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APPENDIX A

COMPACTLY GENERATED SPACES

The first half of this thesis developed from the dis-
covery that the obvious proce&ures for constructing'smash,
products and colimits for the category of spectra of May [77]
fail to work for purely point-set topological reasons. The

successful copstruction of these objects:in this thesis depends

‘heavily on the special properties of compactly generated spaces.

As no source in the literature contains a treatment of these
spaces adequate for this thesis, a summary of.their properties
is included here. The focus of this appendix will be on pro-
viding a thorough catalog .of results and counterexamples.
Proofs will be sketched or omitted except for those which
illustrate the techniques uniquely applicablé to compactly
generated spaces and those for péw results. Other discussions

of cbmpactly generated spaces appear in Steenrod [67], Vogt

[71], Wyler [73], and McCord [69].

1. Definitions, Examples, and Basic Properties

Wé begin with a sequence of basic definitions.
Throughout this appendix compact meahs compact Hausdorff; the
term quasicompact is used for ﬁhe finite subcovering property.
A space X is weak Hausdorff if for every continuous map

g:K » X with K compact, g(K) is closed in X. The weak Hausdorff

~147-
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property is strictly between Tl (points are closed) and the
Hausdorff property. The category of weak Hausdorff spaces

and continuous maps is denoted wH. A subset A of a space X

is compactly closed (open) if for every'continuous map g:K » X

with K compact, g'l(A) is closed (open}. ©Note that ACX is

. compactly closed if and only if its complement is compactly

open. A space X is a k-space if every compactly closed sub-
set is closed. K denotes the full subcategory of Top, the
category of topological spaces, consisting of k-spaces. A
space is compactly generated if it is both weak Hausdorff and

a k-space. U denotes the full subcategory of Top consisting

- of compactly generated spaces.

Compactly generated spaces are the spaces of actual
interest in this thesis. We have introduced k-spaces because
many colimit-related results on compactly generated spaces must
first be proved for k-spaces and then transferred to compactly
generated spaces. The followiﬁg examples should provide some
feeling for the generality of k-spaces and compactly generated
spaces. A space is locally (quasi) compact if each neighbdr—
hood of every point contains a (quasi) compact neighborhood.

k-spaces include

a) locally compact spaces

b) first countable spaces {including metric spaces,
discreterspaces, and indiscrete spaces) and, more generaily,

sequential spaces {see Section 11)
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c) any quotient space of a k-space
d) arbitrary disjoint unions of k-spaces
e} arbitrary wedges of based k-spaces

f) any intersection of an open and a closed subset

of a k-space.

Compactly generated spaces include:

a) locally compact Hausdorff spaces

b) weak Hausdorff first countable spaces (including
metric spaces and discrete spaces) and, more generally, sequen-
tial spaces with unique sequential limits (see Section 11)

¢) arbitrary disjoint unions of compactly generated

spaces

d) arbitrary wedges of compactly generated based

spaces

e) any intersection'of an open and a closed subset
of a compactly generated space. '

The following two results on k-spaces and weak Haus-

dorff spaces are the basis for most of their nice properties.

LEMMA 1.1. If X € wH, K is compact, and g:K + X is continuous,

then g(K) is compact.

Proof. Clearly g(K) is gquasicompact. Let Yir¥, € g(K) with

¥q # Yqe Since K is normal, there are .disjoint open sets Ul

“and U, about g_l(yl) and g-l(yz): g(K)-g(K—Ul) and g(K)-g(K-Uz)

are disjoint open sets about Yy and Yo in g(X). /77
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LEMMA 1.2. a) If Xe€ K and Y € Top, then a set function

f:X + ¥ is continuous if and only if feg is continuous for

every continuous ¢:K + X with K compact.

b) If, further, X is weak Hausdorff and thus in

U, then £ is continuous if and only if it is continuous on

every compact subset of X.

2. The FPunctor k; Products and Other Limits in K and U

In order to construct products and other small limits
in K and U we construct a functor k:Top + K which is right
adjoint to the inclusion functor K > Top. For any space X,

the set of compactly open subsets of X satisfies the condi-

tions necessary to be a topology on the underlying set of X;
kX-is defined to be this set with this topology. Since open
subsets are compactly open, l1:kX » X is continuous. It is
easy to see that k is a functor and that 1:kX + X is a

natural transformation with the following properties:

LEMMA 2.1. a) If £:X* Y 1s a set function such that fg is

continuous for every continuous g:K + X with K compact, then

kf:kX » kY is continuous.

b) If X € K, then kX X.

Il

c) If x e K then £:X » Y is continuous if and only

if kf:X -+ kY is continuous.

d) If X eéwH then kX e U.
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e} If KCX is compact then K is compact in kX.

f) If X € wH then the compact subsets of X and kX

are the same.

g) 1:kX » X induces isomorphisms on singular homol-

ogy and homotopy groups.

Properties c¢) and d) are summarized categorically as follows.

'PROPOSITION 2.2. k:Top + K and k:wH -+ U are right adjoints.

to the inclusions K + Top and U + wH respectively; that is,

e

K({X,kY) Top(X,Y) for X € K, Y € Top

fe

U(x,ky) wH(X,Y) for X € U, Y € wH.

Top has all (small) limits. Also, since the category wH is
closed under arbitrary products with the standard product

topology and under subspaces, wH is closed under limits in Top.

Therefore we have

PROPOSITION 2.3. K and U have all limits. Limits in K and U

are obtained by applying k to the corresponding limits in Top.

Thus limits in K and U are generally different from
the corresponding limits in Top. In particular, if X and Y are
k-spaces, then XxY with the cartesian product topology needn't
be a k-space. For this reason we henceforth denote products
c

¥ and chi and‘

products with the k-space topology by XxXY and HXi. The spaces
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XxY¥ and Hxi are of course the categorical products for K and
U. The two most useful properties of the cartesian product
topology--that neighborhoods of the form UxV form a basis and

that a product net {{x,,yy)} in X x_ ¥ converges if and-only

c
if the nets {x,} and {y,} converge--fail in the k-~space product
topology. The following results provide the tools with which

one can manipulate k-space products.

LEMMA 2.4. If X and Y are k-spaces and X is locally compact,

then XxXY = X Xe Y.

Proof. Let A be a compactly closed subset of X X, Y and let
(xgr¥q) € (XXCY)—A. Let N be a compact neighborhood of xg.
Then AN(N x, {yy}) is closed. Therefore there is an open
neighborhood U of x5 with U&N and Af\(ﬁk{yo}) = ¢. Let B de-

note the projection in Y of AN(U x, ¥Y). B is easily seen to

be compactly closed and therefore closed. But Yo € B. Hence.

U X, (¥-B) is an open neighborhood of (xo,yo) in {(Xx Y)-A,

Therefore A is closed. /77

LEMMA 2.5. If X and Y are first countable (and so in K), then

XxY = X X Y.

The point is that X x_. Y is also first countable.

C

LEMMA 2.6. If {X.},.. is a set of spaces in K, then the pro-

jection m.:IIX., + X. is an open map for each j € I.
dection Ty i j 18 an
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It is enough to show that nj(U) is compactly open if U is

open in HXj. This follows easily from Lemma 2.4.

LEMMA 2.7. If ¥ € K and X is compact then the projection

XXY + Y is a closed map.

For the proof use Lemma 2.4 to show that the image of a closed

set is compactly closed.

3. More on Weak Hausdorff Spaces;

Quotient Maps and Inclusions

This section contains threé key results for manipulating
k-spaces and compactly generated spaces. First, the wéak Haus-
dorff condition for k-spaces is rehéxpressed in terms of the
closure of the diagonal in the k-space product. Second, the
first result is used to give conditions under which the quotient
of a k-space is weak Hausdorff. Finally, the most useful
description of a k-space incluéion is given.

We begin by establishing that the relation betweén'
the k-space product and the weak Hausdorff condition is identical
to the relation between the cartesian product and the Hausdorff

property.

PROPOSITION 3.1. If X € K, then X is weak Hausdorff if and only

if the diagonal is closed in XXxX.

Proof. Let Ax denote the diagonal in XxX. Suppose that X € wH
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so that X and XxXX are in U. To show that Ax is closed in Xx¥X
it is enough to show that Ax is compactlylclosed. Let MY, Moyt
XXX » X be the projections, let g:K + XXX be a continuous map
from a compact space and let L = T (g (K )N 75 (g(K)). By Lemma
1.1, L is a compact subset of ¥X. Thus A7,r the diaqonal of LxL
regarded as a subset of XXX, is compact and therefore closed
in xxX. But g~l(Ay) = g71(a;) so g7l(ay) is closed. Conversely,
suppose that A, XXX is closed and let h:K + X be a continuous
map of a compact space into X. To show that h(K) is closed in
X it is enough to show that it is compactly closed. Let

j:L » X be a second continuous map.of a compact space into X
and let 7:KxL -+ L be the projection. Then j—l(h(k)) =
ﬂ((hxa)—l(Ax)) which is closed since Ay is closed and KxL is

compact. Therefore h(K) is compactly closed. ' /77

It is now possible to clarify the relation between
Hausdorff and weak Hausdorff. -From Lemmas 2.4, 2.5 and 3.1
it is clear that the two properties are equivalent for first
countable spaces and ﬁdr locally compact spaces. These two
conditions for équivalence.are about as much as can be expected
since Franklin [67] describes a countable, gquasicompact, se-
guential, weak Hausdorff space which is not Hausdorff.

Anothér easy consequence of Lemma 3.1 is. that a map
£:X > ¥ in U is a categorical epi (that is, it does not

equalize any unequal pair 9119,:Y » Z of maps in U) if and only
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if it has dense image. In more traditional language, two
mapsgl,gzzY + % in U which agree on a dense subset of Y are
equal.

Equipped with Proposition 3.1 we can now attack the
question of when a quotient space of a k-space is weak Haus-
dorff. It is not enough for the total space to be weak
Hausdorff. For a counterexample,‘consider the map from [0,1]
to {0,1} ﬁhich is zero on the rationals and one on the ir-
rationals. With the quotient topology from this map, {0,1}
is an indiscrete space. The most useful necessary and suf-

ficient condition for a weak Hausdorff guotient is:

PROPOSITION 3.2. If X € K and p:X * Y is a guotient map,

then ¥ is weak Hausdorff, and thus in U, if and only if

(pxp)"l(ﬂy) is closed in XxX.

The proof is an easy éonsequence-of Proposition 5.8. Applica-
tions of this criterion are given in Sections 7 and 9.

We close this section with a discussion of subspaces
and the definition of an inclusion, which is, as Proposition
3.4 indicates, the dual notion to a guotient map. Since a
subspace of a k-space with the relative topology needn't be a
k~-space, we always take the "k-ification" of the relative
topology as the subspace topoleogy. Note that for a subspace

which is the intersection of a closed and an open subset,
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this is just the relative topology. The "k~ified" subspace

topology gives us the appropriate universal property for

subspaces.

LEMMA 3.3. If X,Y € K, ACY and f£:X + Y is a set function

with £(X)C A then f:X - Y is continuous if and only if fi:X + A

is continuous.

Just as we alter the notion of a subspace, we also
alter the notion of an incluéion. A map f£f:A » X in K is an
inclusion if it is a homeomorphism onto its image with the
k-subspace topology. Since this tépology needn't be the rela-
tive topology, a k-space inclusion needn't be a topological
inclusion. For this reason closed inclusions (that is, in-
clusions wifh closed images) are generally better behaved than
arbitrary inclusions.

The following result gibes the standard techniques for
proving that a map of k—spaces-is an inclusion. It is a clear
generalization of the lemma above and an obvious dualization of

the usual characterization of quotient maps.

PROPOSITION 3.4. a) If f:X + ¥ is a map in K such that either

f is injective oxr X is Tpr then £ is an inclusion if and only

if condition (*) below holds for all Z e K.

b) If £f:X > Y is a map in U then f is an inclusion

if and only if condition (*) holds for all 2 € U.
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(*) If g:2 ~ X is a set function with fg continuous,

then g is continuous.

If X is To then (*) implies the injectivity of £.
Otherwise it must be assumed (indeed, (%) holds trivially when
X is indiscrete). Note that by Lemma 1.2, attention can always

be restricted to maps into X from compact spaces Z.

4. Colimits in K and U

Since colinits are constructed from coproducts and
quotients and since K is closed under these, K inherits
(small) colimits from Top. Colimits for U cannot be obtained
in this fashion because the weak Hausdorff property is not in
general preserved by quotients. This section is devoted to
showing that U nevertheless doces have colimits. Unfortunately,
very little can be said in general about their structure.

Colimits for U are obtained wvia a left adjoint q:K -+ U
to the inclusion functor U -+ K. The following proof of the |
existence of q is non-constructive. We also give an explicit
construction for use in Section 8; but it is not much more

enlightening.

PROPOSITION 4.1. The inclusion functor U =+ K has a

left adjoint gq:K =+ U. Therefore U has all (small) colimits.

Colimits in U are obtained by applying g to the corresponding

colimits in K.
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Proof. By Proposition 2.3, U has all small limits and the
inclusion functor U + K preserves limits. Also, for any

space X there is clearly only a set of isomorphism classes

of continuous surjections X - ¥ with Y € U. Therefore Freyd's

adjoint functor theorem (Mac Lane {711, p. 117) gives the

conclusion. /77

The following corollary, which can be proved formally
from Proposition 4.1, makes it clear that colimits in U are

quotients of the corresponding colimits in K.

COROLLARY 4.2. The unit n:X » gX of the adjunction between

q and the inclusion functor U + K ig a quotient map.

The corollary is also an immediate consequence of

CONSTRUCTION 4.3. q:K -+ U.

The intuition for the construction is simple; A func-
tion J:K + K and a natural transformation A:1 =+ J are constructed
so that JX is a first approximation to making a space X weak
Hausdorff and A:X + JX is a quotient map which is a first
approximation to the unit n:X + gX of the adjunction. Then J
is iterated until a weak Hausdorff space is obtained. In
detail, let X € K and define an equivalence relation é on X

by taking the transitive closure of the relation X ~ y if
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(x,y) @ AcXxX where 4 is the closure of the diagonal. Let
JX= X/@ and A:X + JX be the quotient map. Clearly A is an'
isomorphism if and only if X €@ U. Also if £:X + Y with

Y € U, then there is a unique map F:JX + Y with £ = FA. By

transfinite induction we define functors J%:K + K and natural

transformations ,\g:JOl > JB for o, B ordinals with o < B
starting with J0 =1, gt = Jd, and Ag = X such that

l) For all X € K and a < B, Angax -+ JBX is a
‘quotient map

2) ?\$=)\$lgfora<s<_y

3) If £:X - Y with Y € U then for each a there is a
unigue map fa:JaX + Y with £ = %ulgf

The definitions of JBX and the Ag are by use of J and A for

successor ordinals and of colimits for the limit ordinals.

For each X € K, there is an ordinal o with J% e . Indeed,

0 o+l
PR SRl X must collapse

a pair of points in X which were not collapsed by Ag

X has only a set of pairs of points to be collapsed. If o is

if I% # U for an ordinal a, then A

X » 3%,

an ordinal of cardinality greater than the cardinality of XxX
then J%K € U. Now take gX to be J%X for the least ordinal
with J%X € U and 1let n:X - gX be Ag. By property (3) above,
n is a universal map from X tb spaces in (. Therefore g can
be made into a functor gq:Kk -+ (| left adjoint to the inclusion

U+~ K and n is the unit of the adjunction. /77
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5. Function Spaces and Products

The principal advantage of K and U over Top is that,
with their natural function space topologies, they are car-
tesian closed categories (see Mac Lane [71] for a discussion
of this notion). This has useful consequences for the be-
havior of limits and colimits in K and U. 1In this section we
describe the function space topology and prove the closed
structure. We demonstrate its utility by showing that the
product of two quotient maps in K or U is again a quotient map.

We begin by introducing a modified compact open topol-
ogy on the -set of maps from a spacé X to a space Y, If X is

compact, h:K + X is continuous and UCY is open, let
N(h,U) = {£f:X + Y|f continuous and f(h(K))cU}.

Let C(X,Y) be the set Top(X,Y) with the topology generated by
the subbasis {N(h,U}}. Clearly C defines a functor

TopOPXTop + Top. Evaluation gives a set function e:C(X,Y)xc X+ Y.

LEMMA 5.1. If K is compact and g:K + X is continuous, then

the map s(lxcg)qC(X,Y)ch + Y is continuous. In particular,

evaluation ex:C(X,Y) + Y at a point x € X is continuocus.

Proof. Suppose UcCY is open and (f,z) € (€(l><cg))—l

L

(U}. Then

z € (£9) "(U). Since (fg)—l(U) is open there is an open

neighborhood Vv of z in K with Vc:(fg)fl(u). N(g|v,U)XcV is an



~161~-

1

open neighborhood of (£,z) in (e(lxcg))— (1) . Therefore

e(lx_g) is continuous. /77
LEMMA 5.2. If X € Top and Y € wH, then C(X,Y) € wH.

Proof. Let 2= 1 Y be the cartesian product of one copy of
xex

Y for each point in X. Define j:C(X,¥Y) - Z to be evaluation
at x € X on the factor corresponding to x. Since j is a con-
tinuous injection and since Z € wH (because wH is closed under

arbitrary products)}, C(X,Y) € wH. /77

Now define YX = kC(X,Y). This gives functors
KPxk + K and U°PxU - U which provide the function spaces for
K and U. Note that this function space topology is generally
strictly finer than the compact-open topology. However, if
both X and ¥ are second countable Hausdorff spaces and X is
locally compact, then C(X,¥) is second countable {(Dugundji [66],
p- 265) and therefore in U. Aiso, if X is compact gnd Y is
a metric space, then C({X,Y¥) is a metric space (Dugundiji ([66],
p. 270) and therefore in U. Unfortunately, these two results
apparently represent all that is known about when the compact-
open topology agrees with its "k-ification.”

Evaluation gives a set function e:YXxx + ¥ and we have

the following result.

PROPOSITION 5.3. If X, Y € K, then e:¥*xX - Y is continuous.
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X

Proof. Since Y'xX = k(C(X,Y)xcx) it is enough to show that

for any g:K -+ C(X,Y)XCX, eg:K =+ Y is continuous. This is

immediate from Lemma 5.1. ' /77

If £f:¥xX + 2 is continuous for X, Y, 2 € K then there

~

is an adjoint set function £:¥ + z* given by f(y) (x) = f(y,x).

PROPOSITION 5.4. If X, ¥, % € K and £:¥xX + % is continuous,

~

then so is f:¥ » zX, In particular for X, Y € K the map

n:Y » (¥xx)¥ given by n(y)(x) = (y,x) is continuous.

Proof. Since Y € K it is enough to show that £:Y¥ -+ C(X,Z) is con-
tinuous. Therefore it is‘enough to check that E_l(N(h,U)) is

open for h:K + X continuous with X compact and U open in 3.

Ify € I"l(N(h,U)) then {y}XKC(f(lxch))_l(U) and, by the com-
pactness of K, there is an open neighborhood V of y with VxK<

(£(1x h)) "Hu). But then Ve i L(N(h,0)) and F1(N(h,U)) is

open. ' /77

For fixed X, the maps n:Y ~» (Yxx)x,and e:Yxxx + Y

satisfy the identities necessary to specify the following ad-

junctions.

THEOREM 5.5. There are natural isomorphisms

-~

K{¥xX,Z)

K(Y,Zx) for X,Y,2 e K

and

-~

U(Yxx,2)

I

uy,z%) for X,Y,% € U.

Therefore K and U are cartesian closed categories.
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‘The following results are formal consequences.

COROLLARY 5.6. For X,Y,Z € K (ox U)

X
a) (2¥).. is homeomorphic to g1 X,

X

b) Composition C:Z xYX + g

is continuous.

c) The functor ?xX preserves colimits.

d) The functor ?x preserves limits.

>
e} The functor ¥  takes colimits to limits.

To give some idea of the power of this formal structure
we turn to the often tricky question of the presexrvation of
quotient maps by products. In K and U this preservation fol-
lows immediately from the preservation of colimits by products

via the following lemma.

LEMMA 5.7. f X, ¥ € K then £:X ~ ¥ is a quotient map if and

only if it is a coequalizer.

Proof. Coequalizers are gquotient maps by the definition of co-
limits in K. Conversely if f:X + Y is a quotient map then for
each y € Y select a point'xy e f—l(y)c:x. Define two maps from

u f-l(y) to X by taking one to be the inclusion of f_l(y) on
yey

each factor and the other to be'f—l{y).+:xy,on-each factor.

Then f is easily seen to be the coequalizexr of these two maps. ///

PROPOSITION 5.8. If X, X', ¥, ¥' € K and p:X » ¥, g:X' + {°

are quotient maps, then pxqg:XxX' =+ ¥xY' is a quotient map.
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6. Based Spaces

T and K, denote the categories of compactly generated
based spaces and based k-spaces respectively. Since U and K
are cartesian closed categories with all limits and colimits
it follows formally that T and K, are closed categories with

all limits and colimiﬁs. We record these completeness proper-

ties.

PROPOSITION 6.1. The categories T and K, have all (small)

limits and colimits. Limits in T and K, are obtained by

applying k to the corresponding limits .in Top,. Colimits in

Ky are just colimits in Top,. Colimits in T are obtained by

applying q to the corresponding colimits in K,.

The closed structures on K, and T merit a bit more
discussion. The smash product pairing with respect to which
K, becomes a symmetric monoidal'category is defined by
X~Y = XxY¥/XvY for X,Y € K,. The associativity of the smash
product follows from Proposition 5.8 and it is easy to chéck
that S0 is the unit. The coherence diagrams necessary for
Ky to be a symmetric monoidal category follow from the diagrams
for K. The following lemma indicates that the smash product

restricts to give T a symmetric monoidal structure.

LEMMA 6.2. If X,Y € T then X~Y € T and the gquotient map,

m:Xx¥ + X~Y¥ is a closed map.
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This holds because XvY is a closed subset of XxY.

The function space F(X,Y) for K, and T is just the
subspace of vX consisting of based maps with the k~subspace
topology. If Y € T then F(X,Y) is a closed subset of Yx.

For X,Y,2 € K,, F(Y~X,2) ~» g T *X and F(X,F(Y,Z)) - (ZY)X are in-

clusions by Proposition 7.7. This yields the following result.

THEOREM 6.3. The following conclusions hold for X,Y,Z in K,

or T.

a) ?~X and F(X,?) are adjoint functors.

b) K, and T are closed categories.

c) F(¥~X,2} and F(X,F(Y,Z)) are naturally homeomorphic.

-d) Composition C:F(Y,Z)~F(X,Y) -+ F(X,Z) is continuous.

e) The functor ?~X preserves colimits.

f) The functor F(X,?) preserves limits.

g) The functor F(?,Y) takes colimits o limits.

Since coequalizers in K, are the same as coequalizers
in K, the analog of Lemma 5.7 holds for pointed spaces. There-

fore we have

PROPOSITION 6.4. If X, X', ¥, Y' € K, and p:X - ¥ and q:X' » v!

are quotient maps then pag:X«X' -+ Yay! is a quotient map.

7. Preservation of Inclusions under Various Constructions

This section is concerned with results on the Preser-

vation of inclusions and closed inclusions under such constructions
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as products, smash products, wedges, pushouts, and function
spaces. The relation between inclusions and directed coliJnits
and between inclusions and pullbacks is discussed in Sections
9 and 10.

The following results are direct consequences of

Proposition 3.4 which characterizes inclusions.

PROPOSITION 7.1l. a) An arbitrary product of (closed) inclu-

sions in K is a (closed) inclusion.

b) BAn arbitrary disjoint union of (closed) inclusions

in K is a (closed) inclusion.

¢} An arbitrary wedge of (closed)-inclusions in T is

a (closed) inclusion.

For part (c¢) the fact that condition (*) of Proposition 3.4 needs
to hold only on compact spaces allows a reduction of the problem
to the case of a finite wedge Whére it is elementary.

The following technical lemma on closed inclusions hés

several applications.

LEMMA 7.2. If £ is a closed inclusion, ¢ is injective, p is

surjective and either g is closed or g is a quotient map with

q—l{g(z))C:f(x) in the following commuting diagram in K, then

g is a closed inclusion.

X—-—--—g——-—>Y
PL lq
VA g > W
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The preservation of closed inclusions by smash

products in T now follows easily.

PROPOSITION 7.3. If f:X » Y and g:X' » ¥' are closed in-

clusions in T, then f~g:X~X' » ¥Y~Y¥' is a closed inclusion.

One might expect the analog of this proposition to
hold for non-closed inclusions. This is not the case. Let
I = [0,1] and [0,1) have basepoint 0. Then the map I*[O,l)l+ I~I
is not an inclusion because the sequence % ~ (1—%) is discrete
in I~[0,1) and converges to the basepoint in I~I. This misg-
behavior of inclusions is one of the problems with the con-
struction of smash products of spectra. The following is the
best available result on the preservation of inclusions by

smash preoducts.

PROPOSITION 7.4. If f:X + Y is an inclusion in K,, K is com-

—

pact -and K" denotes the union of K with a disjoint basepoint,

then £~Ll:X~K  + YK' is an inclusion.

This follows from the existence of a map XAK+ + X and the
compactness of K.

For pushouts we have

PROPOSITION 7.5. If the diagram below is a pushout in K and

i is a closed inclusion then j is a closed inclusion.




:
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If A, X, ¥ € U, then ¥ U; X is weak Hausdorff and is thus also

the pushout in U.

Proof. The injectivity of j follows because pushouts preserve
injectivity in the category of sets. For the rest, note that
the diagram below is also a pushout and that (j,g) is a

guotient map.

vz i yux
(l.f)l t(j,g)
3 R
Y 'Y Ug X

Now apply Lemma 7.2 and Proposition 3.2. YIy4

In U, pushouts of non-closed inclusions need not
even be injective. For example, if f:[-1,0) U (0,1] =~ So-is
the collapse of each component to a point and i:[~1,0) U{(0,1]
+ {-1,1] is the inclusion, then the pushout P of f and i in K
is a three point space in which only one point is closed.

The pushout in U is a single point because g collapses P.

We now relate equalizers to inclusions and closed
inclusions and thereby derive the preservation properties for
function spaces. The following result is dual to Lemma 5.7
and admits a dual proof, with ¥ /£(X) replacing the coproduct

used there.
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LEMMA 7.6. a) A map £:X -~ ¥ in K is an inclusion if and only
if it is an equalizer.

b) Amap £:X » Y in U is a closed inclusion if ang

only if it is an equalizer in U.

PROPOSITION 7.7. a) If X € K and Y € K,, then the functors

?X:K + K and F(Y,?):K, +~ K, preserve inclusions and the functors

x?:k% 5 K and F(?,Y):Kip + K, take quotient maps to inclusions.

b) IfXelUad ¥ eT, then the functors XU > U

and F(¥,?):T » T preserve inclusions and closed inclusions and

the functors x°:U°% » U and F(?,¥):T°P » T take quotient maps

to closed inclusions.

8. Identification of Various Maps as Inclusions

In this section we show that such special maps as
cofibrations and the unit of the product-function space adjunc-
tion are inclusions or closed inclusions. First we have a

technical result on retractions.

LEMMA 8.1. If j:X - ¥ and r:Y - X are maps in K with rj = 1

then j is an inclusion and r is a gquotient map. Further, if

Y € 4, then j is a closed inclusion.

The point is that j is the equalizer and r is the coequalizer
of the map jr:Y - Y and the identity. An easy consequence of

this is



~-170-

PROPOSITION 8.2. If i:A + X is a cofibration in U or T, then

i is a closed inclusion.

Proof. Assume i is a cofibration in U Then there is a 1eft
inverse r:XxI =+ Mi to the natural map j:Mi > XxI where Mi is

the mapping cylinder. Therefore j is a closed inclusion. If
8:A »> Mi is the map into the free end of the mapping cylinder
and il:X + XXI is the map of X onto the top end of the cylin-

der, then 6 and il are closed inclusions and the diagram

0

A ——3 Mi

o

X ———— 3 ¥XT

commutes. Hence, since j8 is a closed inclusion and il is
injective, i is a closed inclusion. The proof for i a co-

fibration in T is similar. : /77

The following proposition provides a useful relation
between inclusions and the (smash) product-function space
adjunction. Note that none of the converses of the state-

ments below are true.

PROPOSITION 8.3. a) -EE £:¥xX > Z is an inclusion in K and

X # ¢, then the adjoint Fiy » 2% is an inclusion. If, fur-

ther, X, ¥, %2 € U and f is a closed inclusion, then gg ig E.

In particular the map n:Y » (¥xX)X specified by n(y) (x) = (y,x)
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is a (closed) inclusion‘ig X, YK (X, ell) and X is

—_—

nonempty.

b) If £:¥~X +~ 2 is an inclusion in K, and X # {=x},

then so is the adjoint %:Y - F(X,2). If, further, X,¥,2 @ T

and £ is a closed inclusion, then so is £. In particular,

the map n:¥ » F(X,¥~X) specified by n(y) (x) y~xX is

o

(closed) inclusion if X,¥ € K (X,Y € U) and xlig not a point.

The proof that f is an inclusion is immediate from Proposition
3.4 and an application of the relevant adjunction. To prove
that the image is closed under the specified conditions, first
show that n is a closed inclusion using the closed diagonal
condition., Then express f in terms of n and £ and apply
Proposition 7.7.

The result below describes the natural map relating

function spaces and wedges.

PROPOSITION 8.4. If K is a compact based space and {Y;},

<
_— eI Tr
then the natural map j: V F(K,Y.) - F(X, V Y} is a closed

ier ier
inclusion.
Proof. Since K is compact the proof that j is an inclusion
can be reduced to consideration of F(X,X)vF(K,Y) > F({K,XvY)
which is an inclusion by comparison with the homeomorphism

xKxYK - (XxY)K. To see that the image of j is closed, note
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that its complement is the set of functions f£:K -» v Yi
iel ;
such that for some x,y € K and i # j € I, £(x) € Yi;{*} and

f(y) € Yj-'-{*}. 77/

If the indexing set I is finite, then the compactness as-—
sumption on K is not needed. If the indexing set is in-
finite, then the result cannot be proved using the homeo-
morphism 1 (Y.K) - (HY.)K since the natural map V Y, +

. i i . i

igl ier
I Y. needn't be an inclusion {(the map of a countable wedge
iex
of copies of Sl into the product is a counterexample). Thus
some condition like the compactness of K seems to be needed.

The following result is useful but not as general

as one might hope.

PROPOSITION 8.5. If X,Y € T, K is nonempty and compact, and

k' denotes the union of K and a‘disjoint basepoint, then the

natural map j:F(X,Y)hK+ > F(X,fAK+) is a closed inclusion.

Proof. Jj is easily seen to be a continuous injection. ﬂet
'nr:YAK+ + ¥ be the projection and let p:F(X,Y¥)xK + F(X,Y)AK+

be the quotient map. In order to show that j is an inclusion,
it is enough by Proposition 3.4 to show that if g:2 - F(X,Y)AK+
is a set function with jg continuous, then g is continuous.

1

Let h = 7,jg:2 - F(X,¥); h is continuous. If z € Z-h" " (%)

then it is easy to see that g is continuous at z by using the
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evaluation map ex:F(x,YAK+) > yag' for some x € X such that

h{z) (x) # *. Therefore it is enough to show that g is con-

1

tinuous at any point in h™ ~(*). For such a point Zgr let U

be an open neighborhood of g(zo) = % in F(X,Y)AK+. Then
-1

"{*}xK p T(U). And, since K is compact, there is an open

neighborhood V of * in F(X,Y) with VXKcp t(U). But then
h"L(v) is an open neighborhood of z, in 2z and g(h—l(V))CLU.
Therefore g is continuous at Zq and j is an inclusion. In
order to see that the image of j is closed in F(X,YAK+),

note that its complement is the set of functions f:X - YAK+

.such that for some X1 1%, e X, h(xl) = ¥1°2q % %, h(xz) =

¥y 2, # %, and zl-# Zge With this description it is easy to

see that the complement is open. /77

The adjunction of the disjoint basepoint is essen-

tial to the above result as the.following counterexample shows.

COUNTEREXAMPLE 8.6. If I = {0,1] with basepoint zero, then
F(I,I)~I » F(I,I~I) is not an inclusion. To see this let
fn € F(I,I) for n > 1 be the function which is zero on
[0,1 - H%T] and a spike of height one and width E%T

1 . . . \ .
{1 - H$T’l]‘ Then {fn}nz; is discrete in F(I,I) and is the

on

standard example of a non-uniformly convergent sequence of
functions which converges pointwise. The sequence {f AL

nnn>l
ig discrete in F(I,I)~I but {j(£f Ai)}

o th
n*n converges t e

n>1
zero function in F(I,I~I). /77
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9. Directed Systems and Their Colimits

Three aspects of directed colimits are considered
here--their preservation by products and function spaces,
the relation of certain properties of the maps in the directed
system such as being injections or inclusions to the behavior
of the natural maps into the colimit, and conditions under
whiqh the colimit in K of a directed system in U is weak
Hausdorff and thus also the colimit in . Note that a i~
rected colimit in K, {or T) is obtained by assigning the
obvious basepoint to the colimit in K (or U) of the same
directed system. Thus everythingAsaid about K and U applies
equally well to K, and T. The relation between directed
systems and pullbacks is discussed in the next section.

We begin with the relation of products and colimits.

- o, ‘ o,
PROPOSITION 9.1. If {xa,xg.xa > xB} and {Y ,yg:¥, * Yo} are

directed systems in K (or U) indexed on the same directed set

‘{a} and if X = colim X and ¥ = colim ¥ in K (ox U} then

Xx¥ = colim X xY_.
o o

The proof follows from the colimit preserving property of
products and a cofinality argument.

The next two propositions relate properties of the
maps in the directed system to the natural maps into the co-
limit. A condition for a colimit in K to be weak Hausdorff

is also given.
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PROPOSITION 9.2. Let'{xa,lgzxa + Xo} be a directed system in

K (oxr U) such that all the Ag are surijective. 8Set X =

colim X in K (or U} and let'{ka:Xa + X} be the natural maps

into the colimit. Then the maps Aa are surjective.

Proof. In K a map is a surjection if and only if it is an
epi and the analogous assertion for epis holds in any cate-
gory. The result for U follows from the result for K,

Proposition 4.1 and Corollary 4.2. : /777

PROPOSITION 9.3. Let {X ,A3:X > X.} be a directed system in

K such that all the Ag are injective. Let X = colim Xu.ig K

and let {A :X - X} be the natural maps into the colimit. Then

a) The mapsrka are injective.

b) If {X,}CU then X is weak Hausdorff and therefore

also the colimit in U.

c) Lf {X }=U and the A\ are (closed) inclusions then

the A, are (closed) inclusions.

Proof. (a) follows from the construction of colimits in sets.
(b) follows from Proposition 9.1 and the closed diagonal con-
dition for weak Hausdorff. The result in (¢) that the image
of any Aa is closed is an easy consequence of directedness.
For the inclusion part of (¢), fix g € {a}. To show that
AB:XB + X is an inclusion it is enough to show that for any

closed C<:XB, D = AB(C) is compactly closed in AB(XB). Let
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KS Ao (Xg) be compact. Since K is closed in X, K, = A;l(K)
is closed in xa for all a. It is enough to show that for
each a,_A;l(Kf\D) is closed in X . Select a' € {a} with
a <a'and g <a'. mhen ANxND) = 0% 7T0E &k no).

Since AB,(K } =K ,, AB.| .is-a closed inclusion. There-
o B o ] KB

fore A2, (K N C) is closed, so AT K ND) is closed. ///

We now consider the behavior of maps of compact

spaces into directed colimits. ,

LEMMA 9.4. Let {xn,)\n:xn -+ xn+l} Qg‘gfdirected sequence in

Top. If X=colim X, is a T, space -(points are*closed)}{¢nzxn + x}

are the maps into the colimit and K is any quasicompact sub-

set of X, then there is an n with RCo (X )).

1f Ktiﬁ%(xn) for every n then a discrete sequence of points
in K can be constructed contrary to the quasicompactness of X.
This lemma does not extend to colimits over arbitrary
directed systems. I am indebted to Myles Tierney for the
following counterexample. The unit interval I, being a $e~
quential space (see §11), is the colimit of its closed countable
subsets and these subsets form a directed system ordered by
inclusion. However, I is clearly not contained in any one
of its countable closed subsets.
For compactly generated spaces, this lemma yvields an
important preservation property for directed colimits and

function spaces.
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PROPOSITION 9.5. Let {X ,A :X = X .} be a directed se-

quence in U such that each An is an inclusion. If X =

colim Xn and K is a compact space, then XK = ¢olim xi'and

" similarly in T.

The proof is an easy consequence of Lemma 9.4 and Proposition

9.3(c).

We close this section with a result on maps given by

the universality of a colimit.

PROPOSITION 9.6. Let'{xa,kgzxa -> XB} be a directed system

in K {or ). If X = colim X in K (or U}, Y € K (or U) and

{9 X, > Y} is a collection of injective maps which commute

with the l%, then the induced map ¢:X = Y is injective.

The point is that any pair of points in X must come from a
common X, since the system is directed.

One might hope for an analog to the effect that if
the ¢a are inclusions or closed inclusions then so is ¢. No
such result is true. Let Q be the rationals with the sub-
space topology from the reals and let'{rm:‘rmz0 be an enumera-

tion of Q. If X = {rm} , then the maps X - X ., are

0<m<n
closed inclusions and so are the maps X, Q. However X =
colim Xn is a countable discrete space so the induced map

X - Q is not an inclusion.
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10. Pullbacks, Inclusions, .and Colimits

We begin by relating pullbacks to injections, in-
clusions, closed inclusions and quotient maps in K and U.
The preservation results on pullbacks and quotient maps are
used to show that under very general circumstances pulling
back preserves colimits in K. We then show that under con-
ditions applicable in bundle theory pulling back in U preserveé
colimits in U. Note that pullbacks in K, and T are pullbacks
in K and U respectively, with appropriate basepoints, so that
all of the results of this section apply equally well in the

based context.

PROPOSITION 10.1l. Let
P

P
ql
c

23 a pullback diagram iﬁ K. Then

_
—e———
1

W e

a) if i is injective so is j.
b) if i is an inclusion so is J.

— ——r | ———— o — Akt s

c) 1if i is a closed inclusion and B € { then j'ig a

closed inclusion.

d} 1if p is a quotient map and B € ( then q is a

quotient map.
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Proof. (a) and (b) are formal. For (c) it suffices to
prove that j(P) is compactly closed and this is straight-

forward. For (d) note that the following diagram is also

a pullback:

P (3,9 » AXC
q pxl
c (1.1)  eie

Here pxl is a quotient map; (i,1), (j,q) are easily seen to
be inclusions and the closed diagonal condition on B can be
used to show that their images are closed. It then follows

easily from the diagram that g is a guotient map. /77

The following extension of the result above is needed

for the study of colimits and pullbacks.

LEMMA 10.2. Suppose that, in the diagram below, both squares

are pullbacks, A, C, D € K and B € U. Then if p is a quotient

map, so is q.

) «-— J
T

- Proof. 1In the diagram

h 4

Q ! » P >

|

DxA —E2= 5 CXA — 5> BXA
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both'squares are pullbacks and from Proposition 10.1 and +the

closed diagonal condition on B, all the vertical maps are closed

‘inclusions. Also pxl is a quotient map. It follows easily

that g is a quotient map. /177

For A € K, let K ¥ A denote the category wﬁose ob-
jects are maps f£:X - A in K and whose morphisms o:{(£:X + A)
+ (g:Y¥ + A) are maps a:X + Y in K with £ = ga. For A € U,-‘
the notation U + A has the corresponding meaning. The cate-
gories K + A and U + A have all small colimits. Colimits in
K + A are constructed by taking the appropriate colimit of
the domain spaces in K together with the induced map into A; for
example, if An:(fn:xn -+ A) - (fn+lzxn+l + A) is a sequence in
K ¥+ A, then colim fn is the object f£:X - A where X = colim Xn
and £ is induced by the fn. Colimits in U + A are constructed
similarly. Suppose g:A + B is a map in K. Then there is a
functor Pg:K + B > K ¢ A defined by pulling back along
g:A -+ B; that is, £:X + B goes to £:P > A where the following

diagram is a pullback.

~

S SN
—_—
£

P A
X B
For g:A + B in U, P

g:u + B> U ¢+ A is defined similarly.
Our purpose is to give conditions under which these functors

preserve colimits.
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PROPOSITION 10.3. Let g:A - B be a map in K and let B € U.

Proof. Since colimits are constructed from coproducts (dis-
joint unions) and coegualizers, it is enough to show that p
preserves these. The pregervation of coproducts is trivial.

Suppose the following is a coequalizer diagram in K ¥+ B.

SR BN

¥

€

A
=3

Taking pullbacks we have

8

——————————

m
Al

Y

7 l -
B
p4

Note that X is well defined since keoeoB = kocoy because & is

Y

\

o ¢

|

£ —— B
~
(_..___

Q0

£

\ §

a coequalizer. & coequalizes ¥ and 8 and & is a guotient map
since B € U and e, being a coequalizer, is a quotient map,
The question, then, is whether or not € is the coequalizer of
¥ and B. There are two ways to see that it is. One can
directly check the equivalence relation from which %2 is con-

structed as a quotient space of Y or, more easily, one.can

note that in Sets pulling back preserves colimits and the
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forgetful functor from K to Sets preserves colimits. 77/

Since U is the category of actual interesf, it would
be nice to modify this proposition to say that for g:A + B in
u, Pg preserves all colimits. This is false. Suppose f:X -+ B
is' a non-surjective map in U with dense image. Then, thought
of as a map f:(f:X - B) ~ (1:B + B) in U ¢+ B, £ is epi. Let
g:{*} +~ B be a map of * to a point not in £(X). Then Pg(f) |
is the map ¢ + * which is certainly not epi. ThereforeP
can't preserve all colimits since a functor thch preserves
all colimits must preserve epis.

There are two ways in which a version of Proposition
10.3 may be obtained for colimits in U + B. The first is the

following observation, part (b) of which is a special case of (a).

COROLLARY 10.4. a) Suppose g:A - B is a map in U. Then

Pg:u + B> U+ A preserves all colimits in U + B which are also

colimits in K + B. In particular, P_ preserves directed colimits

g
over systems of injections.

b) Suppose.Yex € U. If {F X} is a filtra-

tion'9£ X indexed over a directed set~-that.is, for each o,

FaXc:X and X has the colimit topology from the Fdx—-then FaY =

YOF X is 2 filtration of Y.

One immediate application of this result is that if B

is a C.W. complex and £:E » B is a bundle (or fibration) then
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£ is the colimit of the bundles (oxr fibrations) over the
individual cells of B.

The second approach is to place special conditions
on g such that Pg preserves all colimits. The reguired

conditions on g are exactly those applicable in bundle theory.

PROPOSITION 10.5. Suppose g:E » B in U is locally trivial--

that is, B has an open cover such that for each U in the

cover, g_l(U) = UXF over U for some fixed F. Then Pg:u + B

+ U + E preserves all colimits in U ¢ B.

ESQQE' The pfeservation of coproducts follows from Corollary
8.4. In order to show that coequalizers are preserved it ig
necessary to use the explicit construction of the functor

q:K ~ U given in Section 4. Suppose that in the diagram below
Y ~ W is the coequalizer of B and vy in K, ¥ - Z = gW is the

coequalizer in U and all of the squares are pullbacks.

v

e —— 12

b ]

!

= e— =
/
io]
b
N(——-—-—-—\-‘Ne

k4

~ -~

Then ¥ + W is the coequalizer in K of § and ¥ by Proposition
10.3 and ¥ + qW is the coequalizer of § and ¥ in U. Therefore
it suffices to show that g 2 Z. By the construction of g

it suffices to show that



. v
M o w

~184-
J* -+ E

+ +g
J%W + B

is a pullback for all ordinals o. But then, by Proposition
10.3 and the definition of the Ja's, it suffices to show that,

for any f£:W -+ B in K, when the left square below is a pull~

back so is the right:

W + E JW -+ R

m¥ ‘g 49
£

W 5 B JW + B

For this it suffices to show that, considering W as a sub-
space of WxE,

W= T(AWXAE)IW(WXW)
where T:WXWXEXE + WXEXWXE is the twist map. By et (BxAg) N
(ﬁxﬁ) is immediate. Suppose (wl,e,wz,e) e T(ZﬁXAE)f\(ﬁxﬁ).
Then (Wl’wz) e AW' Therefore f(wl) = f(wz) € B since B € (.
Let U be an open neighborhood of f(wl) such that g is trivial
over U. Since 1w is trivial over f_l(U) and WoiW, e f_l(U),
(wy,e,w,,e) € Agm. Therefore Ay = T(AWXAE)f\(WXW) and the

right square above is a pullback. /77

11l. Sequentially -Generated Spaces

Any discussion of convenient categories of topological

spaces would be incomplete without the mention of sequentially
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generated spaces. If,in the definitions of compactly open
and closed, one replaced arbitrary compact spaces by arbitrary
compact metric spaces, one would obtain notions of compact
metrically open and closed. One could then study spaces in
which compact metrically open sets were open. It is fairly
easy to see that a set ACX is compact metrically open if and
only if it is sequentially open--that is, if'{xn}¢2x is a
sequence coverging to x € A then for some N,'{xn}n>NC:A.
Spaces in which sequentially open sets are bpen are called
sequential spaces and have been studied by Franklin {65, 66,
671, Wyler [73], Meyer [72], and Johnstone [78].

Sequential spaces have several important advantages,
including:

1) All point-set gquestions can be settled with
sequential arguments.

2) All C.W. complexes_are sequential.

3) In sequential spaces the notions of sequentially ’
quasicompact and countably guasicompact coincide. As a result,
a sequential space is weak Hausdorff if and only if it has
unigque sequential limits; such spaces are called sequentially
generated. The closed diagonal condition in the sequential
product topology is equivalent to these two separation
properties.

4) All the results of this appendix carry over with
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sequential spaces replacing k-spaces and sequentially generated
spaces replacing compactly generated spaces.

5) If X and Y are sequential spaces and Y% is the
function space with the appropriate sequential topology then

a sequence'{fn} c ¥ converges to f € ¥ if and only if for

n>0

every sequence'{xm} in X converging to a point x in X,

m>0

the doubly indexed seguence fn(xm) converges to f£(x).

Pfépérty (5) is more important than it might initially seem.
The function space topology for compactly generated spaces

is in general strictly finer than the compact open topology
and is virtually untouchable by standard techniqueé. There-
fore it is far easier to study function space related questions
in sequentially generated spaces than in compactly generated
spaces. The only real disadvantage of the category of sequen-
tially generated spaces is that it is too small, in that it
does not contain all compact Hausdorff spaces,.and this is of

negligible significance in algebraic topology.



