HOMEWORK 3

Due on 10 March 2020.

- (1) If X is a set, the constant presheaf with value X is the presheaf $\mathcal{F}(U) = X$ for all U (all restrictions being identity maps). A constant sheaf is a sheaf isomorphic to $a\mathcal{F}$ where \mathcal{F} is constant (one generally speaks of "the" constant sheaf).
 - (a) Let X be a set with more than one element. Let \mathcal{X} be the constant sheaf with value X on the topological space S^1 . Let $U \subseteq S^1$ be an open subset. Describe $\mathcal{X}(U)$.
 - (b) Identify S^1 with the unit complex numbers (with the usual topology). Consider the sheaf \mathcal{Q} on S^1 that assigns to an open subset $U \subset S^1$ the set of continuous functions $\phi: U \to \mathbb{C}^{\times}$ such that for all $u \in U$, the identity $\phi(u)^2 = u$ holds. Prove this is a sheaf. Consider also the constant sheaf * with value $\{*\}$. There is a unique map $\mathcal{Q} \to *$. Prove this is a sheaf epimorphism but $\mathcal{Q}(S^1) \to *(S^1)$ is not surjective.
- (2) Prove that $\mathbb{A}_k^n \setminus \{0\}$ represents the functor sending R to unimodular rows of length n in \mathbb{R}^n .
- (3) Suppose

is an elementary Nisnevich square of varieties (so i is an open embedding, p is an étale map and p restricted to $p^{-1}(X \setminus U)$ is an isomorphism).

- (a) Prove that the diagonal map $V \xrightarrow{\Delta} V \times_X V$ is (formally) étale. (b) Prove that $\{\Delta : V \to V \times_X V, i : U \times_X V \times_X V \to V \times_X V\}$ is a Nisnevich covering of $V \times_X V$.
- (c) Prove that for any Nisnevich sheaf \mathcal{F} , the equalizer of

 $\mathcal{F}(U) \times \mathcal{F}(V) \rightrightarrows \mathcal{F}(U \times_X V) \times \mathcal{F}(V \times_X V)$

(maps being the obvious ones—ask me if you don't think they're obvious) is actually the equalizer of

$$\mathcal{F}(U) \times \mathcal{F}(V) \rightrightarrows \mathcal{F}(U \times_X V).$$

- (4) If \mathcal{G} is a sheaf of groups and \mathcal{X} is a sheaf, then it is possible to define a *left action* of \mathcal{G} on \mathcal{X} as a map $\alpha : \mathcal{G} \times \mathcal{X} \to \mathcal{X}$ making certain diagrams commute.
 - (a) Explicitly set out what those diagrams are.
 - (b) Define \mathcal{X}/\mathcal{G} using a coequalizer diagram in the category of sheaves.
 - (c) Consider the constant sheaf of groups C_2 , cyclic of order 2, on the big étale site of $\mathbf{Sm}_{\mathbb{C}}$. If X is a connected variety, then $C_2(X) = \{1, g\}$. This group acts on \mathbb{G}_m : if Spec R is a connected affine variety, then g acts on $\mathbb{G}_m(R) = R^{\times}$ by $g \cdot r = -r$. Prove that the map $\mathbb{G}_m \to \mathbb{G}_m$ given by $r \mapsto r^2$ identifies \mathbb{G}_m/C_2 with \mathbb{G}_m in the big étale site.
 - (d) Prove that in the big Nisnevich site, $\mathbb{G}_m/\mathbb{C}_2$ (with the same action) is not isomorphic to \mathbb{G}_m .