a “main conjecture” should
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be equivalent to a nonprimitive analogue is an old one. In the context of classical Iwasawa
theory (involving Kubota-Leopoldt p-adic L-functions) such an equivalence was proved in
[Gre77]

Now we can describe the proof of Theorem (1.4). Suppose that E1 and E2 satisfy the
stated conditions. By theorem (1.5), we have λalgE1,Σ0

= λanalE1,Σ0
. Choose Σ to be a finite set

of primes containing p,∞, and all primes where either E1 or E2 has bad reduction. Let
Σ0 = Σ − {p,∞}. We are assuming that p is odd and that E1[p] ∼= E2[p]. Since µalgE1

= 0,

it follows that µalgE1,Σ0
= 0, and that SelΣ0

E1
(Q∞)p[p] is finite. Thus Sel

Σ0
E2
(Q∞)[p] is finite too,

which implies that µalgE2,Σ0
= µalgE2

= 0. We obtain the equality of λalgE1,Σ0
and λalgE2,Σ0

, since,
as remarked earlier, these now depend only on E1[p] ∼= E2[p]. The analogous results for the
analytic invariants are proved by a theory of congruences for L-functions. More precisely,
we show that

L
Σ0(E1/Q, T ) ≡ u ·L Σ0(E2/Q, T ) (mod pΛ), (10)

where u ∈ Z×
p . Since the vanishing of µanalE1

implies the vanishing of µanalE1,Σ0
, we see that

µanalE2,Σ0
and µanalE2

vanish as well. It is then clear that the degrees of f analE1,Σ0
(T ) and f analE2,Σ0

(T )
coincide. Here we use the fact that if L (T ) ∈ Λ is any power series such that p � L (T ),
then L (T ) = u(T ) · f(T ) where f(T ) is a distinguished polynomial, u(T ) is in Λ×, and the
degree of f(T ) is determined by the image of L (T ) in Λ/pΛ. Thus we obtain the following
equalities:

λalgE2,Σ0
= λalgE1,Σ0

= λanalE1,Σ0
= λanalE2,Σ0

.

Then by theorem (1.5) we obtain λalgE2
= λanalE2

as stated in theorem (1.4).
Now assume that E satisfies the hypotheses of Theorem (1.3). Then there is an exact

sequence

0→ Φ→ E[p]→ Ψ→ 0 (11)

of GQ-modules, where Φ and Ψ are cyclic of order p. Let ϕ and ψ denote the corresponding
F×
p -valued characters of GQ . We may view these as taking values in Z×

p , and then we have
ϕψ = ω, where ω is the usual Teichmüller character. Replacing E by an isogenous elliptic
curve if necessary (which turns out not to affect any of the Iwasawa invariants), we may
assume that ϕ is ramified at p and even, so that ψ is unramified at p and odd. Consider
the GQ-modules C = µp∞ ⊗ ψ−1 and D = (Qp/Zp) ⊗ ψ. Each is isomorphic to Qp/Zp as a
group, and we have Φ = C[p] and Ψ = D[p]. Classical Iwasawa theory, which involves the
study of certain natural Galois groups regarded as Λ-modules, can be reformulated in terms
of certain subgroups SC(Q∞) and SD(Q∞) (which we also refer to as “Selmer groups”) of
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the Galois cohomology groups H1(Q∞, C) and H1(Q∞, D) respectively. The classical Main
Conjecture (which was proven by Mazur and Wiles) gives a precise connection between the
structure of these Selmer groups and the p-adic L-functions attached to C and D. These
p-adic L-functions are essentially the Kubota-Leopoldt p-adic L-functions, and are defined
by elements L (C, T ) and L (D, T ) of Λ satisfying a certain interpolation property. These
power series are closely related: we have L (C, T ) = L (D, T ι), where T ι = (1 + T )−1 − 1.
(The ring Λ has a natural involution ι induced by γ → γ−1.) The Ferrero-Washington
theorem asserts that the µ-invariants of these power series as well as those of the Λ-modules
SC(Q∞)

b and SD(Q∞)
b are all equal to zero. The corresponding analytic λ-invariants are

equal: λanalC = λanalD . Furthermore, one has SC(Q∞) ∼= SD(Q∞)
ι as Λ-modules, where the ι

indicates changing of the Λ-module structure by the involution ι. Thus we get λalgC = λalgD .
The main conjecture for C and D shows that λanalC = λalgC = λalgD = λanalD . The analogue
of theorem (1.5) is also valid. Let Σ0 be any set of primes not containing p. One can
define non-primitive Selmer groups as before, as well as non-primitive p-adic L-functions.
The µ-invariants will still be zero, and the equality λanalC = λalgC implies λanalC,Σ0

= λalgC,Σ0
. The

corresponding statement also holds for D. However, one does not usually have λC,Σ0 = λD,Σ0.
Suppose now that Σ is a finite set of primes containing p,∞, and the primes of bad

reduction for E. Let Σ0 = Σ − {p,∞}. The exact sequence relating E[p] to Φ and Ψ will
then allow us to prove that µalgE = 0 (as a consequence of the Ferrero-Washington theorem)
and that λalgE,Σ0

= λalgC,Σ0
+ λalgD,Σ0

. As for the analytic side, we will use (11) to produce the
congruence

L
Σ0(E/Q, T ) ≡ uL Σ0(C, T ) ·L Σ0(D, T ) (mod pΛ), (12)

where u ∈ Z×
p . The Ferrero-Washington theorem again shows that µanalE = µanalE,Σ0

= 0 and
the above congruence then implies that λanalE,Σ0

= λanalC,Σ0
+ λanalD,Σ0

. We conclude from the Main

Conjecture for C and D that λalgE,Σ0
= λanalE,Σ0

. The equality λalgE = λanalE is then a consequence
of theorem (1.5).

We want to briefly describe the technique used to produce congruences between p-adic
L-functions as in (10) and (12). The basic idea goes back to fundamental work of Mazur (see
[Maz77] and [Maz79]), where it was made clear that congruences between analytic L-values
could be studied using the Hecke-module structure of the cohomology of modular curves.
It turns out that what one needs is a certain “multiplicity-one” result for this cohomology,
and this was subsequently provided by work of Mazur, Ribet, Wiles, and others. The result
(10) was essentially proven in [Vat97], where multiplicity-one was used to define canonical
periods associated to modular forms. The result (12) has its origins in the paper [Maz79],
where the case J0(N) was treated, when N is a prime. In particular, Mazur considered the
curve E = X0(11). His key idea was that the exact sequence (11) may be viewed as giving a
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congruence between the weight 2 modular form associated to E and a certain Eisenstein series
G(z) whose associated Dirichlet series L(G, s) is given by L(G, s) = L(ψ, s) ·L(ϕω−1, s− 1).
The congruence (12) is the translation of this fact into the setting of L-functions: the L-
function of E is congruent to the L-function of G(z). This idea of Mazur was subsequently
generalized by Stevens to arbitrary level in [Ste82], but Stevens’ result was subject to certain
unverified hypotheses (see [Ste82], page 109, and Sec. 4.2.) These restrictions were replaced
by similar (but easily verified) conditions in [Vat97]. For the purposes of this paper, we
have to go still further and analyze the “canonical periods” associated to modular forms in
[Vat97]. When the modular form f corresponds to an elliptic curve E, we show that the
canonical periods of f are essentially the Néron periods of a certain curve (the optimal curve)
in the isogeny class of E.

Fundamental to this approach is the fact that the congruences (10) and (12) involve
the nonprimitive L-functions LΣ0(· , T ). This is the analytic counterpart of the fact that
the Galois module E[p] determines only the nonprimitive Selmer group. Consider the first
congruence (10). Thus fix two elliptic curves Ei/Q, i = 1, 2, together with an isomorphism
E1[p] ∼= E2[p] of (irreducible) Galois modules. Let fi(z) denote the newform of level Ni

corresponding to Ei. We assume that (Ni, p) = 1, and that the Ei have ordinary reduction
at p. Let Σ0 denote the set of primes dividing N1N2. Our hypothesis E1[p] ∼= E2[p] implies
that if fi(z) =

∑
ai(n)q

n, then we have the congruence a1(n) ≡ a2(n) (mod p) for all n with
(n,N1N2) = 1. Let

gi(z) =
∑

(n,N1N2)=1

ai(n)q
n =

∑
n≥1

bi(n)q
n.

We then have L(gi, s) = Σbi(n)n
−s = LΣ0(Ei/Q, s). Furthermore, there exists an integer M ,

divisible only by the primes in Σ0, such that each gi is a modular form of level M and weight
2, an eigenform for all the Hecke operators Tl, Uq. Hence there are ring homomorphisms
εi : T → Z such that εi(Tl) = bi(l) for l �∈ Σ0 and εi(Uq) = 0 for all q ∈ Σ0, where
T = Z[Tl, Uq] is the Hecke algebra of level M , weight 2. We have ε1(T ) ≡ ε2(T ) (mod p) for
all T ∈ T and therefore there is a unique maximal ideal m of T containing ker (ε1), ker (ε2)
and p. The residue field T/m is just Fp. Thus Tl ≡ b1(l) ≡ b2(l) (mod m) for all l /∈ Σ0 and
Uq ≡ 0 (mod m) for q ∈ Σ0.

Let Tm denote the completion of T at m, which is a direct factor in the semilocal Zp-
algebra T⊗ZZp. Thus Tm is a free Zp-module of finite rank and the hypothesis that Ei[p]
is irreducible implies that Tm is Gorenstein. (This is corollary 2 of theorem 2.1 in [Wil95].
Earlier versions of the Gorenstein property for Hecke rings were proved by Mazur, Ribet,
Edixhoven and others. Wiles’ version is the most general. Equivalently, H1(X1(M),Z)±

m

is a free Tm-module of rank 1. Here H1(X1(M),Z) is the usual Betti cohomology of the
modular curve X1(M) with coefficients in Z. The superscript ± indicates the eigenspaces
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for the action of complex conjugation, and the subscript m denotes the m-adic completion
with respect to the natural structure as a T-module.

Let S2(Γ1(M),Z) denote the cusp forms of weight 2 for Γ1(M) with Fourier coefficients
in Z. It is known that S2(Γ1(M),Z) can be identified with Hom(T,Z) as T-modules (DI95,
proposition 12.4.1). Thus, S2(Γ1(M),Z)m ∼= Hom(Tm,Zp) and the Gorenstein property
of Tm states that Hom(Tm,Zp) is isomorphic to Tm. Hence S2(Γ1(M),Z)m is also a free
Tm-module of rank 1 and so there are isomorphisms

θ± : S2(Γ1(M),Z)m
∼−→H1(X1(M),Z)±m,

which are equivariant for the action of Tm.
To prove the congruence (10), it suffices to show that

L
Σ0(E1/Q, ζ − 1) ≡ uL Σ0(E2/Q, ζ − 1) (mod pZp[ζ ])

for all p-power roots of unity ζ and for some u ∈ Z×
ρ independent of ζ . This is clear

because if G (T ) = ΣcjT
j ∈ Λ is not divisble by p and if cλ is the first unit coefficient, then

G (ζ − 1) and (ζ − 1)λ have the same valuation when ζ has sufficiently large order. Applying
this to G (T ) = L Σ0(E1/Q, T ) − uL Σ0(E2/Q, T ), it follows that G (T ) ≡ 0 (mod pΛ).
Now, as is well-known, one can obtain the values τ(ρ−1)L(Ei/Q, ρ, 1) from the differential
forms ωi(z)

± = (gi(z)dz)
± ∈ H1(X1(M),C)± (by integration along paths joining the cusps

of X1(M)(C) and forming certain linear combinations). Since E1[p] ∼= E2[p] implies that
αp(E1) ≡ αp(E2) (mod pZp), it is enough to prove a congruence for values of integrals
involving ωi(z)

±/Ω±
Ei

∈ H1(X1(M),Q)±, where Ω±
Ei
denotes the real or imaginary Néron

period for Ei. On the other hand, we can define cocycles δ±i = θ±(gi) ∈ H1(X1(M),Z)±
m

and we clearly have δ±1 ≡ δ±2 (mod p). (This means that we have a congruence modulo
pH1(X1(M),Z)±

m
. We use similar notation elsewhere.) Now δ±i must be a rational multiple

of ωi(z)
±/Ω±

Ei
. To establish the congruences involving L (Ei/Q, ζ − 1), the key result that

we need is that there exist p-adic units u±
i such that

δ±i =
ωi(z)

±

u±
i Ω

±
Ei

.

This is the main result of section 3.
There is an analogous explanation for the congruence (12). But the argument is slightly

more delicate in this case, as the Gorenstein property is unknown in general. To fix notation,
let E/Q denote an elliptic curve, with corresponding newform f =

∑
anq

n of level N .
Assume that there exists an exact sequence of Gal (Q/Q)-modules

0→ Φ→ E[p]→ Ψ→ 0
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where Gal (Q/Q) acts on Φ and Ψ by abelian characters ϕ and ψ respectively. We assume
that the character ψ is odd and unramified. (The case where ψ is even and ramified is
similar). Let Σ0 denote the set of primes dividing N , and let g =

∑
(n,N)=1 anq

n =
∑

bnq
n.

Then g is an eigenform for all the Hecke operators of a suitable level M , and we have
L(g, s) = LΣ0(f, s). We let m denote the maximal ideal of characteristic p determined by g
in the Hecke ring T of level M . Under these hypotheses, it is known that there exists an
isomorphism

θ : S2(Γ1(M),Zp)m ∼= H1(X1(M),Zp)
+
m
.

We define a canonical cocycle δg = θ(g) ∈ H1(X1(M),Zp)
+. As before, it can be shown that

we have

δg =
(g(z)dz)+

u · Ω+E
where Ω+E denotes the real Néron period for E, and u is a p-adic unit. We remark here that
although E belongs to a nontrivial class of p-isogenous curves, the cocycle δg depends only
on g, and is independent of the choice of E in the isogeny class. The unit u may depend on
the choice of E. Implicit in the equality displayed above is the statement that the period
ΩE is an invariant of the isogeny class, up to p-adic unit.

Now let G(z) =
∑

cnq
n denote the Eisenstein series with L-function given by

∑
cnn

−s =
LΣ0(ψ, s) ·LΣ0(ψ

−1, s−1). Then we have the congruence cn ≡ bn (mod p), for n ≥ 1. Mazur
and Stevens have shown how to construct an Eisenstein cocycle δG ∈ H1(X1(M),Fp)

+[m],
associated to G. Here Fp denotes the finite field with p elements and H1(X1(M),Fp)

+[m]
denotes the kernel of m acting on the Betti cohomology of X1(M), with coefficients in Fp

(see [Maz79] and [Ste82]). The proof that the Eisenstein cocycle δG is nonzero is based on
a deep theorem of Washington [Was78].

On the other hand, if we write δg for the reduction of the cocycle δg, then clearly we have
δg ∈ H1(X1(M),Fp)

+[m]. It turns out that δg is nonzero. Now, the q-expansion principle
implies that H1(X1(M),Fp)

+[m] is a 1-dimensional vector space over Fp. This is the crucial
part of Mazur’s original argument, for it implies that the cocycles δg and δG coincide up to a
factor in F×

p . This is enough to imply the congruence (12), in view of Stevens’ calculation (via

Dedekind sums) of the special values of the modular symbol associated to δG (see [Ste82],
Chapter 3).

In the following sections, we will fill in the details of the arguments outlined above. On
the algebraic side, one very helpful fact is that the Selmer group SelE(Q∞)p has a description
which involves just the Galois module structure of E[p∞]. If E has good, ordinary reduction
at p, then SelE(Q∞)p coincides with the Selmer group SelE[p∞](Q∞) considered in [Gre89].
This simplifies the study of SelE(Q∞)[p] and is the basis for our proofs. Our results make
sense in a rather general context – that of Selmer groups attached to modular forms. We
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will give the arguments in this more general setting. In particular, we will treat the case
where E has multiplicative reduction at p. If E has nonsplit multiplicative reduction at p,
then the arguments described in the introduction go through almost unchanged. However,
if E has split multiplicative at p, then there is an interesting difference: SelE(Q∞)p coincides
with the “strict” Selmer group considered in [Gre89]. But SE[p∞](Q∞) is actually bigger.
This corresponds to the fact that the associated p-adic L-function has a trivial zero. It is
only when the trivial zero is included that our approach proceeds smoothly.

On the analytic side, the case of multiplicative reduction does not introduce any serious
problems. The only difficulty appears in the comparison of the canonical periods and the
Néron periods, where one has to generalize a theorem of Mazur (concerning the “Manin
constant” of a strong Weil parametrization of an elliptic curve by X0(N)) to the case of
parametrizations by X1(N). This is mildly technical, as the reduction to characteristic p
of X1(N) can be quite complicated even when N is divisible only by the first power of p,
and Mazur’s original argument does not generalize directly. Even though it is not strictly
necessary, we have chosen parametrizations of elliptic curves by X1(N), rather than the
more customary X0(N). The reason for this is connected to the behaviour of the p-adic L-
functions under isogeny, and may be briefly described as follows. In the setting of Theorem
(1.3), the elliptic curve corresponds to a nontrivial isogeny class A. For the purposes of the
proofs, one is forced to select a good representative of the class in question. The correct
curve to use turns out to be the so-called optimal curve Eopt considered by Stevens in his
paper [Ste89]. This curve is singled out by the requirement that there exist an embedding
Eopt ↪→ J1(N), for the Jacobian variety J1(N) of X1(N). It seems that Eopt rather than
any other (the strong Weil curve in A might be another candidate) is the “correct” curve
to use when questions of integrality and congruence are as issue, as the associated lattice
of Néron periods is conjectured to be “minimal” in a certain precise sense. Furthermore,
parametrizations by X1(N) enjoy a certain universality property (see [Ste89], Theorem 1.9).
Stevens has even conjectured that the optimal curve is characterized by internal rather than
modular considerations. Namely, he conjectures that Eopt is the curve in A of minimal
Faltings-Parshin height. We will in fact need some of the results of Stevens in our proofs
of Lemma (3.6) and Corollary (3.8). However, we will not attempt to discuss the work of
Stevens here. The reader will find a detailed account in the introduction of [Ste89]. (See
also Remark (3.9) below.) Here we will content ourselves with a description of the situation
when A is the isogeny class consisting of the three nonisomorphic curves of conductor 11.
(This example was already mentioned above). In this case, the strong Weil curve is X0(11).
As we have already remarked, the µ-invariant of X0(11) is positive. The optimal curve is
X1(11), and it turns out that the µ-invariant vanishes. In view of Theorem 2.1 in [Ste85],
one could even conjecture in general that the µ-invariant vanishes for the optimal curve in
an isogeny class.
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2 Non-primitive Selmer groups

We will consider Selmer groups in a more general context than we actually need. Let Σ be
a finite set of primes of Q containing p and ∞. Suppose that Gal (QΣ/Q) acts continuously
and linearly on a vector space Vp over a field Fp. We assume that d = dimFp(Vp) < ∞ and
that Fp is a finite extension of Qp. Let O denote the ring of integers of Fp. Let Tp be a
Gal (QΣ/Q)-invariant O-lattice in Vp. Then A = Vp/Tp is a discrete Gal (QΣ/Q)-module
which is isomorphic to (Fp/O)d as an O-module. If d± denotes the dimension of the (±1)-
eigenspaces for a complex conjugation, then d = d+ + d−. Fix an embedding Q → Qp. We

can then identify GQp with a decomposition group for some prime of Q over p. We will
assume that Vp contains an Fp-subspace Wp of dimension d+ which is invariant under the
action of GQp . Let C denote the image of Wp in A under the canonical map Vp → A, and
let D = A/C.

The Selmer group SA(Q∞) is defined by

SA(Q∞) = ker

(
H1(QΣ/Q∞, A)→

∏
�∈Σ

H�(Q∞, A)

)

where H�(Q∞, A) is defined as follows. If & �= p, we simply let

H�(Q∞, A) =
∏
η|�

H1((Q∞)η, A).

The product is over the finite set of primes η of Q∞ lying over &. There is unique prime ηp
of Q∞ lying over p. Let Iηp denote the inertia subgroup of G(Q∞ )ηp

. We define

Hp(Q∞, A) = H1((Q∞)ηp , A)/Lηp

where
Lηp = ker

(
H1((Q∞)ηp, A)→ H1(Iηp , D)

)
.

Thus if σ is a 1-cocycle of Gal (QΣ/Q∞) with values in A, then its class [σ] is in SA(Q∞) if
and only if [σ|Iηp

] is in the image of the map H1(Iηp , C)→ H1(Iηp , A) and [σ|G(Q∞)η
] = 0 for
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all η|&, & ∈ Σ with & �= p. Let Iη denote the inertia subgroup of G(Q∞ )η . Then G(Q∞ )η/Iη has
profinite degree prime to p. So the last condition is equivalent to [σ|Iη ] = 0 for η|&, & ∈ Σ,
and & �= p. It is not hard to see that SA(Q∞) is independent of the choice of Σ (as long as
A is a Gal (QΣ/Q)-module and p,∞ ∈ Σ).

Now the groups H1(QΣ/Q∞, A), H2(QΣ/Q∞, A), H�(Q∞, A), and SA(Q∞) are discrete
O-modules with a natural action of Γ = Gal (Q∞/Q). Regarding them as Λ-modules, where
Λ = O[[Γ]], they are known to be cofinitely generated. Using the results in sections 3 and 4
of [Gre89], one can easily verify the following statements:

1. CorankΛ(H
1(QΣ/Q∞, A)) = d− + CorankΛ(H

2(QΣ/Q∞, A)).

2. CorankΛ(Hp(Q∞)) = d−.

3. CorankΛ(H�(Q∞)) = 0 if & �= p.

In our results, we will generally assume that SA(Q∞) is Λ-cotorsion. This clearly implies
that H1(QΣ/Q∞, A) has Λ-corank d−, that H2(QΣ/Q∞, A) is Λ-cotorsion, and that the
cokernel of the map

γ : H1(QΣ/Q∞, A)→
∏
�∈Σ

H�(Q∞, A)

is Λ-cotorsion. Assuming that p is odd, Proposition 4 of [Gre89] would then imply that
H2(QΣ/Q∞, A) = 0. (If p = 2 one would only get that H2(QΣ/Q, A) has exponent 2.) As for
the cokernel of γ, the following result is crucial. Although proofs can be found elsewhere, we
sketch a proof based on a generalization of a theorem of Cassels. We let A∗ = Hom (Tp, µp∞),
which is also a discrete O-module with an action of Gal (QΣ/Q).

Proposition (2.1) Assume that SA(Q∞) is Λ-cotorsion and that H0(Q∞, A∗) is finite.
Then γ is surjective.

Proof. It is enough to prove that coker(γ) is finite. The result would then follow because
the Galois group G(Q∞ )η has p-cohomological dimension 1 for any prime η of Q∞ and so
H�(Q∞) is a divisible group for each l. Now let κ : Γ→ 1+ pZp be an isomorphism. For any
t ∈ Z, we let At = A ⊗ κt, which is another Gal (QΣ/Q)-module. We can define a Selmer
group SAt(Q∞) just as before. (For the local condition at ηp, one uses the GQp -invariant
submodule Ct = C ⊗κt of At and the corresponding quotient Dt = At/Ct.) SAt(Q∞) is then
the kernel of the map

γt : H
1(QΣ/Q∞, At)→

∏
�∈Σ

H�(Q∞, At).
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Clearly At
∼= A as Gal (QΣ/Q∞)-modules and so it will suffice to show that coker(γt) is

finite for at least one choice of t. We will do this by studying the cokernels of analogous
“global-to-local” maps defined for the fields Qn = QΓn

∞ for all n ≥ 0. Here Γn = Γ
pn
, Qn is a

cyclic extension of Q of degree pn, and Q∞ = ∪nQn. Several requirements will be imposed
on t in the course of the proof. Two of the requirements are: (i) (SA(Q∞) ⊗ κt)Γn is finite
for all n ≥ 0, (ii) (A(Q∞) ⊗ κt)Γn is finite for all n ≥ 0. Since SA(Q∞) is assumed to be
Λ-cotorsion, it is easy to see that (i) is satisfied for all but finitely many values of t. The
same is true for (ii) because A(Q∞) = H0(Q∞, A) is obviously Λ-cotorsion too.

Let n and t be fixed. We assume that t satisfies the above requirements (i) and (ii). For
brevity, we let M = At, N = Ct, and K = Qn. We define a Selmer group SM(K) by

SM(K) = ker
(
H1(QΣ/K,M)→ PM(K)/LM (K)

)
.

Here PM(K) =
∏

η H
1(Kη,M), where η runs over the primes of K lying over those in Σ, and

LM(K) =
∏

η Lη with Lη = 0 if η � p and Lη = ker (H1(Kη,M)→ H1(Kη,M/N)) for the
unique prime η of K over p. It is easy to verify that the image of SM(K) under the restriction
map H1(Qn,M) → H1(Q∞,M) is contained in SAt(Q∞)

Γn . We can identify SAt(Q∞) with
SA(Q∞) ⊗ κt as Λ-modules, and so (i) implies that SAt(Q∞)

Γn is finite. The kernel of
the restriction map is H1(Γn,M

GQ∞). This has the same O-corank as H0(Γn,M
GQ∞) =

(A(Q∞)⊗ κt)Γn , and so the kernel of the restriction map is finite by (ii). Thus SM(K) will
be finite.

Now we will use the global duality theorems of Poitou and Tate. Let U = Hom (M,µp∞),
which is a Gal (QΣ/Q)-module isomorphic toOd as anO-module. If PU(K) =

∏
η H

1(Kη, U),
then local duality gives a perfect pairing

PM(K)× PU(K)→ Qp/Zp. (13)

We let LU (K) denote the orthogonal complement of LM(K) under the pairing (13). Then
LU(K) =

∏
η L

⊥
η , where L⊥

η is the orthogonal complement of Lη under the local duality

theorem for Kη. Note that if η � p, then L⊥
η = H1(Kη, U). Furthermore, let GM(K) and

GU(K) denote the images of the maps

α : H1(QΣ/K,M)→ PM(K) and β : H1(QΣ/K,U)→ PU(K)

respectively. Since SM(K) = α−1(LM (K)) is finite, it follows that GM(K)∩LM (K) is finite.
Also, the global duality theorems assert thatGM(K) andGU(K) are orthogonal complements
under (13). Thus the cokernel of the map

H1(QΣ/K,M)→ PM(K)/LM(K) (14)
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is PM(K)/GM(K)LM(K) and this group is the Pontryagin dual of GU(K) ∩ LU (K).
The Euler characteristic for the Gal (QΣ/K)-module M is

2∑
i=0

(−1)i corankO(H i(QΣ/K,M)) = −d−pn

since K = Qn is totally real and [Qn : Q] = pn. Hence the O-corank of H1(QΣ/K,M) is
at least d−pn. On the other hand, if we exclude finitely many more values of t, then we
can easily arrange for PM(K)/LM(K) to have O-corank equal to corankO(M/N)pn = d−pn.
This is accomplished by making H0(Kη,M), H2(Kη,M) finite for all η|l, l ∈ Σ, l �= p and
H0(Kη,M/N), H2(Kη,M/N) finite for the unique prime η lying over p. Such a choice of t
is possible since κ|GQl

has infinite order for each & in the finite set Σ. Since SM(K) is finite,

it now follows that the O-corank of H1(QΣ/K,M) is exactly d−pn and that the cokernel of
the map (14) is finite. Thus GU(K) ∩ LU(K) is a finite subgroup of PU(K). It also follows
that H2(QΣ/K,M) is finite (and even 0 if p is odd, since M is O-divisible).

Let SU(K) = β−1(LU (K)). Let R1U(K) = ker(β). By Poitou-Tate duality, R1U(K)
is the Pontryagin dual of R2M(K) = ker (H2(QΣ/K,M) → ΠηH

2(Kη,M)). But this last
group is clearly finite and so R1U(K) is also finite (even 0 if p is odd). Since β(SU(K)) =
GU(K) ∩ LU (K) is finite, it follows that SU(K) is a finite subgroup of H

1(QΣ/K,U). That
is, SU(K) ⊂ H1(QΣ/K,U)tors. We will show that

#H1(QΣ/K,U)tors ≤ #H0(Q∞, A∗),

a bound independent of n. It will then follow that #(GU (K)∩LU(K)) is bounded as n → ∞,
and hence so is the cokernel of the map (14).

Let V ∗
p = Hom(Vp,Qp(1)) and T ∗

p = Hom (Tp,Zp(1)). Then one easily sees that A∗ =
V ∗
p /T ∗

p and that U = T ∗
p ⊗ κ−t. Put M∗ = A∗ ⊗ κ−t. Thus we have an exact sequence

0→ U → V ∗
p ⊗ κ−t → M∗ → 0.

Our hypothesis concerning A∗ implies that H0(Q∞,M∗) is finite and H0(Q∞, V ∗
p ⊗κ−t) = 0.

It follows that H1(QΣ/K,U)tors ∼= H0(K,M∗), whose order is clearly bounded by the order
of H0(Q∞, A∗).

Thus, we have proved that for a suitable choice of t (excluding just finitely many values
of t), the cokernel of the map

γ′
n,t : H

1(QΣ/Qn, At)→ PAt(Qn)/LAt(Qn)

is finite and of bounded order as n → ∞. By taking the direct limit as n → ∞, it follows
that the cokernel of the limit map γ′

t is finite. But since At = A as a Gal (QΣ/Q∞)-module
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and Ct = C, it follows that the map

γ′ : H1(QΣ/Q∞, A)→
(
H1((Q∞)ηp, A/C)×

∏
�∈Σ,� 
=p

H�(Q∞)
)

has finite cokernel. In fact, the kernel of γ′ is the strict Selmer group SstrA (Q∞). It is clear
that the cokernel of γ is a homomorphic image of the cokernel of γ′. Hence the cokernel of
γ is finite, and, as remarked earlier, γ must be surjective. �

Remark (2.2) It will be useful later to point out one other consequence of the above proof.
We make the same requirements on the choice of t. In particular, we have that H0(Kη,M),
H2(Kη,M) are both finite for all η|l, l ∈ Σ, l �= p. Then H1(Kη,M) is finite too. Assuming
that Σ − {p,∞} is nonempty, choose one such prime l0. Suppose that in defining SM(K)
we take Lη = H1(Kη,M) for all η|l0 (instead of taking Lη = 0). Then L⊥

η = 0. Assume
that t is also chosen so that H0(Kη,M

∗) is finite. (This of course implies that H0(K,M∗)
is finite.) With these changes, it then turns out that SU(K) = 0 and hence the map (14) is
now surjective. This becomes clear from the following commutative diagram:

H0(K,M∗)

��

∼ �� H1(QΣ/K,U)tors

��

H0(Kη,M
∗)

∼ �� H1(Kη, U)tors

Here η is any prime of K dividing l0. The horizontal isomorphisms are coboundary maps.
The first vertical map is clearly injective, and therefore so is the second. This shows that
SU(K) ⊂ H1(QΣ/K,U)tors must indeed be zero.

Let Σ0 be any finite set of primes of Q which does not contain p or ∞. Choose the set
Σ large enough so that Σ0 ⊂ Σ. The non-primitive Selmer group for A and Σ0 is defined by

SΣ0
A (Q∞) = ker

(
H1(QΣ/Q∞, A)→

∏
�∈Σ−Σ0

H�(Q∞)
)
.

Obviously, SA(Q∞) ⊂ SΣ0
A (Q∞). Proposition (2.1), together with the fact that H�(Q∞) is

Λ-cotorsion for & �= p, immediately gives the following result:

Corollary (2.3) With assumptions as in (2.1), we have

SΣ0
A (Q∞)/SA(Q∞) ∼=

∏
�∈Σ0

H�(Q∞)
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as Λ-modules. Furthermore, SΣ0
A (Q∞) is Λ-cotorsion and

corankO(S
Σ0
A (Q∞)) = corankO(SA(Q∞)) +

∑
�∈Σ0

corankO(H�(Q∞)).

The µ-invariants of SΣ0
A (Q∞)̂ and SA(Q∞)̂ are equal.

The structure of H�(Q∞) can be studied using Proposition 2 of [Gre89]. Since we will
be primarily interested in its O-corank, we discuss that first. Let s� denote the number of
primes η of Q∞ lying over &. That is, s� = [Γ : Γ�], where Γ� denotes the decomposition
subgroup of Γ for any such η. If γ� denotes the corresponding Frobenius automorphism
in Γ, then Γ� is generated topologically by γ�. One can determine s� quite easily. For
an odd prime p, s� is the largest power of p such that &p−1 ≡ 1 (mod ps�). Now let d� =
dimFp(H

0((Q∞)η, V
∗
p ), where V

∗
p = Hom(Vp,Qp(1)) as before. Proposition 2 of [Gre89] easily

implies that corankO(H�(Q∞)) = s�d�.
The value of d� is also not hard to determine. Let Frob� denote the Frobenius automor-

phism in Gal (Qunr� /Q�). (Thus, γ� is the restriction of Frob� to (Q∞)η.) Let α1, α2, . . . , αe�

denote the eigenvalues of Frob� (counting multiplicities) acting on (Vp)I�
. Here I� is the

inertia subgroup Gal (Q�/Qunr� ) of GQ�
, (Vp)I�

denotes the maximal quotient of Vp on which
I� acts trivially, and e� = dimFp((Vp)I�

). Since (Q∞)η ⊂ Qunr� and I� acts trivially on Qp(1),
we have

H0((Q∞)η, V
∗
p ) ⊂ H0(I�, V

∗
p ) = Hom Fp((Vp)I�

,Qp(1)).

The eigenvalues of Frob� acting on this last vector space are &α−1
1 , . . . , &α−1

e�
. Noting that

the action of Gal (Qunr� /(Q∞)η) must be through a finite group of order prime to p, one sees
easily that d� is the number of i’s such that &α

−1
i is a principal unit in Fp(αi). These values

of &α−1
i are precisely the eigenvalues of γ� acting on H0((Q∞)η, V

∗
p ), counting multiplicities.

Alternatively, we can describe d� in terms of the element

P� =

e�∏
i=1

(1− αi&
−1γ�) ∈ O[[Γ�]]. (15)

Identifying O[[Γ�]] with the power series ring O[[T�]], where T� = γ� − 1, we can then factor
P� = P�(T�) as a product of a power of π (a uniformizing parameter for O), an invertible
power series, and a distinguished polynomial. The power of the uniformizing parameter is
1. (That is, the µ-invariant is 0.) The degree of the distinguished polynomial is d�. If we
view P� as an element of O[[Γ]] = O[[T ]], with T = γ − 1 for a fixed topological generator
of Γ, then Pl will still have µ-invariant 0 and its distinguished polynomial factor, which we
denote by h�(T ), will have degree s�d�. Thus the O-corank of H�(Q∞) is deg(h�(T )).
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The polynomial h�(T ) generates the characteristic ideal of the Λ-module H�(Q∞)̂. To
see this, it is enough to verify that P� generates the characteristic ideal of the O[[Γ�]]-
module H1((Q∞)η, A)̂, as H�(Q∞)̂ is obtained by tensoring with Λ over O[[Γ�]]. The
inertia subgroup I� of GQ�

contains a unique subgroup J� such that I�/J�
∼= Zp. Also, J� has

profinite order prime to p and I�/J�
∼= Zp(1) for the natural action of Gal (Q

unr
� /Q�). Let G =

Gal (Q
J�

� /(Q∞)η) = G(Q∞ )η/I�. Since H1(J�, A) = 0, we have H1((Q∞)η, A) = H1(G,AJ�).

Also, AJ� ∼= AJ�
canonically. If we let I� = I�/J�, then G/I� has profinite order prime to p

and so H1(G,AI�
) ∼= H1(I�, AJ�

)G/I� . If we let ε� be a topological generator of I� = Zp(1),
then

H1(I l, AJ�
) = H1(I�, AJ�

/(ε� − 1)AJ�
) ∼= Hom (Z�(1), AI�

) ∼= AI�
(−1),

where the isomorphisms are equivariant for the action of Gal (Qunr� /Q�). The eigenvalues
of Frob� acting on AI�

(−1)̂ are the numbers &α−1
i , 1 ≤ i ≤ e�, and those numbers which

are principal units are the eigenvalues of γ� acting on (AI�
(−1)G/I�)̂, again using the fact

that G/I� has profinite order prime to p. These remarks imply that P� does generate the
characteristic ideal of H1((Q∞)η, A)̂ as an O[[Γ�]]-module. We have proved the following
results:

Proposition (2.4) Let P�(X) = det((1 − Frob�X)|(Vp)I�
) ∈ O[X]. Let P� = P�(&

−1γ�) ∈
Λ = O[[Γ]], where γ� denotes the Frobenius automorphism for & in Γ = Gal (Q∞/Q). The
characteristic ideal of the Λ-module H�(Q∞)̂ is generated by P�. Its µ-invariant is zero.
Its λ-invariant is equal to s�d�. Here s� is the largest power of p dividing (&p−1 − 1)/p and

d� is the multiplicity of X = &̃−1 as a root of P̃�(X) ∈ k[X], where k is the residue field of
O, and the ∼ means reduction modulo m, where m = (π) denotes the maximal ideal of O.

Remark. Pl satisfies an interpolation property involving Euler factors evaluated at s = 1
(if Vp arises from a compatible system of l-adic (or λ-adic) representations of GQ). Namely,
let ρ be any character of Γ. Then ρ(Pl) = Pl(ρ(l)l

−1), regarding ρ as a Dirichlet character.
Now we will discuss the nonexistence of nonzero finite Λ-submodules in the Pontrjagin

duals of Selmer groups. One finds results about this in [Gre99] for the case of SelE(F∞)p,
where E is an elliptic curve defined over a number field F and F∞ is the cyclotomic Zp-
extension of F . (See Propositions 4.14 and 4.15 in [Gre99].) Here we will prove a much
easier result, which will be sufficient for our purposes. Recall that D = A/C is an O-module
on which GQp acts. We let Ram(A) denote the set of primes & ( �= p,∞) such that the action
of GQ�

on A is ramified.
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Proposition (2.5) Let p be an odd prime. Assume that SA(Q∞) is Λ-cotorsion and that
D is unramified for the action of GQp . Suppose that Σ0 is a subset of Σ − {p,∞} which

contains Ram(A). Then SΣ0
A (Q∞)̂ has no nonzero, finite Λ-submodules.

Proof. SΣ0
A (Q∞) doesn’t depend on the choice of Σ, as long as Σ0 ∪ {p,∞} is contained in

Σ. In this proof, we may therefore take Σ = Σ0 ∪ {p,∞}. Then, by definition, SΣ0
A (Q∞) =

ker(H1(QΣ/Q∞, A)→ Hp(Q∞)) . Since SA(Q∞) is Λ-cotorsion, so is SΣ0
A (Q∞).

Both H1(QΣ/Q∞, A) and Hp(Q∞) have Λ-corank equal to d−. We will show that Hp(Q∞)
is Λ-cofree. It is then clear that the map defining SΣ0

A (Q∞) is surjective and so

H1(QΣ/Q∞, A)/SΣ0
A (Q∞) ∼= Hp(Q∞)

as Λ-modules. (This would usually follow from Proposition 2.1, even without knowing some-
thing aboutHp(Q∞).) Proposition 5 of [Gre89] asserts that H

1(QΣ/Q∞, A)̂ has no nonzero,
finite Λ-submodules because we know that H2(QΣ/Q∞, A) = 0. (We are assuming that p is
odd.) The assertion about (SΣ0

A (Q∞))̂ is then a consequence of the following lemma (whose
simple proof can be found on page 123 of [Gre89]:

Lemma (2.6) Let Y be a finitely generated Λ-module, Z a free Λ-submodule. If Y contains
no nonzero, finite Λ-submodule, then the same is true for Y/Z.

We just apply this to Y = H1(QΣ/Q∞, A)̂, Z = Hp(Q∞)̂, and Y/Z = SΣ0
A (Q∞)̂.

It remains to show that Hp(Q∞) is Λ-cofree when D is unramified. We first verify

that H1(Qp, D) is O-cofree. The exact sequence 0 → D[π] → D
π→D → 0 induces

an injective map H1(Qp, D)/πH
1(Qp, D) → H2(Qp, D[π]). This last group is dual to

H0(Qp,Hom(D[π], µp)) which is obviously trivial since p is an odd prime. Thus H1(Qp, D)
is a divisible O-module. Its Pontryagin dual is a torsion-free, finitely generated O-module
and must therefore be free. Thus H1(Qp, D) is O-cofree. Its O-corank is equal to d− +
corankO(H

0(Qp, D)) since D has O-corank d− and H2(Qp, D) = 0.
Now by the inflation-restriction exact sequence together with the fact that Γ has p-

cohomological dimension 1, the restriction map H1(Qp, D)→ H1((Q∞)ηp , D)
Γ is surjective,

where Γ is identified with Gal ((Q∞)ηp/Qp). The kernel of this map is H
1(Γ, D

G(Q∞)ηp ), which
is easily seen to have O-corank equal to that of H0(Qp, D). Thus H

1((Q∞)ηp , D)
Γ is O-cofree

and has O-corank d−. By proposition 1 of [Gre89], we see that H1((Q∞)ηp , D) has Λ-corank
d−. Hence X = H1((Q∞)ηp , D)̂ is a Λ-module of rank d− such that X/TX is Λ/TΛ-free of
rank d−. A simple use of Nakayama’s lemma shows that X is a free Λ-module.

It follows from the definition of Hp(Q∞) that we have an isomorphism

Hp(Q∞) ∼= im (H1(Q∞)ηp , A)→ H1(Iηp, D))
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as Λ-modules. Since G(Q∞ )ηp
has p-cohomological dimension equal to 1, we also have

H2((Q∞)ηp , C) = 0. Hence the exact sequence 0→ C → A → D → 0 implies that the map
H1((Q∞)ηp , A) → H1((Q∞)ηp , D) is surjective. Also, ker (H

1((Q∞)ηp , D) → H1(Iηp, D)) is
isomorphic to H1(G(Q∞ )ηp

/Iηp , D) because Iηp acts trivially on D. Since G(Q∞ )ηp
/Iηp is topo-

logically cyclic, this kernel is a quotient of D and so is O-cofree. (It would be sufficient to
assume just that DIηp is O-cofree.) Thus Hp(Q∞)̂ is isomorphic to a Λ-submodule Y of
X = H1((Q∞)ηp, D)̂ such that X/Y is O-cofree. Since X is Λ-free, one sees that Y must
be reflexive and hence also free as a Λ-module. Hence Hp(Q∞) is indeed Λ-cofree. �

Remark (2.7) In proposition 2.5, it is not necessary to assume that D is unramified for
the action of GQp . In the above proof, only two properties of D were actually used. First,
that HomGQp

(D[π], µp) = 0, which suffices to show that H1(Qp, D) is O-cofree and that
H2(Qp, D) = 0. Second, that DIηp is O-cofree which is used at the end of the proof.
This result covers virtually all the cases we are interested in. However, we will sketch
another approach which gives the same conclusion with slightly different hypotheses. As-
sume that A satisfies the hypotheses of proposition 2.1, that Σ0 is nonempty, and that
H1(G(Q∞ )ηp

/Iηp, D
Iηp ) = 0. (Note that the last hypothesis is valid if DIηp = 0.) Then,

according to remark 2.2, the following map can be assumed to be surjective:

H1(QΣ/Q,M)→ H1(Qp,M/N)

where M = A⊗κt for a suitable t. (We are assuming that in addition to other requirements,
t is also chosen so that H2(Qp, N) = 0, so that the map H1(Qp,M) → H1(Qp,M/N) is
surjective. Here N = C ⊗ κt and such a choice is possible.) Using the inflation-restriction
sequence and the fact that Γ has cohomological dimension 1, one sees that the map

H1(QΣ/Q∞,M)Γ → H1((Q∞)ηp ,M/N)Γ

is also surjective. Now SΣ0
M (Q∞) ∼= SΣ0

A (Q∞)⊗ κt as Λ-modules and the exact sequence

0→ SΣ0
M (Q∞)→ H1(QΣ/Q∞,M)→ H1((Q∞)ηp ,M/N)→ 0

together with the snake lemma imply that the map SΣ0
M (Q∞)Γ → H1(QΣ/Q∞,M)Γ is in-

jective. Since H1(QΣ/Q∞,M)b has no nonzero finite Λ-submodule, it follows that, if t is
again chosen suitably, H1(QΣ/Q∞,M)Γ = 0. Therefore, SΣ0

M (Q∞)Γ = 0 and the conclusion
in proposition 2.5 follows immediately.

The next proposition allows one to determine the λ-invariant of SΣ0
A (Q∞) in terms of the

Galois module A[π], under certain hypotheses. Recall that π is a generator of the maximal
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ideal of O. We define a Selmer group for A[π] in the following way. Consider the exact
sequence 0→ C[π]→ A[π]→ D[π]→ 0 of GQp -modules. For any subset Σ0 of Σ− {p,∞},
let

SΣ0

A[π](Q∞) = ker
(
H1(QΣ/Q∞, A[π])→

∏
�∈Σ−Σ0

H�(Q∞, A[π])
)
.

where for & �= p, we define H�(Q∞, A[π]) =
∏

η|� H
1(Iη, A[π]) and, for & = p, we define

Hp(Q∞, A[π]) = H1(Iηp , D[π]). With this definition, which is entirely analogous to the

definition of SΣ0
A (Q∞), we can prove the following useful result.

Proposition (2.8) Let p be an odd prime. Assume that Σ0 is a subset of Σ − {p,∞}
containing Ram(A). Assume that Iηp acts trivially on D and that H0(Q, A[π]) = 0. Then

SΣ0
A (Q∞)[π] ∼= SΣ0

A[π](Q∞).

Consequently, SA(Q∞) is Λ-cotorsion and has µ-invariant zero if and only if SΣ0

A[π](Q∞) is

finite. If this is so, then the λ-invariant of SΣ0
A (Q∞) is equal to dimO/m(S

Σ0

A[π](Q∞).

Proof. Since H0(Q, A[π]) = 0 and Γ is a pro-p group, it follows that H0(Q∞, A) = 0. The
natural map

H1(QΣ/Q∞, A[π])→ H1(QΣ/Q∞, A)[π]

induced from the exact sequence 0→ A[π]→ A
π→ A → 0 is therefore an isomorphism. We

must compare the local conditions defining SΣ0
A (Q∞)[π] and SΣ0

A[π](Q∞). Suppose that σ is

a 1-cocycle of Gal (QΣ/Q∞) with values in A[π]. First consider the local condition at η|&,
where & �= p and & ∈ Σ−Σ0. Then Iη acts trivially on A. The map H1(Iη, A[π])→ H1(Iη, A)
is injective because H0(Iη, A) = A is divisible. Thus, the local conditions at & defining
SΣ0
A (Q∞)[π] and SΣ0

A[π](Q∞) are equivalent. Also, the map

H1(Iηp , D[π])→ H1(Iηp , D)

is injective because H0(Iηp, D) = D is divisible. Hence the local conditions on σ defining the
two Selmer groups are equivalent, and this proves the equality.

Now SA(Q∞) and SΣ0
A (Q∞) have the same Λ-corank and the same µ-invariant if they

are Λ-cotorsion. Obviously, SΣ0
A (Q∞) is Λ-cotorsion and has µ-invariant 0 if and only if

SΣ0
A (Q∞)[π] is finite, which in turn is equivalent to the finiteness of S

Σ0

A[π](Q∞). Assuming

this is so, SΣ0
A (Q∞)̂ would be a finitely generated O-module. By Proposition (2.5) its O-

torsion submodule is 0, and so SΣ0
A (Q∞) is O-divisible. That is, SΣ0

A (Q∞) ∼= (Fp/O)λ, where
λ = corankO(S

Σ0
A (Q∞)) ≥ 0. It is clear that λ = dimO/m(S

Σ0
A (Q∞)) = dimO/m SΣ0

A[π](Q∞), as
stated. �
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Remark (2.9) The hypothesis that Iηp acts trivially on D is adequate for the theorems
stated in the introduction. But all that is needed in the proof is that H0(Iηp , D) is divisible.
Thus, if DIηp = 0, the conclusion is still true.

At this point we can justify most of the steps in the proof of theorem (1.4) outlined in
the introduction. If E is a modular elliptic curve defined over Q, we take Tp = Tp(E), the
Tate module for E, and Vp = Tp(E)⊗Zp Qp, a 2-dimensional Qp-representation space for GQ .
Then A = Vp/Tp is isomorphic to E[p∞] as a GQ-module. The ring O is Zp, and d+ = d− = 1.
Assume that E has good ordinary reduction at p. Then viewing A as a GQp -module, we

define C = ker (E[p∞]→ Ẽ[p∞]), where Ẽ is the reduction of E modulo p. Then D ∼= Ẽ[p∞]
is unramified as a GQp -module and is isomorphic to Qp/Zp as a Zp-module. By the Weil
pairing, one sees that the inertia group Ip acts on C by the p-cyclotomic character χ. That is,
C ∼= µp∞ as an Ip-module. Note that the action of GQp on A depends on fixing an embedding

of the field Q(E[p∞]) into Qp. The subgroup C of A depends on the corresponding choice of
a prime of Q(E[p∞]) lying above p. Having fixed such a prime, the subgroup C is determined
by the action of Ip. Also, since we are assuming that p is odd, the subgroup C[p] of A[p]
is determined by the action of Ip : C[p] ∼= µp and D[p] is the maximal quotient of A[p] on
which Ip acts trivially.

In [Gre99], one can find a proof that im (κηp) = Lηp . This result, together with the fact
that im (κη) = 0 for all primes η of Q∞ not lying over p, implies that SelE(Q∞)p = SA(Q∞).
The nonprimitive Selmer groups SelΣ0

E (Q∞)p and SΣ0
A (Q∞) also coincide, and therefore we

can study the algebraic Iwasawa invariants associated to E by using the results of this section.
It will be useful to point out that, for an odd prime p, the group SA[p](Q∞) is determined
just by the isomorphism class of A[p] as a GQ-module. This follows from the remark at the
end of the previous paragraph.

By Kato’s theorem, SA(Q∞) is Λ-cotorsion. Also, H
0(Q∞, A∗) is finite since A∗ ∼= E[p∞]

by the Weil pairing and E(Q∞)tors is known to be finite. (If we assume that E[p] is an
irreducible GQ-module, then it’s easy to see that H

0(Q∞, E[p∞]) = 0.) Corollary (2.3) then
implies the important relationships (6) and (7). By proposition (2.4), P�(T ) is a generator
of the characteristic ideal of H�(Q∞)

b. Relationships (8) and (9) follow from this. Thus the
equivalences given in theorem (1.5) have been established.

Suppose now that E1 and E2 are elliptic curves satisfying the hypotheses in theorem
(1.4). Let Σ be a finite set of primes containing p, ∞, and all primes where either E1 or E2
has bad reduction. Let Σ0 = Σ− {p,∞}. For i = 1, 2, we define Ai = Ei[p

∞]. Then, by the
above remarks and by proposition (2.8), we have

SelΣ0
Ei
(Q∞)[p] = SΣ0

Ai
(Q∞)[p] ∼= SΣ0

Ai[p]
(Q∞).

Furthermore, the order of this group is independent of i since A1[p] ∼= A2[p] as GQ-modules.
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As a consequence, we see that if µalgE1
= 0, then µalgE2

= 0 and λalgE2,Σ0
= λalgE1,Σ0

.

Remark (2.10) The arguments apply with virtually no change if the Galois modulesE1[p
∞],

E2[p
∞] are replaced by similar Galois modules associated to weight 2 eigenforms whose levels

are not divisible by p2 and which are ordinary at p (i.e., ap is a unit). Let f1, f2 be two such
eigenforms. Fixing an embedding Q → Qp, the Galois module Ai corresponding to fi is an
Oi-module, cofree of corank 2, where Oi is the closure of the integers in the field generated
over Q by the coefficients of fi. (Note that Ai is defined as Vp(fi)/Tp(fi), where Vp(fi) is
the 2-dimensional Fp-representation associated to fi. Here Fp is the completion of F at the
prime induced by the above embedding and Tp(fi) is a GQ-invariant Oi-lattice in Vp(fi).)
Let πi denote a uniformizing parameter in Oi. Then it is enough to assume that A1[π1]
and A2[π2] are irreducible and become isomorphic as GQ-modules after extending scalars to
a finite field k containing both O1/(π1) and O2/(π2). In particular, we can twist the Tate
modules for E1 and E2 satisfying the hypotheses we made above by any Dirichlet character
χ whose conductor is not divisible by p2 so that Ẽi[p

∞] ⊗ χ is either unramified or tamely
ramified at p. In some cases, remarks 2.7 and 2.9 are needed to give the desired conclusions.

The above discussion shows that if p is an odd prime, E1[p] ∼= E2[p] as GQ-modules, and
µalgE1

= 0, then one can compute λalgE2
if one knows λalgE1

. To illustrate this, we consider the
example mentioned in the introduction. The elliptic curves E1 and E2 have conductors 52
and 364, respectively. We take p = 5. One can show that SelE1(Q∞)5 = 0. (Several examples
discussed in chapter 5 of [Gre99] are completely analogous. The crucial ingredients are that
SelE1(Q)5 = 0, that 5 is not an anomalous prime for E1 (i.e., that a5(E1) �≡ 1 (mod 5)),
and that the Tamagawa factors for E1 corresponding to 2 and 13 are not divisible by 5.)
It follows that µalgE1

= λalgE1
= 0. One can also show that µanalE1

= λanalE1
= 0. (The crucial

ingredients for this are that L (E/Q, T ) is in Λ, which is known since E1[5] is irreducible,
and that the interpolation property shows that L (E/Q, 0) ∈ Z×

p . Hence L (E/Q, T ) ∈ Λ×.)

Let Σ = {5,∞, 2, 7, 13}, Σ0 = {2, 7, 13}. We need just determine σ
(�)
Ei
for & = 2, 7, 13,

i = 1, 2. For & = 2, both E1 and E2 have additive reduction and so the corresponding
Euler factor in L(Ei/Q, s) is 1. Thus σ

(2)
E1
= σ

(2)
E2
= 0. For & = 13, both E1 and E2 have

nonsplit, multiplicative reduction. The corresponding Euler factors are both 1+13−s, whose
value at s = 1 is a 5-adic unit. Thus, P13(0) ∈ Z×

p and so P13(T ) ∈ Λ×. We have

σ
(13)
E1

= σ
(13)
E2

= 0. However, for & = 7, E1 has good reduction and E2 has multiplicative
reduction. The corresponding Euler factors are 1 + 2X + 7X2 and 1 − X, where X = 7−s.
At s = 1, the value of the Euler factor for E2 is in Z×

p and so σ
(7)
E2
= 0. But 1+ 2X +7X2 ≡

(1 − X)(1 − 2X) (mod 5) and X = 7̃−1 has multiplicity 1 as a root. Also 52‖(74 − 1) and
so s7 = 5, in the notation of proposition 2.4. That is, 7 splits completely in Q1/Q, and the

primes of Q1 above 7 remain inert in Q∞/Q1. It follows that σ
(7)
E1
= 5. Therefore, we find
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that λalgE2
= λalgE2,Σ0

= λalgE1,Σ0
= λalgE1

+ 5 = 5, as stated in the introduction.

Now assume that E is an elliptic curve/Q such that E[p] is reducible as a GQ-module.
Assume also that E has good ordinary reduction at p and that p is odd. Then there is an
exact sequence of GQ-modules

0→ Φ→ E[p]→ Ψ→ 0

where both Φ and Ψ are cyclic of order p. GQ acts on Φ by a character ϕ : GQ → (Z/pZ)×,
and on Ψ by a character ψ. We can view both ϕ and ψ as having values in Z×

p . Then ϕψ = ω,
the Teichmüller character of GQ . One of the characters ϕ or ψ is even, one odd. One of
these characters is ramified at p, the other unramified. We will assume that the ramified
character is even, and so the unramified character is odd. A result of Schneider then implies
that the µ-invariant for SelE(Q∞)

b
p is unchanged by a p-isogeny. The λ-invariant is always

unchanged by an isogeny. Thus, we may assume for our purpose that ϕ is ramified and
even, ψ is unramified and odd. It follows immediately that H0(Q, E[p]) = 0. Therefore by
proposition 2.8 and the fact that SelΣ0

E (Q∞)p and SΣ0

E[p∞](Q∞) coincide, we have

SelΣ0
E (Q∞)[p] ∼= SΣ0

E[p](Q∞)

where Σ is as before and Σ0 = Σ − {p,∞}. Now H0(Q∞,Ψ) = 0. Later we will show that
H2(QΣ/Q∞,Φ) = 0. Therefore, we have an exact sequence

0→ H1(QΣ/Q∞,Φ)
ε→H1(QΣ/Q∞, E[p])

δ→H1(QΣ/Q∞,Ψ)→ 0.

Now SΣ0

E[p](Q∞) = ker (H1(QΣ/Q∞, E[p]) → H1(Ip,Ψ)). Hence im (ε) ⊂ SΣ0

E[p](Q∞) =

δ−1(U ), where U = ker (H1(QΣ/Q∞,Ψ))→ H1(Ip,Ψ). Therefore, we have

dimZ/pZ(S
Σ0

E[p](Q∞)) = dimZ/pZ(H
1(QΣ/Q∞,Φ)) + dimZ/pZ(U ).

Next we will relate the two dimensions on the right to classical Iwasawa theory.
For this purpose, we consider Selmer groups for one-dimensional representations. As-

sume that dim(Vp) = 1. Then Gal (QΣ/Q) acts on Vp by a continuous homomorphism
θ : Gal (QΣ/Q) → O×. Clearly, θ factors through G = Gal (K∞/Q), where K∞ is some
finite extension of Q∞, and G is abelian. Consider the restriction map

H1(QΣ/Q∞, A)→ H1(QΣ/K∞, A)∆

where ∆ = Gal (K∞/Q∞). The kernel and cokernel are finite; they are trivial if p � |∆|. We
will assume that p � |∆|, which will be sufficient for our purpose. Since Gal (QΣ/K∞) acts
trivially on A, we have

H1(QΣ/K∞, A) = Hom (XΣ
∞, A)
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where XΣ
∞ = Gal (MΣ

∞/K∞), and MΣ
∞ denotes the maximal abelian, pro-p extension of K∞

unramified outside Σ. We can identify Γ with a subgroup of G so that G = ∆ × Γ. This
decomposition is canonical since we are assuming that p � |∆|. We have Zp[[G]] = Zp[[Γ]][∆].
Let M∞ denote the maximal abelian pro-p extension of K∞ unramified outside {p,∞}. Let
L∞ denote the maximal abelian pro-p extension of K∞ which is unramified everywhere.
Depending on the parity of θ, we can describe the Selmer group SA(Q∞) in terms of either
X∞ = Gal (M∞/K∞) or Y∞ = Gal (L∞/K∞).

Assume first that θ is even. Let ξ = θ|∆, which is an even character of ∆. We have
d+ = 1 and so we must take Wp = Vp. Therefore, Hp(Q∞, A) = 0 and it follows that

SA(Q∞) ∼= Hom∆(X∞, A) = HomO((X∞ ⊗Zp O)ξ, A).
Now K∞ is the cyclotomic Zp-extension of K = KΓ

∞ and ∆ = Gal (K/Q) is abelian.
The Ferrero-Washington theorem implies that the torsion Λ-module (X∞ ⊗Zp O)ξ has µ-
invariant equal to zero. We denote its O-rank by λξ. Then, λξ = corankO(SA(Q∞)). Note
that the O-corank of SA(Q∞) depends only on ξ = θ|∆, although its structure as a Λ-
module does depend on θ itself. Let Σ0 = Σ − {p,∞}. Let λξ,Σ0 = corankO(S

Σ0
A (Q∞)).

Assuming that ξ is nontrivial (so that H0(Q, A[π]) = 0), proposition (2.6) implies that
λξ,Σ0 = dimO/πO(S

Σ0

A[π](Q∞)). Also, noting that the action of GQ on V ∗
p = Hom(Vp,Op(1))

is odd, it follows that H0(Q∞, A∗) = 0. Then corollary (2.3) allows us to compute λξ,Σ0 in
terms of λξ.

Assume now that θ is odd. Then ξ is an odd character of ∆. We have d+ = 0 and
so we must take Wp = 0. That is, the local condition at ηp occurring in the definition of
SA(Q∞) is that a cocycle class be unramified. Thus SA(Q∞) = H1

unr(QΣ/Q∞, A), the group
of everywhere unramified cocycle classes. It follows that

SA(Q∞) = Hom∆(Y∞, A) = Hom((Y∞ ⊗Zp O)ξ, A).
Again, the Ferrero-Washington theorem implies that the Λ-torsion module (Y∞ ⊗Zp O)ξ has
µ-invariant zero. We let λξ denote its O-rank, and so SA(Q∞) has O-corank equal to λξ.
As we remarked above, this clearly depends only on ξ = θ|∆. Assume that ξ �= ω. Then
H0(Q∞, A∗) = 0 and so we can apply corollary (2.3) to determine λξ,Σ0 = corankO(S

Σ0
A (Q∞))

in terms of λξ. Since ξ is odd, we haveH
0(Q, A[π]) = 0 and therefore proposition (2.8) implies

that λξ,Σ0 = dimO/πO(S
Σ0

A[π](O∞)).

We can apply these observations to θ = ϕ and θ = ψ, regarding Φ or Ψ as A[p] where
A ∼= Qp/Zp is a group and GQ acts by either ϕ or ψ. Now ϕ is even, but it is ramified and
hence nontrivial. Also, ψ is odd but since ψ = ωϕ−1, we have ψ �= ω. Hence we obtain the
result that µalgE = µalgE,Σ0

= 0 and that

λalgE,Σ0
= λϕ,Σ0 + λψ,Σ0 (16)
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which shows that λalgE,Σ0
can be easily calculated in terms of the classical Iwasawa invariant

λϕ = λψ. We must just explain whyH2(QΣ/Q∞,Φ) = 0. This is in fact equivalent to the van-
ishing of the µ-invariant for the Λ-moduleXϕ

∞. We take θ = ϕ. Suppose that A ∼= Qp/Zp and
that GQ acts on A by ϕ. Since Xϕ

∞ is Λ-torsion (because ϕ is even), it follows that SA(Q∞)
and SΣ0

A (Q∞) = H1(QΣ/Q∞, A) are Λ-cotorsion. Their µ-invariants are zero, by the Ferrero-
Washington theorem. By proposition (2.5), SΣ0

A (Q∞)
b has no nonzero, finite Λ-submodules,

which then implies that it is a divisible group. That is, H1(QΣ/Q∞, A) is divisible. Also,
H2(QΣ/Q∞, A) must be Λ-cotorsion (using the first result about coranks recalled at the
beginning of this section). By proposition 4 of [Gre99], it follows that H2(QΣ/Q∞, A) = 0.

Then the exact sequence 0→ Φ→ A
p→A → 0 induces an isomorphism

H1(QΣ/Q∞, A)/pH1(QΣ/Q∞, A)
∼−→H2(QΣ/Q∞,Φ).

The vanishing of H2(QΣ/Q∞,Φ) follows from this.
In the above discussion we may assume that K∞ contains µp, and hence µp∞. (It is

not necessary for θ to be a faithful character of Gal (K∞/K).) Now complex conjugation
(in Gal (K∞/Q)) acts on both X∞ and Y∞, and one can then define X±

∞, Y
±
∞ as the (±1)-

eigenspaces for complex conjugation. A theorem of Iwasawa then implies that Y −
∞ is pseudo-

isomorphic to Hom(X+
∞,Zp(1)) as a module for Zp[[G]] = Λ[∆], where Zp(1) just denotes Zp

together with an action of G by the p-cyclotomic character χ. (Stated this way, the result
also depends on the vanishing of µ for X+

∞ and Y −
∞ .) It follows that, if ξ is an even character

of ∆, then (X∞ ⊗Zp O)ξ has the same O-rank as (Y∞ ⊗Zp O)ωξ−1
, and therefore λξ = λωξ−1 .

In particular, λϕ = λψ. The easiest way to compute λϕ is to use the theorem of Mazur and
Wiles which implies that λϕ is just the λ-invariant of the Kubota-Leopoldt p-adic L-function
Lp(ϕ, s). Extensive calculations have been carried out by T. Fukuda when ψ is imaginary
quadratic and p = 3, 5, or 7.

For a character θ: Gal (QΣ/Q)→ Z×
p , let Aθ denote the groupQp/Zp on which Gal (QΣ/Q)

acts by θ. Recall that for any prime l �= p, sl denotes the number of primes η of Q∞ lying
above l, or equivalently the p-adic valuation of (lp−1 − 1)/p. Define tl(E) as the integer

corankZp(H
1((Q∞)η, Aϕ)) + corankZp(H

1((Q∞)η, Aψ))− corankZp(H
1((Q∞)η, E[p

∞]))

where η is any prime of Q∞ lying over l. As a consequence of corollary (2.3) applied to
E[p∞], Aϕ and Aψ, together with (16), we see that

λE = 2λψ +
∑
l∈Σ0

sltl(E).

One way to calculate the above Zp-coranks is to use proposition 2 of [Gre89]. If A is a GQl
-

module (where l �= p) which is isomorphic to (Qp/Zp)
d as a group, let TA denote its Tate
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module. Define A∗ = Hom(TA, µp∞), which is also a GQl
-module isomorphic to (Qp/Zp)

d.
Then the above cited proposition implies that H1((Q∞)η, A) has the same Zp-corank as
H0((Q∞)η, A

∗), which is denoted more briefly by A∗((Q∞)η) in [Gre89]. The Weil pairing
implies that E[p∞]∗ ∼= E[p∞] as GQl

-modules. Also, since ϕψ = ω and χ|∆ = ω, where χ
is the p-cyclotomic character as before, it is clear that A∗

ϕ
∼= Aψ and A∗

ψ
∼= Aϕ as G(Q∞ )η -

modules. Thus

tl(E) = corankZp(Aϕ((Q∞)η)) + corankZp(Aψ((Q∞)η))− corankZp(E((Q∞)η)p- tors).

We can now discuss the example mentioned in the introduction where J is one of the
curves of conductor 11, E is the quadratic twist J−c, and p = 5. The character ψ is the
quadratic character corresponding to F = Q(

√
−c). Let Σ consist of ∞, 5, 11, and all the

ramified primes for F/Q. Let Σ0 = Σ−{∞, 5}. Assume first that l is ramified in F/Q. Then
both ϕ = ωψ−1 and ψ are nontrivial characters of GQl

with orders not divisible by p. Their
restrictions to G(Q∞ )η are also nontrivial and so Aϕ((Q∞)η), Aψ((Q∞)η), and E((Q∞)η)p- tors
are all trivial. Hence tl(E) = 0 for those l’s. This also applies to l = 11 if ψ|GQ11

is nontrivial,
i.e., if 11 is ramified or inert in F/Q. (Note that then ϕ|GQ11

is also nontrivial since ω|GQ11

is trivial.) But if 11 splits in F/Q, then both ϕ|GQ11
and ψGQ11

are trivial characters. Hence
Aϕ((Q∞)η) and Aψ((Q∞)η) both have Zp-corank 1. Now E ∼= J over Q11 and has split,
multiplicative reduction. Since µp ⊂ Q11, we have (Q∞)η = Q11(µp∞) where η is the unique
prime of Q∞ lying above 11. (Note that s11 = 1.) We have corankZp(E((Q∞)η)p- tors) = 1.

Thus t11(E) = 1 if 11 splits in F/Q. These remarks imply that λalgE = 2λψ + εψ as stated in
the introduction.

3 Congruences for p-adic L-functions.

In this section we prove the congruences for p-adic L-functions described in the intro-
duction. The technical tools for this were developed in [Vat97], where certain canonical
periods, well suited to the study of congruences, were attached to a cuspform f . We want
to specialize this to the case where f has rational Fourier coefficients and corresponds to a
modular elliptic curve. Our main task in this section is therefore to compare the canonical
periods of f to the Néron periods of the associated elliptic curve.

At the end of this section we give a brief discussion of our results as they apply to modular
forms whose Fourier coefficients are not necessarily rational numbers (so the associated
abelian varieties need not be elliptic curves). While much of the theory goes through without
change, there are some serious complications. In the first place, we want to apply the
congruence techniques of [Vat97], and to do this we need to assume that the maximal ideals
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arising in the Hecke ring satisfy a certain technical condition (we assume that they are p-
distinguished; see below for the precise definition). Secondly, we would like to compare the
periods of the modular forms with those of the associated abelian varieties, and this can
only be achieved under a certain semistability assumption. Neither of these assumptions
need be true in general for forms on Γ1(N) if p|N . Both assumptions will be true, however,
if (N, p) = 1, or if f corresponds to an elliptic curve. For simplicity of exposition, we have
chosen to concentrate on the elliptic curve case in this section. We have included statements
of the general results, and the interested reader should have no difficulty filling in the details.

Canonical periods

We begin by recalling the construction of [Vat97]. Let E be a modular elliptic curve of
conductor N , and let p be a fixed odd prime. We assume that E has either good ordinary
or multiplicative reduction at p, corresponding to the two cases (N, p) = 1 and (p,N/p) = 1
respectively. We will write f = f(z) for the newform of level N corresponding to E. Then
f has rational Fourier coefficients. Let Γ denote the group Γ1(N); we may assume that
N > 4, so that Γ is torsion-free. Let S2(Γ,Zp) denote the space of cuspforms of weight
2 on Γ with coefficients in Zp, and write H1

par(Γ,Zp) for the parabolic cohomology group
of Eichler-Shimura. There is a natural action of complex conjugation on this cohomology
group, and we denote the (±1)-eigenspaces by a superscript. Let m denote the maximal ideal
above p cut out by f in the Hecke ring T generated by the usual operators Tq, U�, < q >
over Z. Let Tm denote the completion of T at m. Then Tm is a finite flat Zp-algebra. The
Hecke operators act on this cohomology group, and on the space of cuspforms with integral
coefficients.

There is a semisimple representation ρm : GQ → GL2(T/m) = GL2(Fp) characterized
by Tr (Frob(q)) = Tq for (q,Np) = 1; this representation ρm is the semisimplification of
the representation of GQ on E[p]. If E[p] is irreducible, then ρm is equivalent to the GQ-
representation on E[p]. If E[p] is reducible, then the Weil pairing implies that there exists
a character ψ : Gal (Q/Q)→ F×

p such that the Jordan-Holder factors of E[p] are given by ψ

and ωψ−1. Here ω : Gal (Q/Q)→ F×
p denotes the Teichmüller character. If we let ϕ = ωψ−1,

then the semi-simple representation ρm is given explicitly as

ρm = ϕ⊕ ψ. (17)

We may assume that ψ is unramified at p. Then we choose a sign α = ± as follows:

1. If E[p] is irreducible, then α is arbitrary.

2. If E[p] is reducible as above, then α is determined by ±1 = −ψ(−1).
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A choice of sign satisfying one of these conditions is said to be admissible (for E and p).
Now let f =

∑
anq

n denote the newform associated to E. Let M be any integer divisible by
N , and let g =

∑
bnq

n denote any modular form of level M that is an eigenform for the full
Hecke algebra T1(M) for Γ1(M), and which satisfies an = bn whenever (n,M) = 1. If α is
admissible, it follows from work of Mazur, Ribet, Wiles, and others (see [Vat97], Theorems
1.3 and 2.7) that there is an isomorphism of T1(M)m–modules

θα : S2(Γ1(M),Zp)m ∼= H1
par(Γ1(M),Zp)

α
m
. (18)

Herem denotes the maximal ideal ofT1(M) induced by the homomorphism πg : T1(M)→ O,
and T1(M)m denotes the completion. Thus, if α is admissible, we may define canonical
cocycles δαg = θα(g) ∈ H1

par(Γ1(M),Zp). Now consider the differential form g(z)dz on the
upper-half-plane. Then we define a cocycle ωg ∈ H1

par(Γ1(M),C) by the usual Eichler-
Shimura construction: if γ ∈ Γ1(M), then

ωg(γ) =

∫ γz0

z0

g(z)dz.

We may decompose ωg into plus and minus parts ω±
g according to the action of complex

conjugation. Note that each of the cocycles δαg and ω±
g is an eigenvector for the action of the

full Hecke algebra, since the form g is so. In each case, the eigenvalue for Tq is aq, when q
is prime to M , and the eigenvalue for Uq coincides with the eigenvalue of Uq on g. Thus we
find that there exist complex periods Ωα

g such that

Ωα
g δ

α
g = ωα

g . (19)

The numbers Ωα
g are the so-called “canonical periods” for g (when they exist).

Now we return to the elliptic curve E. For each admissible sign α, we let cα denote a
generator of the Z-module H1(E,Z)α ∼= Z. Let ωE denote a Néron differential on E; then
we define a Néron period for E by

Ωα
E =

∫
cα

ωE . (20)

We want to relate this Néron period on E to the canonical period of f by studying
the geometry of a modular parametrization X1(N) → E. To do this we need to specify a
model of X1(N) over Q. For the present purpose, it is convenient to use the conventions of
[DI95], Variant 9.3.6 (see also [Ste89], p. 80). Thus, X1(N)Q denotes the scheme classifying
generalized elliptic curves A together with an embedding of group schemes µN ↪→ A. With
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this convention, the cusp infinity is rational over Q. Given a Q-isogeny class A of elliptic
curves, we call E ∈ A optimal if there exists a modular parametrization

π : X1(N)Q → E

such that the following equivalent conditions are met:

1. The induced map on homology H1(X1(N),Z)→ H1(E,Z) is surjective.

2. The induced map J1(N)→ E has connected kernel, so that there is an exact sequence
of abelian varieties over Q:

0→ A
i→ J1(N)

π→ E → 0. (21)

3. There exists an embedding E ↪→ J1(N).

4. If E ′ ∈ A, then any morphism X1(N)→ E ′ factors as X1(N)
π→ E → E ′.

In this case, the map π is said to be an optimal parametrization. Thus the optimal curve E is
an analogue for X1(N)-parametrizations of the strong Weil curve arising from parametriza-
tions by X0(N). Note, however, that the strong Weil curve and the optimal curve are not
in general equal. The optimal curves were introduced and studied by Stevens [Ste89]. Then
we have the following proposition:

Proposition (3.1) Assume that E is optimal in its isogeny class, and that p is a prime of
either good ordinary or multiplicative reduction for E. Then the numbers Ωα

E and (−2πi)Ωα
f

are equal up to a factor which is a p-adic unit.

The next several paragraphs are devoted to a proof of this assertion. The main ingredient
is a study of the “Manin constant” associated to the optimal parametrization X1(N)→ E,
especially when p is a prime of multiplicative reduction for E. Let ωE denote a Néron
differential on the Néron model EZ. Then π∗(ωE) = c1f(q)dq/q, for a newform f on Γ1(N),
q = e2πiz , and a quantity c1 = c1(π) ∈ Z (see [Ste89], Theorem 1.6). We want to prove
that c1 is a p-adic unit, for all odd primes p of either good or multiplicative reduction. The
analogous result for optimal parametrizations by X0(N) is due to Mazur:

Theorem (3.2) ([Maz78], Cor. 4.1) Let E ′ be a strong Weil curve, and p an odd prime
of good or multiplicative reduction. Let π0 : X0(N)→ E ′ be the strong parametrization, and
c0 the associated Manin constant, defined by π∗

0(ωE) = c0f(q)dq/q. Then the number c0 ∈ Z
is a p-adic unit.
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The proof of this theorem relies on the fact that the Jacobian J0(N) is a semi-abelian scheme
over Zp when N is divisible by precisely the first power of p. Unfortunately, J1(N) is not
generally semi-abelian, and Mazur’s arguments cannot be transferred directly when the level
N is divisible by p. Nevertheless, we can still offer the following result.

Proposition (3.3) Assume that N is divisible by at most the first power of p. Then the
integers c0 and c1 are equal up to a unit factor in Zp. The integer c1 is a p-adic unit.

Proof. In view of Mazur’s theorem above, it suffices to verify the first assertion. Consider
the composite

X1(N)Q → X0(N)Q → E ′
Q (22)

where the first map is the natural projection induced by Γ1(N) ⊂ Γ0(N), and the second is
the strong parametrization. By definition of optimality, the map (22) factors as

X1(N)Q → EQ → E ′
Q , (23)

where the first map is optimal for X1. Observe now that, under the map (22), a Néron
differential on E ′ over Z pulls back on X1(N) to the modular form c0f(z)dz. This follows
from the definition of c0, together with the fact that the natural projection of X1 to X0
induces the identity on q-expansions at infinity.

On the other hand, we can compute the pullback of a Néron differential on E ′ by using
(23) instead. The Manin constant of the first map is c1, as that map is optimal for X1. So
the proposition will follow if we can check that a Néron differential on E ′

Zp
pulls back to a

Néron differential on EZp, for each odd prime p of good or multiplicative reduction (here,
as elsewhere, the subscript Zp on an abelian variety over Q denotes the Néron model). To
check this condition on differentials, it suffices to show that EZp → E ′

Zp
is étale. We will

only treat the case of multiplicative reduction, as the case of good reduction is similar but
easier.

We start by studying the situation over the generic fibre Qp. Consider the diagrams
gotten from (22) and (23) by replacing X0 and X1 by their respective Jacobians J0 and J1.
We get a commutative diagram over Q:

E ′ → J0
↓ ↓
E → J1

where the arrows of the square are induced by Picard functoriality. The maps E ′ → J0 and
E → J1 are both injective, and the kernel of J0 → J1 is the so-called Shimura subgroup.

35



This is a finite flat group scheme (still over Qp) which is the Cartier dual of a constant group
scheme. We see easily from this that the kernel G of the dual map E → E ′ is constant over
Qp. Observe that this dual map is precisely the morphism appearing in (23).

We may assume, using the Sylow theorems and the fact that multiplication by & is finite
flat and étale over Zp, that G is nontrivial and has p-power order. We have shown that G
is constant over the generic fibre, and it will suffice to transfer the constancy from Qp to
Zp. Here we will use the fact that the Neron models of E ′ and E are both semi-abelian
schemes (since the curves have multiplicative reduction). Because of the semi-abelianness,
we find that the kernel KZp of EZp → E ′

Zp
is quasi-finite and flat over Zp (see [BRL90], pages

177-178).
Now write GZp for the constant finite flat group scheme over Zp whose generic fibre was

called G above. Then by the Néron property there is a map GZp → EZp. Composing with
EZp → E ′

Zp
, we find that the map GZp → EZp → E ′

Zp
is trivial along the generic fibre, hence

trivial (everything in sight is flat). We find that G maps into the kernel KZp of EZp → E ′
Zp
,

and that the isomorphism G = K holds over Qp.
Now, since KZp is quasi-finite and flat, and since Zp is Henselian, we have a canonical

subgroup scheme FKZp ⊂ KZp, where FKZp is finite flat, andK/FK is quasi-finite and étale,
and has trivial special fibre. Thus GZp sits inside the finite part of KZp. Since (K/G)Zp is
also quasi-finite and flat, and has trivial generic fibre, it follows that (K/G)Zp is finite flat
(the quasi-finite étale part has to be trivial on both fibres, hence trivial). But GZp and KZp

are equal along the generic fibre, and must therefore have K = G. This shows that K is
finite flat and constant, and hence that EZp → E ′

Zp
is étale, as claimed.

We can now complete the proof of (3.1). Consider the integration map

H1(X1(N),Zp)
α

R
f(z)dz−−−−→ C.

The image H(f)α is a free Zp-module of rank 1, generated by the number Ω
α
f . To verify this

last statement, note that since a1(f) = 1, the form f is not divisible by p in the space of
cuspforms with integral coefficients. Thus the cocycle δαf is not divisible by p in the integral
cohomology group, and there exists a homology class γ such that δαf takes on a p-adic unit
value when capped against γ. Since ωα

f = Ωαδαf , it follows that H(f)α is generated by the
period Ωα. If E is optimal, we define a free Zp-module H(E)α by integrating the Néron
differential ωE on cycles in H1(E,Zp)

α. Obviously H(E)α is generated by Ωα
E . Thus it

suffices to show that (2πi)H(f)α = H(E)α. But this is clear, in view of the adjointness
formula for the map π : X1(N)→ E, the surjectivity of the map on homology, and the fact
that the constant c(π) is a p-adic unit. �
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Remark (3.4) If E does not admit any p-isogenies, so that E[p] is irreducible, then it is
clear that the Néron periods of any isogeneous curve differ from those of E by a p-adic unit.
Thus in this case we obtain Ωα

E = Ω
α
f , for any choice of sign.

Remark (3.5) The proof of (3.1) also yields some information about the periods of Ωα
E

when α is not admissible. Namely, it is clear from the proof that, in this case, the cocycle
δαf = ωα

f /Ω
α
E lies in the integral cohomology group H1

par(Γ,Zp), and that p does not divide
δαf in H1

par(Γ,Zp).

As we have already remarked in the introduction, the congruence formulae are satisfied only
by the nonprimitive p-adic L-functions. It will therefore be useful later to have a comparison
between the periods of an nonprimitive form with those of the associated newform. The
necessary result is given below.

Lemma (3.6) Let f be a newform of level N =
∑

anq
n, corresponding to the modular

elliptic curve EQ . Assume that E has ordinary reduction at p, and let g =
∑

bnq
n be the

eigenform, of level M , obtaining from f by removing all Euler factors at primes q �= p such
that q|N . Then, if α is an admissible sign for E, the canonical periods Ωα

f and Ωα
g are equal

up to p-adic unit.

Proof. Since f corresponds to an elliptic curve, we have an ∈ Q, for all n. Then, by
construction of g, we have bn ∈ Q for all n. Now let B denote the abelian variety quotient
of J1(M) associated by Shimura to g in [Shi73]. Note that the existence of this abelian
variety does not require that g be a newform, merely that it be an eigenvector for all the
Hecke operators. Since g has rational Fourier coefficients, it is clear that B is an elliptic
curve isogenous to E. Shimura has shown furthermore that if ω denotes a Néron differential
on B, then the pullback of ω to J1(M) under the natural quotient map J1(M) → B is an
eigenvector for the Hecke algebra, with eigenvalues equal to those of the cuspform g. For
all these results of Shimura, we refer the reader to [Shi73], Theorem 1, page 526. We may
assume that the kernel K of the quotient map is connected. We contend then that the
abelian variety K is stable under the action of the Hecke algebra. To see this, consider the

exact sequence 0 → K
j→ J1(M) → B

π̂→ 0. Let t denote the endomorphism of J1(M)
induced by any Hecke operator over Q. It suffices to show that the composite jt : K → B
given by jt = j ◦ t ◦ π̂ is trivial (we are viewing operators as acting on the right). Let
ω denote a Néron differential on B, and consider the differential form j∗t ω. Then one has
(j ◦ t ◦ π̂)∗ω = j∗((t ◦ π̂)∗ω) = j∗(t(g)π̂∗ω), since π̂∗ω is an eigenvector for the Hecke algebra,
with eigenvalues given by those of g. But now j∗(t(g)π̂∗ω) = t(g) ·(j∗π̂∗ω) = t(g) ·(j ◦ π̂)∗ω =
0. Thus jt induces the zero map on cotangent spaces. Since K is connected, it follows that
jt = 0.
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We will show that the canonical periods of g coincide with the Néron periods of B. To
do this, it will be enough to show that the Manin constant of the parametrization πM :
X1(M) ↪→ J1(M) → B is a p-adic unit. First consider the case of good reduction, that is,
the case that (p,N) = (p,M) = 1. In this case, one checks that the original argument of
Mazur from (3.2) can be modified without difficulty. The only step in which any property
of newforms was used was in verifying the stability of K under the Hecke operators, and we
have checked this above. However, the case of multiplicative reduction is more delicate. To
treat this case, let Γ denote the group Γ1(M/p)∩Γ0(p), and let X denote the corresponding
modular curve. Then g is a Hecke eigenform for Γ. Let C denote the elliptic curve quotient
of J = Jac(X), corresponding to g, constructed as above. Let π : X → C denote the
corresponding parametrization, so that if ω denotes a Néron differential on C, then π∗ω =
c · g(z)dz, for a nonzero c ∈ Z. Since X has semistable reduction at p (see [Wil95], page
485, or [MW84], Chapter 2), Mazur’s argument in [Maz78] implies that c is a p-adic unit.
Indeed, Mazur’s argument shows that π∗ω restricts to a nonzero differential on XFp . Now, if
p|c, then the q-expansion of π∗ω must vanish on the component of XFp containing the cusp
∞. But Wiles has shown that any nonzero differential on XFp is nonzero on the component
containing ∞. (See [Wil95], Lemma 2.2, especially the bottom paragraph on page 486, and
recall that we are in the ordinary case.)1 This implies that c is a p-adic unit.

To sum up, we have shown that the canonical periods of the oldform g coincide with
the Néron periods of an elliptic curve B isogenous to the optimal curve E of level N . If
E[p] is irreducible as a Galois-module, then our lemma follows from Proposition (3.1), as E
does not admit any nontrivial p-isogenies. It remains therefore to treat the case that E[p]
is reducible. In this case, we let Emin denote the minimal curve in the isogeny class A of
E and B constructed by Stevens in [Ste89], section 2. Stevens has shown that, if A ∈ A,
there exists an étale isogeny ϕ : EminZ → AZ. If α is an admissible sign, it follows from the
definitions that the kernel of ϕ has parity −α for the action of complex conjugation. This
implies that the periods Ωα

A and Ω
α
Emin coincide. Since both E and B are members of A, the

assertion of the lemma follows. �

p-adic L-functions

We want to give the definition of the p-adic L-function of a modular elliptic curve E,
together with its various twists. More generally, we will define the p-adic L-function of a
weight-two modular form. These functions were constructed by Mazur, Tate, and Teitelbaum
in [MTT86]. Thus let K be an abelian number field. We assume that K is unramified at

1In Mazur’s original situation, the proof is concluded (page 142-143) by an application of the Atkin-
Lehner involution w, which interchanges the two components. This is not applicable here, as g is an oldform,
and hence will not in general be an eigenform for wM .
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all primes dividing the level N , and tamely ramified at p. The curve E is assumed of course
to have ordinary reduction at p. Put G = Gal (K/Q), and fix a character χ of G. Write
Γ = Gal (K∞/K) for the Galois group of the cyclotomic Zp extension. We can and will
identify Γ with the Galois group of the cyclotomic Zp-extension of Q. Let γ denote a fixed
topological generator of Γ. Put O = Zp[χ] and Λ = O[[Γ]] = O[[T ]]. For a finite order
character ρ : Γ→ C×, we define ζ ∈ µp∞ by ζ = ρ(γ).

Now let f =
∑

anq
n denote a weight-two cuspform for the group Γ1(N). We assume that

f is a simultaneous eigenform for all the Hecke operators of level N , and that a1 = 1. We
do not assume that f is a newform. With these notations, the χ-twisted p-adic L-function
of f is defined to be a power series

L (f, χ, T ) ∈ Λ⊗ Qp

satisfying the following interpolation property for every nontrivial character ρ of Γ:

L (f, χ, ζ − 1) = τ(χ−1ρ−1) · αp(f)
−m · L(f, χρ, 1)

(−2πi)Ωα
f

. (24)

Here τ(χ−1ρ−1) denotes the usual Gauss sum attached to χ−1ρ−1, and pm is the conductor
of ρ. The quantity αp(f) is the eigenvalue of Up on the p-stabilized newform associated to
f . The period Ωα

f is a nonzero complex number, which we regard as fixed. The sign α is
determined by ±1 = χ(−1). This interpolation property characterizes L (f, χ, T ), by the
Weierstrass preparation theorem. If Σ0 is any finite set of primes with p /∈ Σ0, then we define
a nonprimitive L-function L Σ0(f, χ, T ), characterized by the interpolation formula

L
Σ0(f, χ, ζ − 1) = τ(χ−1ρ−1) · αp(f)

−m · LΣ0(f, χρ, 1)

(−2πi)Ωα
f

, (25)

where the LΣ0(f, χρ, s) denotes the complex L-function of f , stripped of the Euler factors
at primes contained in Σ0. The p-adic L-function of an elliptic curve is defined in a similar
manner. Namely, one takes the p-adic L-function of the corresponding modular form f , and
specifies the period by replacing (−2πi)Ωα

f with the Néron period Ω
α
E . Thus the L-functions

of isogenous elliptic curves will differ by a constant.

Proposition (3.7) Assume either that E is optimal, or that E[p] is irreducible. Assume
that the character χ is unramified at all primes dividing N , and that χ is tamely ramified at
p. Then the L-function L (E/Q, χ, T ) is integral, i.e., we have L (E/Q, χ, T ) ∈ Λ.

Proof. Let f denote the newform associated to E. We see from (3.1) and (3.5) above that
the numbers Ωα

E are such that the cocycle δα defined by Ωα
Eδ

α = ωα
f lies in the integral
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cohomology group H1(Γ,Zp) (see (19); we are not assuming that α is admissible). In view
of the hypotheses on χ, one can check that, if ζ �= 1, then the values L (E, χ, ζ − 1) are
given by the cap product of the integral class δα against an appropriate integral element in
the homology group H1(X1;Z[χ, ζ ]). This is well-known if the level N is prime to p (see
[Ste82], Remark 1.6.2). If p divides N , then N must be divisible by precisely the first power
of p, as E has ordinary reduction. In this case a very similar argument to that of Stevens
already cited proves the required integrality, when ζ �= 1. We omit the details. It follows
that L (E, χ, ζ − 1) is p-integral for all ζ �= 1, ζ ∈ µp∞. The required result now follows from
the Weierstrass preparation theorem. �

It is widely believed that the p-adic L-function of an elliptic curve is always represented
by an integral power series. The defect in the foregoing proposition is that it gives no
information about non-optimal curves E admitting rational p-isogenies. However, we can
remedy this defect if E satisfies the hypotheses of theorem (1.3). Somewhat more generally,
we have

Corollary (3.8) Assume that E admits a cyclic p-isogeny with kernel Φ, such that Φ is
either unramified at p and odd, or ramified at p and even, as a Galois module. Then the
χ-twisted p-adic L-function of E is represented by an integral power series, for any even
character χ. If Eopt is the optimal curve in the isogeny class of E, then the period Ω+E
coincides with Ω+Eopt, up to p-adic unit.

Proof. It suffices to verify the final assertion. But this follows by exactly the same argument
as was used in the conclusion of the proof of Lemma (3.6). Namely, one shows that the
periods in question coincide with that of the minimal curve in the isogeny class. �

Remark (3.9) The foregoing proposition and corollary may be reformulated as follows. We
want to show that the χ-twisted L-function of E is always represented by an integral power
series. What we have shown is that this is in fact the case, except possibly for non-optimal
curves E, and characters χ such that the sign determined by χ(−1) is not admissible for E.
It is easy to see that, even in this latter case, the p-adic L-function will be integral if E occurs
as a subvariety of the Jacobian of some modular curve of level N . This includes for example
the strong Weil curve, which in general will not be optimal. A complete resolution of the
integrality question would follow from a conjecture of Stevens, [Ste89]. Namely, it would
suffice to know that, if E is any elliptic curve over Q, then there exists an étale isogeny
EoptZp

→ EZp, for the optimal curve Eopt isogenous to E.

Our next result is the analytic ingredient in the proof of (1.4).
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Theorem (3.10) Let E1 and E2 be elliptic curves of level N1 and N2 respectively, such
that Galois modules E1[p] and E2[p] are irreducible and isomorphic. Assume that the Ei

have good ordinary or multiplicative reduction at p. Let Σ0 be the set of primes q �= p
such that q|N1N2. Then there exists an element u ∈ O× such that we have the congruence
L Σ0(E1/Q, χ, T ) ≡ u · L Σ0(E2/Q, χ, T ) (mod πΛ), for every character χ, where π is a
uniformizing element in O = Zp[χ].

Proof. LetM = l.c.m(N1, N2). Let f1 =
∑

anq
n and f2 =

∑
bnq

n denote the modular forms
associated to E1 and E2 respectively. Then the hypothesis that E1[p] ∼= E2[p] implies that
we have the congruence an ≡ bn (mod p), whenever (n,M) = 1. This is clear if (n,Mp) = 1,
and if n = p, then it follows from the results of [Wil88], as the curves Ei are assumed to
be ordinary. Now let g1 =

∑
a′nq

n and g2 =
∑

b′nq
n denote the eigenforms obtained from

f1 and f2 respectively by dropping all primes in Σ. Then we have a′n ≡ b′n (mod p), for
all integers n. Theorem 1.10 of [Vat97] now yields a congruence as in the theorem, but the
periods appearing will be the canonical periods attached to g1 and g2. The result follows
from Lemma (3.6). �

Now we want to prove a similar theorem relating the p-adic L-function for an elliptic
curve which admits a Q-isogeny of degree p to the p-adic L-function of a certain Eisenstein
series, or equivalently, to the product of certain Kubota-Leopoldt p-adic L-functions. More
precisely, we want to prove the congruence (12) stated in the introduction. Recall that
C = µp∞ ⊗ ψ−1 and D = (Qp/Zp)⊗ ψ, where ψ is an odd character with values in Z×

p . (For
our application, we assume ψ is unramified at p.) Just as in theorem (3.10), we will prove a
more general result by allowing a twist by a Dirichlet character χ. We will assume that χ is
even. The p-adic L-function L (C, χ, T ) ∈ Λ is characterized by the interpolation property

L (C, χ, ζ − 1) = L(C, χρ, 1) = L(χψ−1ρ, 0) (26)

for every nontrivial character ρ of Γ = Gal (Q∞/Q). As before, ζ = ρ(γ) where γ is a fixed
topological generator of Γ. L (C, χ, T ) is related to the Kubota-Leopoldt p-adic L-function
Lp(χωψ−1, s) by

Lp(χωψ−1, s) = L (C, χ, κ(γ)−s − 1)

for all s ∈ Zp. (Recall that κ(γ) ∈ 1 + pZp gives the action of γ on µp∞ when we identify
Γ with Gal (Q(µp∞)/Q(µp)). Also, note that ωψ−1 = ϕ.) The Ferrero-Washington theorem
asserts that L (C, χ, T ) �∈ pΛ and the Mazur-Wiles theorem implies that the λ-invariant of
L (C, χ, T ) is equal to corankO(SC⊗χ(Q∞)), which we denoted by λχωψ−1 in section 1. The
notation C ⊗ χ refers to the O-module C ⊗Zρ O(χ), where GQ acts on the second factor by
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χ. To obtain the nonprimitive p-adic L-function L Σ0(C, χ, T ), one multiplies L (C, χ, T ) by
the l-th Euler factors 1 − χψ−1(l)(1 + T )fl for each l ∈ Σ0. Here fl ∈ Zp is determined by
γl = γfl, where γl is the Frobenius automorphism for l in Γ. The value at T = ζ − 1 is the
l-th Euler factor 1 − χψ−1ρ(l) in L(χψ−1ρ, s) at s = 0. The λ-invariant of L Σ0(C, χ, T ) is
λχωψ−1,Σ0

= λχϕ,Σ0.
The p-adic L-function L (D,χ, T ) ∈ Λ is characterized by the interpolation property

L (D,χ, ζ − 1) = τ(χ−1ψ−1ρ−1)L(D,χρ, 1)/2πi

= τ(χ−1ψ−1ρ−1)L(χψρ, 1)/2πi (27)

= 1
2
L(χ−1ψ−1ρ−1, 0)

for every nonzero character ρ of Γ, where pm is the conductor of ρ. The last equality
follows from the functional equation. L (D,χ, T ) is related to the Kubota-Leopoldt p-adic
L-function Lp(ωχ−1ψ−1, s) by

Lp(ωχ−1ψ−1, s) = 1
2
L (D,χ, κ(γ)s − 1)

for all s ∈ Zp. The µ-invariant of L (D,χ, T ) is again zero and its λ-invariant is λωχ−1ψ−1 =
λχψ, which is equal to corankO(SD⊗χ(Q∞)). To obtain L

Σ0(D,χ, T ), one multiplies by the
Euler factors 1− χψ(l)l−1(1 + T )fl for all l ∈ Σ0. The value at T = ζ − 1 is the l-th Euler
factor 1− χψρ(l)l−1 in L(χψρ, s) at s = 1. The λ-invariant of L Σ0(D,χ, T ) is λχψ,Σ0 .

Suppose that ϕ and ψ are as before, namely the Z×
p -valued characters corresponding to

the composition factors Φ and Ψ in the GQ-module E[p], assuming that E admits a Q-
isogeny of degree p. We assume that ψ is odd and unramified at p, or equivalently that
ϕ is even and ramified at p. In this case, the admissible sign is plus, and the canonical
period is the real period of E (up to multiplication by a p-adic unit). Let N denote the
level of E and let Σ0 denote any set of primes containing all primes l �= p dividing N , but
not including p. Define G = Σbnq

n to be the weight-two Eisenstein series determined by
Σbnn

−s = LΣ0(ψ, s)LΣ0(ψ−1, s − 1). Here the superscript Σ0 indicates that we consider the
non-primitive L-functions obtained by omitting the Euler factors for all l ∈ Σ0.

For each even Dirichlet character ψ, we let L (G,χ, T ) denote the p-adic L-function
(associated to G and χ) characterized by the interpolation property

L (G,χ, ζ − 1) = τ(χ−1ψ−1ρ−1)L(G,χρ, 1)/2πi

= (LΣ0(χψ−1ρ, 0))(τ(χ−1ψ−1ρ−1)LΣ0(χψρ, 1)/2πi)

for all nontrivial characters ρ of Γ, where as before ρ(γ) = ζ . Then we clearly have

L (G,χ, T ) = L Σ0(C, χ, T )L Σ0(D,χ, T ). (28)
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The µ-invariant of L (G,χ, T ) is zero because that is true for each factor in (28). Also, the
λ-invariant of L (G,χ, T ) is equal to λχϕ,Σ0 + λχψ,Σ0 . The two terms are the O-coranks of
SΣ0
C⊗χ(Q∞) and SΣ0

D⊗χ(Q∞), respectively. Theorem (1.3) is a consequence of the congruence
in the following theorem. We just take χ to be the trivial character. We then obtain that
λanalE,Σ0

= λϕ,Σ0 + λψ,Σ0 which is in turn equal to λalgE,Σ0
by (16). Thus λalgE,Σ0

= λanalE,Σ0
which

by theorem (1.5) implies that λalgE = λanalE . The vanishing of µanalE also follows from the
congruence. (The vanishing of µalgE was proved in section 2 under the hypotheses of theorem
(1.3).)

Theorem (3.11) Let χ be any even character. Then we have congruence

L
Σ0(E/Q, χ, T ) ≡ uL (G,χ, T ) (mod πΛ),

where u is a unit in O.

Proof. Let f denote the cuspform associated to E, and let g denote the form obtained by
removing all Euler factors at primes q ∈ Σ. Then both f and G are simultaneous eigenforms
at some common level M . Furthermore, if g =

∑
anq

n, then we we have the congruence
an ≡ bn (mod p) for every integer n. We contend now that the constant term of G at every
cusp of X1(M) is divisible by p. Observe first that the constant term b0 of G at infinity
vanishes; this follows from the fact that L(s,G) is holomorphic (χ �= 1), and the well-known
characterization of this constant term as the residue of the L-function at s = 1. Thus the
modular form g−G =

∑
n≥1 cnq

n is such that p|cn for all n. If (p,M) = 1, then our contention
follows immediately from the q-expansion principle. If (p,M) �= 1, then M must be divisible
by precisely the first power of p. In this case one can argue as follows. The q-expansion
principle ensures only that g −G vanishes on the component containing infinity of X1(N)k,
where k is the residue field of Zp[ζN ], and ζN = e2πi/N is a primitive N -th root of unity. 2 This
component contains the images of the so-called “infinity cusps,” which are those represented
by rational numbers of the form a/pr, with r ≥ 1 and a prime to p. It follows that the
Eisenstein series G has the property that its constant term vanishes modulo p at the infinity
cusps. The assertion about the constant terms now follows from Hida’s determination of
the ordinary Eisenstein series ([Hid85], Thm. 5.8), since g is obviously ordinary. We have
therefore checked all the hypotheses in Theorem (2.10) of [Vat97]. Applying that theorem
gives the congruence

L (g, χ, ζ − 1) ≡ L (G,χ, ζ − 1) (mod π),

for every ζ �= 1. Our theorem follows as before. �
2Here we are using the conventions of [MW84], Ch. 2; note that the curve denoted there by X1(N)Q is

not the same as the one considered in 3. However, the two become isomorphic over Q(ζN ).
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Modular Forms with non-rational coefficients

Finally, we want to briefly discuss the situation for p-adic L-functions associated to modular
forms whose Fourier coefficients are not necessarily rational numbers. Much of the theory
extends to this context, but there are some important differences, which we will now describe.
Thus let f =

∑
anq

n denote a weight 2 eigenform on Γ1(N), with coefficients in the p-adic
integer ring O. We write ρf for the usual Galois representation GQ → GL2(O) attached to
f , so that Tr (Frob(q)) = aq, for all primes q not dividing Np. We assume as usual that
N is divisible by at most the first power of p, and that ap is a unit in O. We have seen in
the preceding sections how to define a Selmer group Self(Q∞) for ρf , and how to define a
p-adic L-function L (f, T ). Then the main conjecture states that Self (Q∞) is Λ-cotorsion,
and has characteristic ideal generated by the power series L (f,T). We can define Iwasawa
invariants µalgf , µanalf , λalgf , and λanalf as before, just as in the case of elliptic curves. Our task

is, once again, to prove that µanalf = µalgf = 0, and that λanalf = λalgf . We emphasize here
that the definition of the p-adic L-function involves the choice of a complex period for f .
From the viewpoint of modular forms, the natural choice is the canonical period of [Vat97].
However, the form f is associated to an abelian variety A, and one can also define a period
in terms of the geometry of A (we will describe this below) although the definition is not so
canonical as in the case of elliptic curves. These definitions can be shown to be equivalent in
most cases; presumably the periods are equal in general, but we cannot prove this at present.

Consider first the analogue of Theorem (1.3). Let T denote the Hecke ring for Γ1(N), with
coefficients in O, and let m denote the maximal ideal determined by f , and let F denote the
residue field of the completion Tm. There is a semisimple representation ρm : GQ → GL2(F)
satisfying Tr (Frob(q)) = Tq, for any q with (Np, q) = 1. The analogue to the hypothesis of
Theorem (1.3) is that ρm be reducible in the sense that there exist characters ϕ, ψ : GQ → F×,
such that

ρm = ϕ⊕ ψ.

We would like to define canonical periods for f , but unfortunately, this is not always possible.
We will therefore make the following assumption: the characters ϕ and ψ are distinct when
restricted to the decomposition group Dp. Such a representation is said to be p-distinguished
(see Theorem 2.1 in [Wil95], Chapter 2; also [Vat97], Theorem 2.7.) This condition will
always be satisfied if, for instance, the level N is prime to p. With the assumption that ρm is
p-distinguished, we single out the character ψ by requiring that it be unramified, and that it
satisfy ψ(Frob(p)) = ap in F×. Let α = ± be the choice of sign determined by −ψ(−1) = ±1.
Since ρm is assumed to be p-distinguished, Theorem 2.7 of [Vat97] implies that the canonical
period Ωα

f exists.
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Let ϕ̃ and ψ̃ denote the Teichmuller lifts of ϕ and ψ to O×. There exists an Eisenstein
series G =

∑
bnq

n of level N such that bn = ψ̃(q) + qω−1(q)ϕ̃(q), for all primes q with
(q,Np) = 1, and an ≡ bn (mod π) for all n > 0. Furthermore, we may assume that the
constant term of G at every cusp is divisible by the uniformizer π of O. (This is a standard
argument; see the proof of Theorem 3.3 in [Vat97], or the proof of Theorem (3.11) above.)
Let χ be any Dirichlet character with conductor prime to N , and with χ(−1) = −ψ(−1).
We may choose O large enough to contain the values of χ. Let Σ0 denote any finite set of
primes, with p /∈ Σ0, and containing all other primes q �= p dividing N . As in the proof of
Theorem (3.11), we obtain the following result:

Theorem (3.12) Assume that ρm is p-distinguished. Then there exists an invertible power
series Uχ(T ) such that the following congruence holds:

L
Σ0(f, χ, T ) ≡ Uχ(T ) ·L Σ0(χϕω−1, T ) ·L Σ0(χ−1ψ−1, (1 + T )−1 − 1) (mod πΛ).

Thus, the invariant µanal
f is trivial. The main conjecture is true for f .

Here the period appearing in L Σ0(f, χ, T ) is the canonical period Ωα
g attached to the

eigenform g obtained from f by dropping all Euler factors in Σ0. It is possible to give a
geometric interpretation of this quantity as a period on a suitable abelian variety. To this,
one can proceed as follows. Without loss of generality, we may assume that f is a newform
of level N . Let A = Af denote the abelian variety quotient of J = J1(N) constructed by
Shimura. We may assume that A is optimal in the sense that the map J → A has connected
kernel. Let R ⊂ C denote the Z-algebra generated by the Fourier coefficients of f . Then R
is an order is a number field, and there is an embedding of R into the endomorphism ring
of A. Working locally at p, it can be shown that the cotangent space Cot(J) = H0(X1,Ω

1)
is locally free over Rp = R ⊗ Zp. Furthermore, each of the spaces H1(J,Zp)

± is also free
over Rp. Let ω denote a generator for Cot(J) ⊗ Zp as an Rp module, and let c± denote
a generator for H1(J,Zp)

±. Then we can define geometric periods Ω±
A by Ω±

A =
∫
c± ω. If

the representation ρm is p-distinguished and if the abelian variety has good or semistable
reduction at p, it can be shown that the periods Ωα

A = Ωα
f , for an admissible sign α. We

note however that the abelian varieties that arise for forms on J1(N) need not have good or
multiplicative reduction when p|N , even if ρm is p-distinguished.

There is also an analogue of Theorem (1.4) for forms with non-rational Fourier coefficients.
To formulate this, consider a pair of newforms f =

∑
anq

n, g =
∑

bnq
n of level N and M

respectively. We assume that the ring O is sufficiently large to contain the Fourier coefficients
of f and g, and that both ap and bp are p-adic units. Suppose there exists a finite set of
primes Σ0, containing all primes q �= p dividing NM , but not containing p, such that an ≡ bn
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(mod π) for all n indivisible by the primes in Σ0. There exists a unique representation
ρ : GQ :→ GL2(O/πO) satisfying Tr (ρ(Frob(q)) = aq = bq in the residue field O/πO, for all
primes q /∈ Σ0. Then ρ is ordinary by a theorem of Wiles (see [Wil88], Theorem 2.1.4). Let
A and B denote the optimal abelian variety quotients of J1(N) and J1(M) associated by
Shimura to f and g respectively. By proceeding as above, we may define geometric periods
Ω±

A and Ω
±
B for A and B.

Let Σ0 be a finite set of primes as before, containing all primes q �= p dividing NM , but
not containing p. The results of section 2 in [Vat97] now imply the following result.

Theorem (3.13) Let the hypotheses be as above. Assume in addition that the representation
ρ is irreducible and p-distinguished. Then we have the congruence

L
Σ0(f, χ, T ) ≡ L Σ0(g, χ, T ) (mod π).

If the abelian variety A has good or semistable reduction at p, then the geometric periods of
A coincide with the canonical periods of f up-to p-adic unit. A similar statement holds for
B and g.

Combining this with the the Selmer group calculations of Section 2 and the arguments
outlined in the introduction, we obtain the following result.

Corollary (3.14) Let the notation be as above. Assume that the representation ρ is p-
distinguished and irreducible. If the equalities µalg

f = µanal
f = 0 and λalg

f = λanal
f hold, then we

have the further equalities µalg
g = µanal

g = 0 and λalg
g = λanal

g . The main conjecture holds for
g.
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